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Abstract  21 

Ductal carcinoma in situ (DCIS) is a pre-invasive lesion that is thought to be a precursor 22 

to invasive breast cancer (IBC).  To understand how the tumor microenvironment (TME) 23 

changes with transition to IBC, we used Multiplexed Ion Beam Imaging by time of flight 24 

(MIBI-TOF) and a 37-plex antibody staining panel to analyze 140 clinically annotated 25 

surgical resections covering the full spectrum of breast cancer progression.  We 26 

compared normal, DCIS, and IBC tissues using machine learning tools for multiplexed 27 

cell segmentation, pixel-based clustering, and object morphometrics.  Transition from 28 

DCIS to IBC was found to occur along a trajectory marked by coordinated shifts in location 29 

and function of myoepithelium, fibroblasts, and infiltrating immune cells in the surrounding 30 

stroma.  Taken together, this comprehensive study within the HTAN Breast PreCancer 31 

Atlas offers insight into the etiologies of DCIS, its transition to IBC, and emphasizes the 32 

importance of the TME stroma in promoting these processes. 33 

 34 

 35 

 36 

 37 
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 2 

Introduction 38 

Ductal Carcinoma in situ (DCIS) is a preinvasive lesion where tumor cells within the breast 39 

duct are isolated from the surrounding stroma by a near-continuous layer of 40 

myoepithelium and basement membrane proteins.  This histologic feature is the central 41 

property that distinguishes it from invasive breast cancer (IBC), where this barrier has 42 

broken down and tumor cells have invaded the stroma (Figure 1A).   DCIS comprises 43 

20% of new breast cancer diagnoses, but unlike IBC, in itself is not a life-threatening 44 

disease.  However, if left untreated, up to half of these patients will develop IBC within 10 45 

years (Betsill et al., 1978; Erbas et al., 2006; Eusebi et al., 1994; Page et al., 1982; Ryser 46 

et al., 2019). 47 

Sequencing-based approaches have been used extensively over the last decade 48 

to identify molecular features that could elucidate the connection between DCIS and 49 

IBC.  Genomic profiling has identified recurrent copy number variants (CNV) that are 50 

more prevalent in high grade DCIS lesions (Afghahi et al., 2015; Buerger et al., 1999; 51 

Fujii et al., 1996).  Meanwhile, comparison of paired DCIS and IBC lesions from the same 52 

patient has provided clues into the clonal evolution from in situ to invasive disease by 53 

revealing genomic alterations that are acquired during this transition (Ak et al., 2018; Kim 54 

et al., 2015; Newburger et al., 2013).  To date, however, these findings have not been 55 

found to consistently explain this transition.  Similarly, the utility of tumor phenotyping by 56 

single-plex immunohistochemical tissue staining has been limited as well.   57 

In light of this uncertainty, clinical management has trended towards treating all 58 

patients presumptively as progressors with surgery, radiation therapy, and 59 

pharmacological interventions that carry risks for therapy-related adverse events.  60 

Consequently, this approach is likely to be overly aggressive for non-progressors.  Thus, 61 

understanding the central biological features in DCIS that drive the transition to IBC is a 62 

critical unmet need.   63 

Surprisingly, despite all the information now known about the genetic and 64 

functional state of tumor cells in DCIS, histopathology remains the only reliable way to 65 

diagnose it.  Thus, DCIS is an intrinsically structured entity where the spatial orientation 66 

of tumor, myoepithelial, and stromal cells is the primary defining feature that distinguishes 67 

it from other forms of breast cancer.  68 
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To understand how DCIS structure and single cell function are interrelated, we use 69 

new tools previously developed by our lab for highly multiplexed subcellular imaging to 70 

analyze a large cohort of human archival tissue samples covering the spectrum of breast 71 

cancer progression from in situ to invasive disease.  In previous work, we used 72 

Multiplexed Ion Beam Imaging by Time of Flight (MIBI-TOF) and a 36-plex antibody 73 

staining panel to identify rule sets governing tumor microenvironment (TME) structure in 74 

triple negative breast cancer that were highly predictive of the composition of immune 75 

infiltrates, the expression of immune checkpoint drug targets, and 10-year overall survival 76 

(Keren et al., 2018).  77 

This effort provided a framework for how TME structure and composition could be 78 

used more generally as a surrogate readout to understand the functional response to 79 

neoplasia.  With this in mind, we sought to determine to what extent similar features 80 

involving myoepithelial, stromal, and immune cells in the DCIS TME might play a pivotal 81 

role in breast cancer progression.  Each of these have been implicated previously to 82 

promote local invasion (Barsky and Karlin, 2005; Ibrahim et al., 2020), metastasis (Pelon 83 

et al., 2020; Shani et al., 2020), and to correlate with clinical progression (Yang et al., 84 

2018; Zhou et al., 2018).  85 

Here, we report the first systematic, high dimensional analysis of breast cancer 86 

progression using the Washington University Resource Archival Human Breast Tissue 87 

(RAHBT) cohort: a clinically annotated set of archival tissue from patients diagnosed with 88 

DCIS and IBC.  Because the DCIS patient population is complicated by differences in 89 

age, parity status, tumor subtype, and treatment course, a well-conceived cohort design 90 

is crucial for identifying meaningful features amidst these confounding variables.  In light 91 

of this, the RAHBT cohort was composed of primary DCIS tumors from women who later 92 

progressed to invasive disease that were age and year-of-diagnosis matched with control 93 

tissue from women with DCIS that did not recur. 94 

We used MIBI-TOF and a 37-plex antibody staining panel to comprehensively 95 

define the cellular composition and structural characteristics in 122 of these samples, 96 

which included normal breast, DCIS, and recurrent IBC samples.  We applied machine 97 

learning tools for multiplexed cell segmentation and spatial analytics to enumerate 16 cell 98 

populations and to quantify how these populations are spatially distributed relative to one 99 
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another.  Object morphometrics and high dimensional pixel clustering were used to 100 

annotate the structure of stromal collagen and to discover new myoepithelial phenotypes 101 

that track with disease progression.  These findings were corroborated by transcriptomic 102 

data acquired on coregistered tissue regions isolated by laser capture microdissection. 103 

         We systematically compared these features to understand how different 104 

phenotypic and structural properties of the DCIS TME change with progression to IBC. 105 

BC progression was typified by a reduction in myoepithelial integrity, a shift in fibroblast 106 

function towards proliferative cancer-associated states (CAFs), remodeling of collagen in 107 

the extracellular matrix (ECM), and a compositional and spatial reorganization of the 108 

immune microenvironment.  We used the 1,093 features quantified in these analyses to 109 

build a random forest classifier for predicting which patients would later progress to 110 

invasive disease based exclusively on the original diagnostic biopsy.  This classifier 111 

demonstrated an AUC of 0.83 and was heavily weighted for stromal features that were 112 

reliant on spatial information.  Taken together, this work provides new insight into potential 113 

etiologies of DCIS progression that will guide development of future diagnostics and serve 114 

as a template for how to carry out similar analyses of preinvasive cancers. 115 

 116 

  117 

Results 118 

 119 

A multiplexed imaging interrogation of DCIS progression to invasive disease 120 

We examined the transition from DCIS to IBC by profiling accumulative changes in the 121 

phenotype, structure, and spatial distribution of myoepithelium, tissue stroma, and 122 

immune cells in archival formalin-fixed paraffin-embedded (FFPE) patient tissue of three 123 

distinct progression groups: normal breast (n = 9), IBC (n = 16), and DCIS (n = 124 

115).  These IBC samples were disease recurrences from women with a prior diagnosis 125 

of DCIS.  Of the 115 DCIS samples, 78 were RAHBT patients with a new diagnosis and 126 

no signs of IBC (pure, primary), while 14 were pure DCIS recurrences (pure, recur)(Figure 127 

1A, Table S1).  The remaining 23 patients comprised a third group of synchronous lesions 128 
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procured at Stanford Hospital where both DCIS and IBC were identified in different parts 129 

of the tissue at the time of diagnosis (Sync).  For this set of patients, only the in situ 130 

component was analyzed.   131 

1.5 mm cores of each tumor were arranged in tissue microarrays (TMAs).  Three 132 

adjacent sections were then used for 1) H&E staining and annotation by a pathologist, 2) 133 

