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The B cell repertoire is generated in the adult bone marrow by an ordered series of gene 

rearrangement processes that result in massive diversity of immunoglobulin (Ig) genes 

and consequently an equally large number of potential speci�cities for antigen. As the 

process is essentially random, the cells exhibiting excess reactivity with self-antigens are 

generated and need to be removed from the repertoire before the cells are fully mature. 

Some of the cells are deleted, and some will undergo receptor editing to see if changing 

the light chain can rescue an autoreactive antibody. As a consequence, the binding 

properties of the B cell receptor are changed as development progresses through 

pre-B ≫ immature ≫ transitional ≫ naïve phenotypes. Using long-read, high-through-

put, sequencing we have produced a unique set of sequences from these four cell 

types in human bone marrow and matched peripheral blood, and our results describe 

the effects of tolerance selection on the B cell repertoire at the Ig gene level. Most 

strong effects of selection are seen within the heavy chain repertoire and can be seen 

both in gene usage and in CDRH3 characteristics. Age-related changes are small, and 

only the size of the CDRH3 shows constant and signi�cant change in these data. The 

paucity of signi�cant changes in either kappa or lambda light chain repertoires implies 

that either the heavy chain has more in�uence over autoreactivity than light chain and/or 

that switching between kappa and lambda light chains, as opposed to switching within 

the light chain loci, may effect a more successful autoreactive rescue by receptor editing. 

Our results show that the transitional cell population contains cells other than those that 

are part of the pre-B ≫ immature ≫ transitional ≫ naïve development pathway, since 

the population often shows a repertoire that is outside the trajectory of gene loss/gain 

between pre-B and naïve stages.
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inTrODUcTiOn

B cells development starts in the bone marrow (BM), from a 
hematopoietic stem cell precursor, and undergoes an ordered 
series of di�erentiation steps to ultimately generate mature 
naïve B cells in the peripheral blood (1). As development 
progresses, the B cell receptor (BCR) is generated and adjusted 
to ensure that cells are not overly autoreactive. First, at the 
initial pro-B cell stage heavy chain gene recombination occurs, 
such that the random selection and joining of IGHV, IGHD, 
and IHGJ genes produces a complete heavy chain. As cells 
develop into pre-B cells the heavy chain is then presented on 
the surface of the cell, in conjunction with a surrogate light 
chain, so that selection of productive heavy chains can take 
place. Cells without a productive heavy chain gene rearrange-
ment are removed from the repertoire, while cells containing 
productive heavy chains undergo a few rounds of proliferation 
and are designated “large” pre-B cells (2). A�er this point, light 
chain recombination of IGK or IGL genes occurs within each 
cell in order to produce cells with rearranged heavy (IgM) and 
light chain genes (3–5). Expression of the complete antibody on 
the surface on these immature B cells enables the �rst tolerance 
checkpoint such that some cells carrying receptors with too 
high an a�nity for self-antigens undergo receptor editing to 
change the light chains (6). Lack of a functional surrogate light 
chain somehow interferes with this tolerance checkpoint (7). It 
has been shown that 55.2% (n = 29) of early immature B cells 
carried polyreactive immunoglobulin (Ig) genes, and this was 
reduced by receptor editing, or deletion from the repertoire, 
so that only 7.4% (n = 72) of transitional cells exiting the BM 
carried polyreactive antibodies (8). �e term “transitional cells” 
was originally coined to categorize the group of early emigrant 
cells from the BM. �ese cells express IgD and CD10 alongside 
the IgM BCR so can be identi�ed as IgD+ CD27−CD10hi/+ (9). 
Co-expression of high levels of CD24 and CD38 have also fre-
quently been used to identify them, and it is important that CD27 
be included if this is the case since the CD38hiCD24hi popula-
tion can contain CD27+ cells that may be more akin to the IgM 
memory populations (10). Heterogeneity has been seen within 
transitional cells such that T1 (CD38+++CD24hiCD10++IgDlo/−), 
T2 (CD38++CD24hiCD10+IgD+), and T3 (CD38+CD24+IgD+ 
ABCB1−) subpopulations have been identi�ed (9, 11, 12). T1 
cells have been shown to be highly prone to spontaneous apop-
tosis and are hard to rescue even with BCR or T cell stimulation 
(13,  14), thereby providing another opportunity for negative 
selection during tolerance and removal of autoimmunity 
(8, 15). T2 cells were thought to be less responsive to negative 
selection and more responsive to antigen stimulation allowing 
for positive selection to occur (13, 14, 16, 17). �e functional 
classi�cation of CD38hiCD24hicells as transitional cell interme-
diates between BM and peripheral naïve B cells in development 
has also been complicated by the discovery of human regulatory 
B cells (Bregs), which are also CD38hiCD24hi (18).

In humans, the gradual loss of CD10, CD5, and IgM and the 
upregulation of CD22, CD44, CD21, and CD23 as cells progress 
from immature to transitional (TI to T2 to T3) to mature naïve 
cells, along with the generation of naïve cells from stimulated 

transitional cells (9, 19), lead to the current paradigm: that B cells 
develop from pre-B cells through immature cells in the BM to 
transitional cells in the periphery and then to peripheral naïve 
cells in a linear pathway (20).

Positive and negative selection events that occur in B cell 
development are expected to shape the repertoire of B cell popu-
lations in terms of V, D, J gene usage and CDRH3 properties. 
We have previously shown that di�erent stages of memory B cell 
development have distinct repertoire characteristics (21–23). 
Notably, an increase in IGHV3 family at the expense of IGHV1 
family in IgM memory cells (but not switched memory cells) 
(21) has been seen, and a decrease in the overall CDR3 length, 
which is partially (but not wholly) caused by an increase of IGHJ4 
family usage at the expense of IGHJ6 family usage is observed 
in memory cells in general (21–25). �e selection events that 
occur during central and peripheral tolerance will shape the Ig 
repertoire due to the removal of unwanted autoreactive cells. 
Comparison between passenger out-of-frame Ig genes and in-
frame Ig genes in human naïve cells indicates that B cell selection 
has already occurred before exogenous antigen activation (26). 
Cloning of up to 131 Ig genes from pre-B, immature, and mature 
B cell subsets indicates there may be di�erences in CDRH3 
characteristics due to negative selection processes (27). However, 
little information is available on the expressed Ig repertoire as 
a whole in the early stages of development in the human BM. 
Here, we have used high-throughput sequencing to de�ne the 
heavy and light chain B cell repertoire in pre