RNA transcriptome analysis of ductal and stromal regions isolated using laser-capture 134 

microdissection (LCM-Smart-3SEQ)(Foley et al., 2019), and 3) highly multiplexed 135 

imaging by MIBI-TOF of a 500x500μm field-of-view (FOV)(Figure 1B).  By ensuring that 136 

each of these analyses were spatially coregistered with one another, the proteomic and 137 

transcriptomic features revealed by MIBI-TOF and LCM-RNAseq could be directly 138 

correlated to understand the interplay between single cell composition and global 139 

transcriptional programs. 140 
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Figure 1. A multiplexed Imaging Interrogation of DCIS Progression to Invasive Disease
A. Schematic depicting the tumor stages and patient sample numbers profiled in this study, including normal breast, pure DCIS (primary or recurrent),
synchronous DCIS (Sync), and invasive breast carcinoma (IBC). B. Depiction of the parallel tissue analysis methods used in this study including H&E,
laser capture microdissection (LCM) RNAseq, and MIBI-TOF. C. Overview of the MIBI-TOF workflow. D. Markers used in the MIBI-TOF panel are
displayed, grouped by target cell type or protein class. E.Workflow showing feature types extracted from the MIBI-TOF analysis that were used to train
a random forest classifier to differentiate DCIS samples with or without risk of recurrence.
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For MIBI-TOF, we constructed a 37-plex staining panel of metal-conjugated 141 

antibodies that would permit us to: 1) map the lineage and spatial location of every cell, 142 

2) identify lineage subsets of tumor, fibroblasts, and immune cells previously implicated 143 

in BC progression, and 3) characterize the composition, integrity, and morphology of 144 

myoepithelium and collagen (Figure 1D, Table S2).  The panel also included 11 functional 145 

markers for annotating proliferation, activation, hypoxic signaling, as well as markers 146 

implicated in cancer immunoregulation, including PD-L1, IDO1, COX2 and PD1 (Figure 147 

S1).  The features extracted in this analysis were then used to train a random forest 148 

classifier for predicting long term outcome (Figure 1E). 149 

  150 

A single cell phenotypic and spatial atlas of DCIS 151 

The workflow outlined in Figure 1 enabled high-dimensional, subcellular imaging of 152 

dozens of proteins that recapitulated the tissue architecture observed in H&E (Figure 153 

2A).  Multiplexed imaging data were processed with a low-level pipeline prior to single-154 

cell segmentation (Figure 2B, Figure S2B)(Keren et al., 2018; McCaffrey et al., 2020; 155 

Moen et al., 2019; Valen et al., 2016), which identified on average ~924 cells  in each 156 

FOV (sd = 317).  To determine cell location with respect to canonical histological features, 157 

we demarcated duct, stroma, and myoepithelial regions of each image based on 158 

combinatorial marker expression (Figure 2B bottom-right).  Importantly, throughout this 159 

work we will be presenting cellular data either as the frequency of a parental lineage 160 

across the entire image (e.g., macrophages as % of total immune cells) or as a cell density 161 

within a particular compartment of the image (e.g., 50 fibroblasts/mm2 of stroma).   162 

Hierarchical application of the FlowSOM algorithm (Van Gassen et al., 2015) was 163 

employed to identify 16 unique cell subsets in the dataset amongst the epithelial, stromal, 164 

and immune lineages (Figure 2B, S2B).  Altogether, we assigned 95% (n = 127,451 single 165 

cells) of cells to one of these subsets that in aggregate ranged in frequency from 0.7-166 

56%.  These data were used to generate cell phenotype maps (CPM) where each cell is 167 

colored according to its subset assignment.  CPM images illustrated focal enrichment of 168 

lymphocytes (Figure 2C “1”), endothelial-associated immune phenotypes (Figure 2C, “2”) 169 

and sparser subsets of periductal granulocytes that included neutrophils and mast cells 170 

(Figure 2C, “3”).  171 
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 7 

Tumor cells were the most abundant cell type in DCIS samples (60% ± 20 of all 172 

cells) and were comprised of multiple subsets that were defined by variable expression 173 

of the luminal and basal lineage markers (CK7 and CK5, respectively), as well as ER, 174 

AR, and HER2 (Figure 2D).  Since these cells are isolated by a layer of myoepithelium, 175 

by definition the tissue structure of DCIS is highly compartmentalized.  In order to 176 

determine if our analyses were capturing this fundamental facet, we used an unbiased 177 

computational approach to identify sets of proteins that colocalize or avoid one another 178 

more frequently than would be expected by chance.  Consistent with the 179 

compartmentalized nature of DCIS, tumor cell markers were spatially enriched (PanCK, 180 

ECAD, CK7, HER2, ER, AR, Figure 2E, blue box) and segregated from vascular, 181 

fibroblast, and immune markers (Figure 2E, green box).  With respect to the latter, 182 

lymphoid markers demonstrated the most prominent spatial enrichment (Figure 2E, 183 

magenta box).  These analyses also revealed moderate preferential enrichment in tumor 184 

positive regions for pS6, COX2, and Ki67, while immunoregulatory markers were more 185 

evenly dispersed between tumor and immune-enriched regions (Figure 2E, orange box). 186 

  187 

A tumor cell phenotypic switch marks invasive transition 188 

Tumor heterogeneity in breast cancer can manifest as variations in the level of hormone 189 

receptor expression and the degree of luminal, basal, and mesenchymal differentiation. 190 

DCIS has been shown to vary across the full spectrum of both of these axes, which can 191 

confound identification of conserved features correlating with clinical outcome.  In order 192 

to understand how this heterogeneity manifests in pure DCIS and throughout the 193 

transition to invasive disease, we first examined the distribution of DCIS subtypes with 194 

respect to hormone receptor status (ER, AR), HER2, and Ki67 proliferation index. These 195 

markers were robustly expressed in DCIS tumors (Figure 3A) and showed expected inter-196 

Figure 2. A single cell phenotypic and spatial atlas of DCIS
A. Representative MIBI image overlay of a DCIS tumor with a 9-marker overlay of major cell lineage markers (left) and the corresponding H&E image
(top right), example of cell segmentation (middle right), and example of region masks marking stroma (pink), myoepithelial (cyan) and ductal (blue)
area, scale bars = 100μm. B. Cell lineage assignments based on normalized expression of lineage markers (heatmap columns), rows are ordered by
absolute abundance shown in the bar plot (left), while columns are hierarchically clustered (euclidean distance, average linkage). C. A cell phenotype
map (CPM) showing cell identity by color, as defined in F, overlaid onto the segmentation mask. Zoomed insets with adjacent MIBI overlays show
diverse lymphoid rich regions (1), endothelial-associated immune cells (2) and rare subsets like neutrophils and mast cells near ducts (3). D. UMAP
visualization of all cell type populations in DCIS tumors (top), colored by cell type as in F, with additional plots overlaid with the normalized expression
of tumor lineage and functional markers used to delineate tumor subsets (bottom).
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 8 

patient variability.  Using clinical cutoffs as a guide (Figure S3A), we subtyped tumors as 197 

Luminal A (ER+, HER2-, Ki67-), Luminal B (ER+, HER2-, Ki67+), HER2E (ER-, HER2+), 198 

ERHER2 (ER+, HER2+), and TNBC (ER-, HER2-) based on the frequency of positive cells 199 

for each marker. All subtypes were present in both DCIS and IBC, with similar numbers 200 

of luminal samples in each progression group (Figure 3B).  HER2+ tumors were more 201 

predominant in DCIS, while TNBC was more prevalent in IBC (Figure S3B-C).  202 

On comparing epithelial differentiation states in each progression group, we 203 

identified a consistent trend towards reduced luminal cell identity throughout tumor 204 

progression.  Distinct phenotypic subsets of luminal (CK7+), basal (CK5+), EMT-like 205 

(VIM+), and CK5/7-low cells were observed in the epithelial lineage (Figure 3C).  While 206 

the majority of ductal cells in normal breast were consistently luminal (84% ± 11) (Figure 207 

3D), the composition in DCIS varied widely between being predominantly luminal or 208 

CK5/7-low (57% ± 33, 36% ± 33 respectively).  In comparison to normal tissue and IBC, 209 

these lesions were also enriched with a minority fraction of basal cells (6.1% ± 11.9).  With 210 

progression to IBC, CK5/7-low cells predominate more frequently and were accompanied 211 

by a relative increase in EMT-like cells that express vimentin (Figure 3E).  We further 212 

examined a subset of patients with high frequencies of vimentin-positive tumor cells by 213 

LCM-RNAseq.  Consistent with the shift to a mesenchymal phenotype captured by MIBI-214 

TOF, geneset enrichment analysis (GSEA) revealed upregulation of signaling pathways 215 

relating to mesenchymal breast tumor histology and tumor invasion in patients with high 216 

vs low frequencies of VIM+ tumor cells (Hollern et al., 2018; Lien et al., 2007; Poola et al., 217 

2005)(Figure 3F, Figure S3D). 218 

The coordinated changes in tumor phenotype illustrate how cell differentiation 219 

during BC progression may follow an orderly trajectory.  To further explore this possibility, 220 

we compared tumor cell functional states in pure, DCIS synchronous DCIS, and 221 

IBC.  Synchronous DCIS describes lesions where distinct areas of tissue contained either 222 

fully encapsulated tumor cells (i.e., DCIS) or areas of local invasion (i.e., IBC) were both 223 

present at the time of diagnosis, but in different areas of tissue (Figure 3G).  Consistent 224 

with their more aggressive behavior, DCIS tumor cells from synchronous lesions 225 
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demonstrated an intermediate functional profile, with features overlapping between pure 226 

DCIS (GLUT1, CD36, COX2) and IBC (Ki67, pS6, HIF1a, MMP9) (Figure 3H). 227 
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  It is not well understood how these functional states are affected by the location of 228 

tumor cells within the duct of carcinoma in situ, where interior tumor cells far from the duct 229 

edge may have limited access to nutrients and oxygen.  Interestingly, we found almost all 230 

proliferative and cell signaling molecules to be enriched in tumor cells on the duct edge, 231 

whereas HIF1a and metabolite import receptors GLUT1 and CD36 were enriched in cells 232 

in the duct core, consistent with an adaptation to a low nutrient, hypoxic environment 233 

(Figure 3I). 234 

 235 

  236 

Myoepithelial breakdown and phenotypic change during DCIS progression 237 

To understand how the structure and function of this key cellular barrier changes with 238 

progression to IBC, we next performed a targeted analysis characterizing myoepithelial 239 

cells which circumscribe both normal breast ducts and tumor cells in DCIS. Breast 240 

myoepithelium in normal tissue is a thick, highly cellular layer between the stroma and 241 

ductal cells (Figure 4A).  In DCIS, the myoepithelium is notably thinned out and reduced 242 

in cellular density (Figure 4A-B).  The remaining myoepithelial cells in DCIS tumors were 243 

found to have higher proliferation relative to normal tissue, with synchronous tumors 244 

having the highest levels of the Ki67 positivity of these three groups (Figure 4C).    245 

Given these findings, we hypothesized that loss of myoepithelial integrity 246 

(thickness x percentage of duct-perimeter covered) in synchronous DCIS lesions would 247 

also be greater than in pure DCIS.  To explore this question, we developed a new image 248 

analysis tool to quantify myoepithelial thickness and percent coverage of the duct edge 249 

(Figure 4D, see Myoepithelial Coverage and Thickness Analysis in Methods).  This 250 

analysis revealed significant loss in myoepithelial integrity in DCIS tumors relative to 251 

normal tissue.  To our surprise, however, no significant difference was observed between 252 

pure and synchronous disease.  Thus, in situ tumorigenesis is accompanied by a 253 

reduction of myoepithelial cell density and myoepithelial integrity independent of the 254 

presence of a neighboring invasive component.  255 

After quantifying these changes in myoepithelial structure, we next sought to 256 

determine how the function of this regulatory barrier is altered with disease progression. 257 
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Due to their thin, elongated, and non-spherical cell bodies, myoepithelial cells are 258 

inherently challenging to profile with classical nuclear-based segmentation approaches 259 

which have been optimized for more conventional, ovoid cell shapes.  Consequently, 260 

outlines for myoepithelial cells predicted by these methods often extend significantly 261 

beyond the true cellular border to erroneously include pixels from neighboring epithelial 262 

and stromal cells.  These errors propagate in downstream cell clustering analyses to 263 

result in inaccurate phenotypic descriptions that are biased by what proteins are 264 

expressed by closely approximated neighboring cells.     265 

To avoid this pitfall, we created a new computational approach that assigns 266 

phenotypes at the level of single pixels, rather than for whole cells (Figure 4F, see 267 

Myoepithelial Pixel Clustering Analysis in Methods).  This strategy yielded 7 distinct, 268 

SMA+ myoepithelial pixel clusters (mc) defined by coexpression of PanCK, ECAD, CK7, 269 

CK5, VIM, or CD44, with SMA (Figure 4G).  Mapping these pixel clusters back onto the 270 

original images revealed that multiple expressional states can exist along the perimeter 271 

of a single duct, from ECAD+ and CK5+ expression states often observed with apical 272 

preference (Figure H, pink and green arrows), and more mesenchymal states that 273 

exhibited a basal preference (e.g., VIM+, CD44+, yellow arrows).  Notably, this analysis 274 

also revealed a transition from a more luminal-like state in normal samples to a more 275 

mesenchymal-like state in synchronous DCIS that aligned with analogous shifts in tumor 276 

cell differentiation and function (Figure 4I).  277 

  278 

Fibroblast transition and collagen architecture remodeling during DCIS 279 

tumorigenesis and progression 280 

Figure 4. Myoepithelial breakdown and phenotypic change during DCIS progression
A. Representative MIBI image overlays showing SMA (yellow), p63 (cyan), and PanCK (magenta) expression in myoepithelium in normal breast (left)
and DCIS (right), scale bars = 50μm. B. Myoepithelial cell density (cell/mm2) was quantified in periductal regions is shown for normal breast, pure
DCIS, and synchronous DCIS samples. C. The frequency of Ki67 (top) and pS6 (bottom) positivity is compared between groups as in B. D. Illustration
of workflow for quantifying myoepithelial thickness and continuity. E. Boxplot showing myoepithelial integrity (percent coverage x average thickness)
for normal tissue and patients with pure or synchronous DCIS. F. Workflow schematic for pixel-based clustering of myoepithelial phenotype. G.
Heatmap showing frequency and average marker expression for 7 myoepithelial pixel clusters (mc) with a bar plot (left) of mc abundance out of total
identified myoepithelium in the cohort. H. Top. Pseudo-colored image illustrating the spatial distribution of myoepithelial pixel clusters defined in G for a
pure (left) and synchronous (right) DCIS tumor, scale bars = 50μm. Middle. Magnified periductal region with mcECAD (pink arrows), mcCK5 (orange
arrow), and mcVIM (yellow arrow) areas denoted. Bottom. Coregistered color overlays showing variations in coexpression of SMA, ECAD, CK5, and
VIM corresponding to pixel cluster assignments, scale bars = 50μm. I. Area plots comparing the frequency of each myoep cluster across normal
breast, pure, and synchronous DCIS.
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In light of previous studies revealing a functional and structural interdependence between 281 

myoepithelium and the surrounding stroma (Jones et al., 2003; Morsing et al., 2020), we 282 

next sought to determine if the progressive loss of myoepithelial integrity observed here 283 

correlated with changes in fibroblast function and extracellular matrix remodeling (ECM).  284 

Single cell clustering revealed four fibroblast populations that included normal (CD36 285 

high), resting (VIM-only), myofibroblast (SMA+), and CAF (FAP+) subsets (Figure 5A).  No 286 

significant differences in stromal cell density between progression groups were identified 287 

when treating fibroblasts as a single cell population (Figure 5B).  However, on comparing 288 

the frequency of fibroblast subsets in normal tissue and DCIS, CAFs were found to 289 

significantly increase across tumor progression as resting fibroblasts decreased (Figure 290 

5C), with pure DCIS tumors having a heterogeneous mixture of these two states (Figure 291 

5D, normal fibroblasts with light blue arrows, CAFs with dark blue arrows).  A 292 

corresponding increase in Ki67+ fibroblasts suggests that this shift in identity is driven in 293 

part by CAF proliferation (Figure 5E), which is accompanied by an increase in protein 294 

translation (high pS6).  We confirmed this relationship by comparing the CAF frequency 295 

in samples with high and low pS6 and Ki67 (Figure S4A-B).   296 

Given these findings, and that dense fibrillar collagen often appeared to be 297 

juxtaposed with pS6+ fibroblasts in progressed tumors (Figure 5F, orange arrows), we 298 

next sought to determine how collagen remodeling was related to CAF location, 299 

frequency, and phenotype.  To achieve this, we developed new computational tools for 300 

collagen morphometrics that were used to determine the shape, length, and density of 301 

individual fibers (Figure 5G, see Collagen Morphometrics in Methods).  These analyses 302 

revealed that DCIS and IBC tumors had higher collagen density and longer fiber length 303 

compared to normal breast (Figure 5H), suggesting that collagen deposition and fibrillar 304 

remodeling were coordinated with the phenotypic shift to CAFs.  Indeed, direct 305 

comparison of collagen density and collagen-positive area to the density of CAFs and 306 

myofibroblasts in the stroma revealed a strong correlation (Figure 5I). Furthermore, pS6+ 307 

fibroblasts were also enriched in these collagen and CAF-dense tumors.  Together these 308 

data suggest a direct relationship between CAF activation and collagen deposition and 309 

remodeling.   310 
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 Finally, to identify which specific collagen isoforms correlate with this activity and 311 

to determine if additional ECM proteins are involved, we compared ECM transcript levels 312 

in stroma of CAF-high- and low-density tumors using LCM RNAseq.  We found the 313 

majority of collagen species were upregulated in CAF-high tumors with COL5A2 and 314 

COL1A1 being the most significant of these, consistent with MIBI-TOF quantitation of 315 

COL1A1 protein (Figure 5J). In addition, CAF-dense tumors showed increased deposition 316 

of fibronectin (FN1), SPARC and periostin (POSTN), indicative of CAF-remodeling and a 317 

shift towards a pro-invasive stroma (Barth et al., 2005; Malanchi et al., 2012).   318 

 319 

Characterizing the preinvasive immune microenvironment and its compartmental 320 

evolution throughout progression 321 

Having identified coordinated shifts in tumor differentiation, myoepithelial integrity, and 322 

fibroblast function, we next sought to understand how immune composition changed with 323 

disease progression.  We found monocytes, mast cells, and HLA-DR+ antigen presenting 324 

cells (APCs) to be the most abundant immune cells in pure DCIS (Figure 6A). Immune 325 

cells were typically found in the stroma and were occasionally embedded in ducts (Figure 326 

B, orange arrow).  To quantify the spatial distribution of immune cells in these 327 

compartments, we interrogated cell density in epithelial and stromal mask regions (Figure 328 

6C). This analysis identified a clear stromal preference when treating immune cells as a 329 

single population (Figure 6D, S5A).  To understand if this preference remained valid when 330 

considering specific subsets of lymphoid and myeloid cells, we compared the local 331 

frequency within stromal and ductal regions for each cell type. CD4+ T cells, B cells, 332 

monocytes, APCs and mast cells all demonstrated a statistically significant stromal 333 

Figure 5. Fibroblast transition and collagen architecture remodeling during DCIS tumorigenesis and progression
A. Heatmap showing normalized marker expression for four fibroblast cell subsets: myofibroblasts (Myo), resting fibroblasts (Resting), cancer-
associated fibroblasts (CAFs) and normal fibroblasts (Normal). B. Left. Example epithelial (cyan) and stromal (magenta) masks used to quantify
stromal fibroblast density. Right. Boxplot of fibroblast density between tumor progression groups. C. Boxplots of fibroblast subset frequency across
tumor progression groups. D. Representative MIBI image overlays showing normal, pure DCIS, and sync DCIS tumors with fibroblast markers.
Zoomed insets (left) have paired cell phenotype maps (CPM, right) colored by fibroblast identity as in C, scale bars = 100μm. E. The frequency of Ki67
and pS6 positivity in fibroblasts is shown across progression groups. F. Representative MIBI image overlays showing VIM+ fibroblasts (red) with
varying levels of pS6 expression (green) and nearby collagen 1 (Col1, cyan) deposition, scale bars = 100μm. G. Schematic showing the quantitation of
MIBI collagen signal to identify %collagen+ stromal area, collagen density, and collagen fiber morphometrics. H. Collagen+ stromal area, collagen
density, collagen fiber density (fibers/mm2) and fiber area are quantified across tumor progression groups. I. Scatterplot comparing summed density of
CAFs and myofibroblasts versus collagen density. Size and color of points are proportional to collagenized area and fibroblast pS6 positivity,
respectively. J. Volcano plot of ECM-related gene expression for the top and bottom CAF-enriched DCIS tumors.
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preference, while macrophages were significantly enriched in ductal regions (Figure 334 

6E).  Interestingly, differential enrichment of CD4+ and CD8+ T cells resulted in a 335 

CD4/CD8 ratio that skewed towards CD8+ T cells in ducts and CD4+ T cells in stroma 336 

(Figure 6F).   337 

We next investigated how immune cell prevalence and spatial enrichment evolves 338 

with transition from in situ tumorigenesis to invasive disease by comparing pure DCIS 339 

with synchronous lesions and IBC.  Immune cell density was significantly increased in 340 

synchronous lesions compared to all other groups (Figure 6G).  Notably, this increase in 341 

immune infiltrate was present in both the stroma and ducts of these lesions (Figure 6H), 342 

suggesting a coordinated influx into the ducts during increased stromal immune 343 

infiltration.  By comparing the cell density for each immune cell subset with respect to 344 

disease stage, we observed an increase in effector myeloid cells (Macs, APC) in pure 345 

DCIS compared to normal breast (Figure 6I).  Importantly, this also revealed the increase 346 

in immune infiltrate in synchronous tumors to be driven primarily by an influx of B and T 347 

lymphocytes (Figure 6I, S5B), resulting in an immune microenvironment more skewed 348 

towards lymphocytes (Figure 6J).  Subsequently, both T cell frequency and myeloid to 349 

lymphoid ratio in IBC tumors return to values similar to pure DCIS. 350 

In order to better understand how this feature and other immune programs were 351 

spatially organized, we applied a K-means clustering approach to identify distinct cellular 352 

neighborhoods (CNs), where a CN is defined by a set of cell types found to spatially co-353 

occur across the cohort (Figure 6K, see Protein and Cellular Spatial Enrichment Analyses 354 

in Methods).  Through this approach, we identified 10 CNs that we categorized as being 355 

lymphocyte-enriched (LyE1, LyE2), myeloid-enriched (MyE), endothelial-associated 356 

(EA), fibroblast-associated (FA), myoepithelial-associated (MA), tumor-interface (TI), and 357 

tumor-enriched (TE1-3, Figure 6L-N).  358 

Interestingly, single cell expression of functional markers was found to be 359 

correlated with CN, even though these parameters were not included in the K-means 360 

neighborhood assignment analysis.  For example, HIF1a and MMP9 expressing cells 361 

were enriched in MyE, while the frequency of pS6+ cells was highest in LyE1 (Figure 362 

6L).  Macrophages were a constituent of numerous CNs and showed functional state 363 

distinction based on neighborhood association, including increased PDL1 expression 364 
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Figure 6. Characterizing the preinvasive immune microenvironment and its compartmental evolution throughout progression
A. Violin plot examining immune cell density in pure DCIS, ranked by median density per patient. B. Representative MIBI image overlay of a pure
DCIS tumor with major immune cell type markers, inset and arrow highlighting intraductal immune phenotypes. C. Mask overlay showing delineation of
stroma and duct regions in B, scale bars = 100μm. D. Scatterplot comparing immune cell density between the stroma and duct compartments per
patient. E. Column plot showing the ratio (Log2) of immune cell type frequency between stroma and ductal compartments, ranked from high (stromal
preference) to low (duct preference). Asterisks denote significance comparing compartment frequency of a given cell type across all pure DCIS
patients. F. Log2 ratio of CD4+ to CD8+ T cells is displayed per patient for the stroma and duct compartments. G. Whole image immune density is
compared across tumor progression groups. H. Scatterplot comparing stromal and ductal immune density per patient in synchronous tumors. I. Area
plot showing the change in immune subset frequency across progression groups. Effector-myeloid cell subsets are boxed and compared between
normal breast and pure DCIS tumors; asterisks denote significant differences in frequency. Lymphocyte subsets are boxed and compared between
pure DCIS, synchronous DCIS, and IBC, asterisks denote significance vs the synchronous group. J. Boxplots showing the log2 ratio of myeloid to
lymphoid cells in tumor progression groups. K. Illustration depicting different spatially-enriched cellular neighborhoods. L. Heatmap showing z-score
normalized cell type frequency for each cellular neighborhood: lymphocyte-enriched (LyE1, LyE2), myeloid-enriched (MyE), endothelial-associated
(EA), fibroblast-associated (FA), tumor-interface (TI), myoepithelial-associated (MA), and tumor-enriched (TE1-3). M. Heatmaps showing z-score
normalized mean expression for functional markers in each cellular neighborhood. N. Top. Cell neighborhood map showing the spatial localization of
distinct neighborhoods, denoted by color as in M. Bottom. Color overlays for lymphocyte-enriched (green dotted line) or tumor-interface (red dotted
line), scale bar = 100μm. O. Boxplot showing frequency of cells assigned to LyE1 (yellow), Fibroblast-associated (Red) and MyE (purple) cell
neighborhoods across tumor progression groups.
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within LyE neighborhoods, in addition to pS6 (Figure S5C-D). Notably, the LyE1 365 

neighborhood was also enriched for T and B cells, consistent with tertiary lymphoid 366 

structure formation (see Figure 6N, bottom left).  In line with the trends observed for T cell 367 

infiltrates, we found the frequency of cells belonging to LyE1 to be increased in 368 

synchronous lesions (Figure 6O).  Taken together, these findings indicate that early 369 

stromal invasion in synchronous tumors triggers an influx of T cells and formation of TLS 370 

structures.  We find that by IBC, however, the tumor immune microenvironment has 371 

reverted to a myeloid-skewed, immunosuppressed state with diminished T cell 372 

presence.   373 

 374 

Identifying DCIS features correlated with recurrence outcomes 375 

Having extensively quantified the multi-compartmental cellular and structural elements of 376 

DCIS tumors, we leveraged these data to identify features associated with the risk of 377 

recurrence following primary DCIS resection.  We selectively examined these features in 378 

diagnostic tissue procured at the time of initial presentation in two sets of patients.  The 379 

first set, referred to as “case”, consisted of 31 patients who had a recurrence (DCIS or 380 

IBC) within 2-15 years of being treated for newly diagnosed pure DCIS.  The second set, 381 

referred to as “control”, consisted of 47 patients with pure DCIS that did not recur within 382 

11+ years.   383 

Using these outcome groups and 1,093 phenotypic, functional, spatial, and 384 

morphologic features extracted from our MIBI-TOF analyses (Table S3), we trained two 385 

random forest classifier models.  The first was an all-recurrence model for predicting 386 

which patients would have a recurrence of DCIS or IBC.  The second was an invasive 387 

recurrence model for predicting IBC recurrence exclusively (Figure 7A).  Low observation 388 

and overly correlated features were removed from the dataset and the patient population 389 

was randomly split 80/20 to training and test groups.  We evaluated classifier accuracy in 390 

the withheld test set, where the all-recurrence and invasive models achieved an AUC of 391 

0.79 (CI 0.51:1) and 0.83 (CI 0.59:1), respectively (Figure 7B).  When stratifying patients 392 

by their predicted labels, we found a significant difference in recurrence probability over 393 

time (Fig. 7C, Figure S6A), with no recurrence events in the patients predicted by the 394 

invasive model to be non-progressors.  Although sample size precluded us from being 395 
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able to eliminate patient demographics and differences in clinical therapy as a confounder 396 

in this analysis, treatment regimens known to affect recurrence rates (i.e., mastectomy, 397 

radiation, tamoxifen) were well distributed between the case and control patients (Figure 398 

S6B).  Likewise, no significant difference in classifier predictions were identified with 399 

respect to these variables (Figure S6C).  400 
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Figure 7. Identifying DCIS features correlated with recurrence outcomes
A. Schematic illustrating the different outcome groups of primary DCIS including ”cases” that recurred either as IBC or DCIS, and “controls” with no
recurrence in >11yr follow-up. 1,093 MIBI features of numerous tumor metrics were used to train a random forest classifier to differentiate case and
control samples. Classifier specificity was then tested on a withheld 20% of patients. B. AUC plot showing classifier sensitivity and specificity. C.
Predicted survival of patients identified in the test set of the invasive-recurrence model as case or control. D. MIBI features with top classifier
importance for the IBC recurrence model are shown, ranked by Gini importance. Features are colored based on enrichment either in cases (orange) or
controls (green), importance bars are colored based on the feature utilizing spatial information (purple) or not (gold). E. The distribution of spatial vs
non-spatial features are shown for all features identified (total), those used by the model (selected), and those in the top 20 most important features
(top 20). F. Boxplot showing the frequency of the mcECAD myoepithelial phenotype between invasive cases and controls.
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To understand the biology being leveraged by this classifier to accurately 401 

discriminate pre-invasive from indolent DCIS tumors, we ranked the top 20 features 402 

based on Gini importance.  These features primarily consisted of metrics related to the 403 

phenotype of myoepithelium, the structure of collagen fibers in the extracellular matrix, 404 

and the spatial distribution of multiple immune cell subsets (Figure 7C).  Notably, spatial 405 

metrics describing cell densities, cell neighborhoods, pairwise cell distances, collagen 406 

structure, and multiplexed subcellular features were overrepresented and accounted for 407 

17 of the top 20 metrics in the invasive model (Figure 7D, Table S3).   Immune cell metrics 408 

comprised about half of these and were myeloid skewed (Figure S6D, with 9 relating 409 

specifically to myeloid subsets and 3 to lymphoid subsets.  Similarly, enrichment for 410 

spatial metrics related to myoepithelium, collagen, and myeloid cells were observed in 411 

the all-recurrence model as well (Figure S6D-F).  Stromal density of  PanCK+VIM+ cells 412 

ranked in the top 20 features.  These cells were rare (median of 0 in case and controls) 413 

and on manual inspection appeared to represent fibroblasts where PanCK expression 414 

from closely neighboring epithelial cells was misassigned.  Interestingly, both models 415 

identified pixel-level, ECAD+ myoepithelial expression as the most predictive metric 416 

(mcECAD, see Figure 4).  When comparing case and control samples, we found the 417 

frequency of this feature to be significantly different between these outcome groups, 418 

independent of the classifier model, and to be readily identifiable on targeted inspection 419 

of the original imaging data (p < 0.001, Figure 7F).   420 

 421 

 422 

Discussion 423 

Here, we report the first multicompartmental atlas of the single cell composition and 424 

structure of DCIS.  The central focus of this study was to characterize the changes 425 

undergone with progression to IBC where tumor cells breach the duct to invade the 426 

surrounding stroma.  Previous work examining BC progression have attempted to 427 

attribute this transition either to tumor-intrinsic factors or to specific features of stromal 428 

cells in the surrounding TME.  By simultaneously mapping both tumor and stromal cell 429 

identity and function in intact human tissue, we sought to treat the DCIS TME as a single 430 
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ecosystem where progression to invasive disease depends on the spatial distribution and 431 

function of multiple cell types, rather than on any single cell subset.   432 

Meeting this goal required first assembling a large, well-annotated, and diversified 433 

pool of human DCIS tissue: the RAHBT cohort.  This effort was motivated in part by the 434 

success of similar work investigating invasive disease (i.e. METABRIC) that have 435 

provided deep insights into breast tumor composition and have served as authoritative 436 

resources in breast cancer research (Curtis et al., 2012).  To achieve this, the Breast 437 

PreCancer Atlas constructed a unique set of archival human surgical resections that 438 

captured the full spectrum of breast cancer progression, from normal tissue, to pure DCIS 439 

and IBC.  Assembling all of these cases into TMAs has enabled a one-of-a-kind workflow 440 

for multiomics analyses where genomic, transcriptomic, and proteomic techniques are 441 

performed not only on the same samples, but on coregistered serial sections of the same 442 

local region of tissue.  443 

            Here, we describe the first major analysis of the RAHBT cohort where high 444 

dimensional imaging was used to characterize BC progression.  We used MIBI-TOF for 445 

subcellular imaging of 140 tumor and normal breast samples using a 37-marker staining 446 

panel (122 and 23 samples from RAHBT and Stanford cohorts, respectively).  Tumor cell 447 

differentiation and function were found to transition along a continuum from pronounced 448 

luminal features in normal breast to a more undifferentiated, cytokeratin-low state in 449 

invasive disease that had increased mesenchymal features.  This shift was accompanied 450 

by an upregulation of HIF1a, MMP9, and IDO in tumor cells, which have been shown to 451 

directly elicit EMT, promote invasion, and drive immune tolerance, respectively (Kolijn et 452 

al., 2018; Lin et al., 2011; Peng et al., 2018; Zhang et al., 2015, 2019).  With transition to 453 

DCIS, the frequency of an E-cadherin-high myoepithelial phenotype that predominated 454 

normal breast tissue decreased, as a more mesenchymal, CD44- and VIM-high state 455 

increased.  Interestingly, no difference in myoepithelial cell density or structural integrity 456 

was found when comparing DCIS in pure and synchronous lesions.  Given that the 457 

invasive and in situ components of synchronous tumors are closely related on a genomic 458 

level (Ak et al., 2018; Kim et al., 2015; Newburger et al., 2013) these findings suggest 459 

that transition to invasion disease is regulated at least in part by the local 460 

microenvironment. 461 
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These epithelial changes were accompanied by a stromal transition towards higher 462 

numbers of activated, proliferating CAFs and densely aligned fibrillar collagen (Conklin et 463 

al., 2011; Esbona et al., 2018).  Although the total immune density was comparable to 464 

normal breast tissue, DCIS tumors exhibited a shift from a monocyte-predominant 465 

environment to one enriched for APCs and intraductal macrophages.  In line with recent 466 

findings by other groups (Alcazar et al., 2017; Kim et al., 2020) synchronous DCIS/IBC 467 

tumors were marked by a stromal spike in T and B cells and formation of tertiary lymphoid 468 

structures.  This feature distinguishes them from the myeloid-skewed IBC samples 469 

profiled in this study.  Taken together, these findings support a model for breast cancer 470 

progression where invasive disease occurs through multiple coordinated, dynamic 471 

interactions of the surrounding stroma, myoepithelium, and tumor.  472 

 473 

Given the urgent need to better stratify DCIS patients based on risk of progression, 474 

we tested to see if these spatial and phenotypic features could be used to predict IBC 475 

recurrence based exclusively on diagnostic DCIS tissue.  Using 1,093 features, we 476 

trained a random forest classifier model for identifying patients that would later progress 477 

to IBC that achieved an AUC of 0.83 on withheld test samples.  Although the performance 478 

was impressive, certain caveats should be taken into account when considering how 479 

generalized this model might be. Given the complexity of breast cancer subtypes and the 480 

impact of patient demographics on outcome (Alaeikhanehshir et al., 2020; Liu et al., 481 

2019), the sample size in this study may not have been sufficient to fully account for the 482 

confounding effects of these variables.  Lastly, since all patients in the RAHBT cohort 483 

received one or more therapeutic interventions, the features leveraged by this model to 484 

identify non-progressors might not be valid when applied to patient populations where 485 

therapy is omitted. 486 

With these considerations in mind however, these results do offer three compelling 487 

and overarching insights.  First, spatial metrics relating phenotype to structure and 488 

morphology were significantly over-represented relative to non-spatial metrics, 489 

accounting for almost 85% of the top 20 features identified by the classifier model. 490 

Second, the most influential features were primarily related to the stroma rather than the 491 

tumor cells themselves.  This included a previously unreported E-cadherin high 492 
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myoepithelial phenotype as well as collagen fiber size and alignment with respect to the 493 

duct.  Third, high ranking immune features more often related to myeloid than to lymphoid 494 

subsets, particularly those in close proximity with myoepithelium or residing inside the 495 

duct.  This skewing underscores the need to better understand how macrophages 496 

promote TME immune suppression, tumor proliferation, and local invasion (Esbona et al., 497 

2018; Goswami et al., 2005; Linde et al., 2018; Ruffell et al., 2012). 498 

Taken together, this study offers a comprehensive, multi-compartmental atlas of 499 

preinvasive breast cancer that illustrates the full continuum of tissue structure and 500 

function starting from a homeostatic state in normal breast through in situ and invasive 501 

disease. Combining this comprehensive data set with extensive patient follow-up has 502 

enabled identification of tumor features that are associated with DCIS recurrence and 503 

offers a framework for exciting follow-on efforts. With this in mind, we are actively planning 504 

a larger study that will further evaluate the biological significance of spatial features 505 

relating to myoepithelium, collagen, and myeloid cells and to determine if they can be 506 

used to prospectively risk stratify patients with a new DCIS diagnosis. 507 

 508 

 509 

Methods 510 

 511 

Patient Cohort 512 

We utilized a retrospective study cohort of patients from the Washington University 513 

Resource of Archival Tissue (RAHBT) that contained two outcome groups: controls 514 

(“Ctrl”) composed of patients with DCIS who had no recurrence and cases (“Case”) 515 

composed of patients with DCIS who had either a DCIS or an IBC recurrence.  For each 516 

case, we matched two controls who remained free from recurrent lesions, based on age 517 

at diagnosis (+/- 5 years), and type of definitive surgery (mastectomy or lumpectomy). For 518 

each DCIS diagnosis we retrieved primary and recurrent tumor slides and blocks for 519 

pathology review, secured a whole slide image of each sample, marked for TMA cores, 520 

and generated TMA blocks with 84 1.5mm cores, including additional tonsil and normal 521 

breast controls.  522 
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Supplemental table 1 summarizes the data for the cases in the cohort. Median age 523 

at diagnosis was 54, year of diagnosis was 1986 to 2017, and time to recurrence with 524 

was 8.8 years for invasive lesions, and 5.3 years for premalignant lesions. For women in 525 

the cohort with no recurrence, follow up extended to 132 months, on average. Treatment 526 

of initial DCIS ranged from lumpectomy with radiation (approximately half of cases), and 527 

lumpectomy with no radiation (20%) and mastectomy with no radiation for 30%. The 528 

RAHBT cohort is composed of African American women (26%) and white women (74%). 529 

We also profiled a supplemental cohort of patients from the Stanford Hospital with 530 

synchronous (“Sync”) DCIS and IBC tumors from 2007-2009. A 216-core TMA block was 531 

generated with 1mm tumor cores, with additional tissue controls. 532 

5μm serial sections of each TMA slide were cut onto glass slides for hematoxylin 533 

and eosin (H&E) staining, onto laser-capture slides for LCM-RNAseq (SMART-3SEQ) 534 

and cut onto gold- and tantalum-sputtered slides for MIBI-TOF imaging. H&E slides were 535 

inspected by a breast cancer pathologist to address DCIS purity and demarcate regions 536 

of DCIS to guide MIBI imaging and laser dissection of epithelial and stromal area. The 537 

Stanford Hospital cohort was without paired LCM-RNAseq analysis.   538 

 539 

Antibody Preparation   540 

Antibodies were conjugated to isotopic metal reporters as described previously (Keren et 541 

al., 2018; McCaffrey et al., 2020). Following conjugation antibodies were diluted in Candor 542 

PBS Antibody Stabilization solution (Candor Bioscience). Antibodies were either stored 543 

at 4OC or lyophilized in 100 mM D-(+)-Trehalose dehydrate (Sigma Aldrich) with ultrapure 544 

distilled H2O for storage at -20oC. Prior to staining, lyophilized antibodies were 545 

reconstituted in a buffer of Tris (Thermo Fisher Scientific), sodium azide (Sigma Aldrich), 546 

ultrapure water (Thermo Fisher Scientific), and antibody stabilizer (Candor Bioscience) to 547 

a concentration of 0.05 mg/mL. Some metal-conjugated antibodies in this study were 548 

used as secondary antibodies, targeting hapten groups on hapten-conjugated primary 549 

antibodies, this included the pairs PDL1-Biotin and Anti-Biotin149Sm, and ER-Alexa488 and 550 

Anti-Alexa488142Nd. Information on the antibodies, metal reporters, and staining 551 

concentrations is located in Table S2.  552 

 553 
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Tissue Staining  554 

Tissues were sectioned (5μm section thickness) from tissue blocks on gold and tantalum-555 

sputtered microscope slides. Slides were baked at 70ºC overnight followed by 556 

deparaffinization and rehydration with washes in xylene (3x), 100% ethanol (2x), 95% 557 

ethanol (2x), 80% ethanol (1x), 70% ethanol (1x), and ddH2O with a Leica ST4020 Linear 558 

Stainer (Leica Biosystems). Tissues next underwent antigen retrieval by submerging 559 

sides in 3-in-1 Target Retrieval Solution (pH 9, DAKO Agilent) and incubating at 97ºC for 560 

40 minutes in a Lab Vision PT Module (Thermo Fisher Scientific). After cooling to room 561 

temperature slides were washed in 1x PBS IHC Washer Buffer with Tween 20 (Cell 562 

Marque) with 0.1% (w/v) bovine serum albumin (Thermo Fisher). Next, all tissues 563 

underwent two rounds of blocking, the first to block endogenous biotin and avidin with an 564 

Avidin/Biotin Blocking Kit (Biolegend). Tissues were then washed with wash buffer and 565 

blocked for 1 hour at room temperature with 1x TBS IHC Wash Buffer with Tween 20 with 566 

3% (v/v) normal donkey serum (Sigma-Aldrich), 0.1% (v/v) cold fish skin gelatin (Sigma 567 

Aldrich), 0.1% (v/v) Triton X-100, and 0.05% (v/v) Sodium Azide. The first antibody 568 

cocktail was prepared in 1x TBS IHC Wash Buffer with Tween 20 with 3% (v/v) normal 569 

donkey serum (Sigma-Aldrich) and filtered through a 0.1μm centrifugal filter (Millipore) 570 

prior to incubation with tissue overnight at 4ºC in a humidity chamber. Following the 571 

overnight incubation slides were washed twice for 5 minutes in wash buffer. The second 572 

day antibody cocktail was prepared as described and incubated with the tissues for 1 573 

hour at 4ºC in a humidity chamber. Following staining, slides were washed twice for 5 574 

minutes in wash buffer and fixed in a solution of 2% glutaraldehyde (Electron Microscopy 575 

Sciences) solution in low-barium PBS for 5 minutes. Slides were washed in PBS (1x), 0.1 576 

M Tris at pH 8.5 (3x), ddH2O (2x), and then dehydrated by washing in 70% ethanol (1x), 577 

80% ethanol (1x), 95% ethanol (2x), and 100% ethanol (2x). Slides were dried under 578 

vacuum prior to imaging.  579 

 580 

MIBI-TOF Imaging  581 

Imaging was performed using a MIBI-TOF instrument with a Hyperion ion source. Xe+ 582 

primary ions were used to sequentially sputter pixels for a given FOV. The following 583 

imaging parameters were used: Acquisition setting: 80 kHz, Field size: 500 μm2, 1024 x 584 
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1024 pixels, dwell time: 5ms, median gun current on tissue: 1.45nA Xe+, ion dose: 4.23 585 

nAmp hours / mm2 for 500 μm2 FOVs. 586 

 587 

Low-level Image Processing and Single Cell Segmentation  588 

Multiplexed image sets were extracted, slide background-subtracted, denoised, and 589 

aggregate filtered as previously described (Keren et al., 2018; McCaffrey et al., 2020). 590 

Nuclear segmentation was performed using an adapted version of the DeepCell CNN 591 

architecture (McCaffrey et al., 2020; Valen et al., 2016). To more effectively capture the 592 

range of cell shapes and morphologies present in DCIS, we generated two distinct 593 

segmentations for each image. The first used a radial expansion of three pixels and a 594 

stringent threshold for splitting cells (See Figure S2A, Stroma Parameters). The second 595 

used a radial expansion of one pixel and lenient threshold for splitting cells (Epithelial 596 

Parameters). We combined these masks together using a post-processing step which 597 

gave preference to the epithelial segmentation mask, overriding and stromal-mask-598 

detected objects in the same area. Smaller cells identified by the stromal settings and 599 

missed in the epithelial settings were combined to the final cell mask. A cell nuclei (“Nuc”) 600 

channel combining HH3 and endogenous phosphorous (P) signal was made to increase 601 

signal robustness for nuclei detection. 602 

 603 

Single Cell Phenotyping and Composition  604 

Single cell data was extracted for all cell objects and area normalized. Single cell data 605 

was linearly scaled by average cell area across the cohort and asinh-transformed with a 606 

co-factor of 5. All mass channels were scaled to 99.9th percentile. In order to assign each 607 

cell to a lineage, the FlowSOM clustering algorithm was used in iterative rounds with the 608 

Bioconductor “FlowSOM” package in R (Van Gassen et al., 2015). The first clustering 609 

round separated cells into 100 clusters that were subsequently merged into one of five 610 

major cell lineages (tumor, myoepithelial, fibroblast, endothelial, immune) based on the 611 

clustering nodes. Proper lineage assignments were ensured by overlaying Flowsom 612 

cluster identity with lineage-specific markers. Supervised lineage reassignment was 613 

performed where needed. Immune cells were subclustered again to delineate B cells, 614 

CD4+ T cells, CD8+ T cells, monocytes, MonoDC cells, DC cells, macrophages, 615 
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neutrophils, mast cells, double-negative CD4-CD8- T cells (dnT cells), and HLADR+ APC 616 

cells. CD45+-only immune cells were annotated as ‘immune other.’ Tumor and fibroblast 617 

cells were similarly clustered again to reveal phenotypic subsets, as shown in Figure S2. 618 

Altogether, we assigned 94% (n = 127,451 of 134,631) of cells to 16 subsets, with the 619 

remaining nucleated cells with absent or very low levels of lineage markers assigned as 620 

“other". The relative abundance of all major lineages was determined out of total cells per 621 

FOV and the relative frequency of cell subsets were determined out of total cells of a 622 

given lineage, per FOV.  623 

 624 

Region Masking 625 

Region masks were generated to define histologic regions of each FOV including the 626 

epithelium, stroma, myoepithelial (periductal) zone, and duct, which was further 627 

subdivided into the duct edge, duct mid, and duct core. We removed gold-positive area 628 

which marked regions of bare slide from holes in the tissue, providing an accurate 629 

measurement of tissue area.  This area measurement could be used to calculate cellular 630 

density in specific histologic regions, e.g., fibroblast density in the stroma, which was 631 

critical to normalize the observed cell abundances by how much tissue of a specific type 632 

was sampled, and prevent bias based on how much tumor vs stroma the FOV covered.  633 

The epithelial mask was first generated though merging ECAD and PanCK signal and 634 

applying smoothing and radial expansion to incorporate the myoepithelial zone, and the 635 

inside of ducts were filled.  The stromal mask included all image area outside of the 636 

epithelial mask. Duct masks were generated through the erosion of the epithelial masks 637 

by 25 pixels.  The myoepithelial mask was generated by subtracting the duct mask from 638 

the epithelial mask.  Duct edge, duct mid, and duct core masks (Figure 3I) were generated 639 

by eroding the duct mask by subsequent 100-pixel increments.  640 

 641 

Protein and Cellular Spatial Enrichment Analyses  642 

A spatial enrichment approached was used as previously described (Keren et al., 2018, 643 

2019; McCaffrey et al., 2020) to identify patterns of protein enrichment or exclusion across 644 

all protein pairs. HH3 was excluded from the analysis. For each pair of markers, X and Y, 645 

the number of times cells positive (normalized expression >0.25) for protein X was within 646 
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a ~50 um radius of cells positive for protein Y was counted. A null distribution was 647 

produced by performing 100 bootstrap permutations where the locations of cells positive 648 

for protein Y were randomized. A z-score was calculated comparing the number of true 649 

cooccurrences of cells positive for protein X and Y relative to the null distribution. 650 

Importantly, symmetry is assumed: the values of when calculating the spatial enrichment 651 

of protein X close to protein Y are the same as with protein Y close to protein X. For each 652 

pair of proteins X and Y the average z-score was calculated across all DCIS FOVs.  653 

To analyze cellular associations with the myoepithelium, the distances between all 654 

cell centroids to the nearest perimeter location of the myoepithelium mask (described 655 

above) were calculated. To quantity cell type spatial interactions, the mean distances 656 

between cell centroids for all cell phenotype pairs (self-self pairs excluded) were 657 

calculated per region.  658 

Cell neighborhoods were produced by first generating a cell neighbor matrix, 659 

where each row represents an index cell, and the columns indicate the relative frequency 660 

of each cell phenotype within an 36um radius of the index cell. Next the neighbor matrix 661 

was clustered to 10 clusters using k-means clustering. Neighborhood cellular profile was 662 

determined by assessing the mean prevalence of each cell phenotype in the index cells’ 663 

36um radius, while functional marker expression was determined by assessing mean 664 

marker expression by the index cells assigned to each neighborhood cluster. 665 

 666 

DCIS UMAP Visualization  667 

UMAP embeddings were determined for all DCIS tumors (pure, synchronous, primary 668 

and recurrent) using the R implementation (McInnes et al., 2020) with the following 669 

parameters: n_neighbors = 15, min dist = 0.1 and the following markers: PanCK, CK7, 670 

CK5, ECAD, VIM, ER, HER2, AR, CD31, SMA, CD45, HLADR, CD68, CD11c, CD14, 671 

CD20, CD3, CD4, CD8, MPO, Tryptase. 672 

 673 

EMT GSEA 674 

To identify genes and pathways associated to EMT, MIBI-identified DCIS vimentin high 675 

vs low samples were selected, and the epithelial fraction of an adjacent tissue section 676 

was analyzed by LCM-RNAseq (Vim high, n = 26; Vim low, n = 32). DESeq2 R package 677 
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(version 1.30.0) was used for data normalization and differential expression analysis. 678 

Results were sorted by decreasing log fold change and the ranked list was subjected to 679 

GSEA against C2 curated dataset of molecular signature database 680 

(MSigDB)(Subramanian et al., 2005). P values were corrected for multiple comparisons 681 

by using Benjamini-Hochberg method and terms with p adj < 0.05 were considered. 682 

 683 

ECM Gene Analysis 684 

To analyze extracellular matrix components by gene expression, an extracellular matrix 685 

gene signature (GO extracellular matrix structural constituent, GO:0030021) was 686 

downloaded from GSEA website and used to compare MIBI-identified samples with the 687 

top and bottom quartiles of cancer associated fibroblast density in the stroma. Stromal 688 

LCM-RNAseq samples were used for this analysis. Raw reads were normalized with 689 

DESeq2 R package (version 1.30.0)(Anders and Huber, 2010) and a paired T-test was 690 

compared to the log2 ratio of group means to generate the volcano plot.  691 

 692 

Myoepithelial Continuity and Thickness Analysis 693 

To define a window of myoepithelial signal quantitation, we used a topology-preserving 694 

operation to define a curve 5 pixels out from the epithelial mask edge (see Region 695 

Masking) and a curve 30 pixels in from the epithelium mask edge, and we defined those 696 

pixels in between these two curves as the myoepithelium mask. We subdivided the outer 697 

curve into 5-pixel long arc-segments, and for each point on the outer edge in between 698 

two segments, found the nearest point on the inner edge, dividing the myoepithelium into 699 

a string of quadrilaterals or "wedges". Wedges are then subdivided each wedge along the 700 

in-out (of the epithelium) axis into 10 segments. Wedges are merged when both their 701 

combined inner and outer edges has an arc-length less than 15 pixels.  702 

We took pre-processed (background subtracted, de-noised) SMA pixels within the 703 

mesh and smoothed them with a Gaussian blur of radius of 1. We then calculated the 704 

density of SMA signal within each mesh-segment as the mean pixel value of smoothed 705 

SMA within that mesh-segment. This density was then binarized to create a SMA-706 

positivity mesh, using a threshold of 0.5 (density > 0.5 as positive). 707 
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The percentage of duct perimeter covered by myoepithelium was calculated by 708 

assigning an "SMA-present" variable to each wedge, "0" if no mesh-segments in the 709 

wedge were positive for SMA, and "1" otherwise. Each wedge is weighted by its area 710 

relative to the myoepithelium area. The sum over all wedges of the product of the "SMA-711 

present" variable and the weight was defined as the percent perimeter SMA positivity. 712 

The average (non-zero) thickness of the myoepithelium for each duct was calculated by 713 

finding the weighted average "wedge thickness" for SMA-positive wedges ("SMA-714 

present" was 1). The wedge thickness was calculated as the distance between the inner-715 

most and outer-most positive mesh-segments. The positive wedges were weighted by 716 

their area relative to the total area of positive wedges.  717 

The percent myoepithelial-covered perimeter and average myoepithelial thickness 718 

metrics were waited over meshes (ducts) in a given image by assigning a weight to each 719 

duct equal to the total area of the duct myoepithelium divided by the sum of the total areas 720 

of all myoepithelium in the image that met a minimum size filter of 7500 pixels. 721 

 722 

Myoepithelial Pixel Clustering Analysis 723 

Pre-processed (background subtracted, de-noised) images were first subset for pixels 724 

within the myoepithelium mask. Pixels within the myoepithelium mask were then further 725 

subset for pixels with SMA expression greater than 0. For all SMA+ pixels within the 726 

myoepithelium mask, a Gaussian blur was applied using a standard deviation of 1.5 for 727 

the Gaussian kernel. Pixels were normalized by their total expression, such that the total 728 

expression of each pixel was equal to 1. A 99.9% normalization was applied for each 729 

marker. Pixels were clustered into 100 clusters using FlowSOM (Van Gassen et al., 2015) 730 

based on the expression of 6 markers: PanCK, CK5, Vimentin, ECAD, CD44, and CK7. 731 

The average expression of each of the 100 pixel clusters was found and the z-score for 732 

each marker across the 100 pixel clusters was computed. All z-scores were capped at 3, 733 

such that the maximum z-score was 3. Using these z-scored expression values, the 100 734 

pixel clusters were hierarchically clustered using Euclidean distance into 6 metaclusters. 735 

SMA+ pixels that were negative for the 6 markers used for FlowSOM were annotated as 736 

the SMA-only metacluster, resulting in a total of 7 metaclusters. These metaclusters were 737 
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mapped back to the original images to generate overlay images colored by pixel 738 

metacluster. 739 

 740 

Collagen Morphometrics 741 

To identify collagen fibers the background-removed Col1 images are first preprocessed: 742 

Col1 pixel intensities were capped at 5 and gamma transformed (1 of 2), and contrast 743 

enhanced. Images are then blurred via gaussian with sigma of 2. While this enhances 744 

fidelity, it gives less clear '0-borders'. This is mitigated by generating a '0-region' mask 745 

and setting all values to 0 in that region. Then, highly localized contrast enhancement is 746 

applied. Raw fiber signal intensity can vary greatly within a FOV, so this step helps to 747 

enhance locally recognizable, but globally dim fiber candidates. After this process, 748 

contrast is globally enhanced via a reverse gamma transformation (2 of 2). 749 

Collagen fiber objects are generated by watershed segmentation on the 750 

preprocessed images.  An adaptive thresholding method was developed to appreciate 751 

variability in total image intensities across the large dataset. A dilated and eroded version 752 

of each preprocessed image was produced and subjected to multiotsu thresholding. For 753 

thin fibers, the higher watershed region is set to everywhere where the eroded image has 754 

greater intensity than the highest multiotsu threshold for the eroded image, while the lower 755 

watershed region is set to everywhere where the dilated image has lower intensity than 756 

the highest multiotsu threshold for the eroded image.  For thick fibers, the same procedure 757 

is performed, except the lower watershed region uses the middle multiotsu threshold for 758 

the dilated image. Elevation maps for watershed are generated via the sobel gradient of 759 

a blurred version of the preprocessed images.  Once objects are extracted and 760 

segmented, length, global orientation, perimeter, and width are computed for each object.  761 

Objects which cover low intensity regions of the image are treated as preprocessing 762 

artifacts and are not included in averaging. 763 

For fiber alignment scoring, fibers are filtered for elongated shape (length > 764 

2*width), and alignment is scored as the normalized total paired square difference over 765 

its k nearest neighbors (k = 4 was chosen).  To accommodate for the elongated shape of 766 

these object, K-nearest neighbors were computed with the 'ellipsoidal membrane 767 
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distance' (EM distance), which is the Euclidean centroid distance minus the portion of 768 

said distance that lies within the ellipse representation of the object. 769 

 770 

Cibersort Analysis 771 

CIBERSORTx (CSx)(Newman et al., 2019) was used to infer the immune fraction in LCM-772 

SMART3SEQ samples. We first generated a tissue resident immune cell signature matrix 773 

by using a published breast cancer scRNAseq dataset, downloaded from Gene 774 

Expression Omnibus database (GEO data repository accession numbers GSE114727, 775 

GSE114725)(Barrett et al., 2013). Normalized counts were obtained by using Seurat R 776 

package (version 3.2.0). The resultant signature matrix contained 3484 genes and 777 

allowed to resolve different immune cell types, including B, CD8 T, CD4 T, NKT, NK, mast 778 

cells, neutrophils, monocytes, macrophages and dendritic cells. The signature matrix was 779 

first in-silico validated. In order to test the accuracy of the signature matrix, a set of 780 

samples from the same scRNAseq dataset was reserved to build a synthetic matrix of 781 

bulk RNAseq data. By mixing different proportion of single cells transcripts, the synthetic 782 

bulk was used to analyze the correlation between known vs obtained cell proportions by 783 

CSx. Pearson’s coefficient was above 0.75 in all of the cases, most of them above 0.9. 784 

Therefore, we used the aforementioned matrix to deconvolve the LCM-RNAseq samples 785 

and to compare CSx-estimated cell abundance with MIBI-identified cell types. 786 

 787 

Prediction of recurrence 788 

To predict recurrence, we identified patients in the cohort with follow-up data 789 

demonstrating carcinoma recurrence (n=12), invasive recurrence (n=19), or at least 11 790 

years without recurrence (n=47). For each patient, a vector of summary statistics was 791 

generated from MIBI data using only images derived from the original lesion. The cohort 792 

was split into training and test sets (80/20%); all model optimization and predictor 793 

selection used only the training set. Any missing values were replaced with the set’s 794 

predictor mean. Predictors with <12 unique values in the training set were dropped from 795 

the analysis. Two-class random forest probability models (ranger package)(Wright and 796 

Ziegler, 2017) were trained to discriminate recurrence versus non-recurrence, and 797 

invasive recurrence versus non-recurrence. Hyperparameters were tuned to minimize 798 
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out-of-bag error. One tuned hyperparameter was predictor subset selection by 799 

correlation thresholding: predictors were ranked in importance by performing a KS test 800 

between recurrence and non-recurrence. Greater importance was placed on predictors 801 

with lower p-values, with ties broken by weighting predictors with greater coefficients of 802 

variance (CV). All predictors were correlated (Spearman method) and correlations were 803 

thresholded (invasive r>|0.5|, all recurrence r>|0.6|). For each group of correlated 804 

predictors above a given threshold, only the highest-ranked predictor was used in the 805 

model. The optimized random forest model was evaluated on the test set and a receiver 806 

operating characteristic (ROC) curve was generated (pROC package)(Robin et al., 807 

2011) using the model’s assigned probability scores. Area under the curve (AUC) was 808 

calculated with 95% confidence intervals, determined by bootstrapping. Each predictor’s 809 

importance was evaluated in the model by its Gini index. Similarly, two-class random 810 

forest probability models were also trained using only clinical parameters as predictors 811 

(age, mammograph density, tumor grade, and tumor necrosis) without subset selection. 812 

For the MIBI-based predictions, an optimal probability threshold was selected by the 813 

Youden method to assign predicted class to the test set, and Kaplan-Meier curves were 814 

calculated (survival package)(Therneau and Grambsch, 2000). 	815 

 816 

Statistical Analysis 817 

All statistical analyses were performed using GraphPad Prism software or in R. Grouped 818 

data is presented with individual sample points throughout, and where not applicable, 819 

data is presented as a mean with standard deviation. For determining significance, 820 

grouped data was first tested for normality with the D’Agostino & Pearson omnibus 821 

normality test. Normally distributed data was compared between two groups with the two-822 

tailed Student’s T-test. Non-normal data was compared between two groups using the 823 

Mann–Whitney Test. Multiple groups were compared using the Dunn’s Multiple 824 

Comparison Test. 825 

 826 

Software  827 

Image processing was conducted with Matlab 2016a and Matlab 2019b. Statistical 828 

analysis was conducted in Graphpad Prism. Data visualization and plots were generated 829 
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in R with ggplot and pheatmap packages, in Graphpad Prism, and in Python using the 830 

scikitimage, matplotlib, and seaborn packages. Representative images were processed 831 

in Adobe Photoshop. Schematic visualizations were produced with Biorender. R 832 

packages for GSEA: AnnotationDbi, 1.52.0 & org.Hs.eg.db, 3.12.0, clusterProfiler, 833 

version 3.19.0, for GSEA msigdbr, version ‘7.2.1’, for C2 curated datasets. Python 834 

packages for spatial enrichment analysis and collagen morphometrics: sckikit-image, 835 

pandas, numpy, xarray, scipy, statsmodels.  836 

 837 

Data and Code Availability 838 

All custom code used to analyze data will be made available through a Github repository 839 

and all processed images and annotated single cell data will be made available on a 840 

Human Tumor Atlas Network public repository.  841 
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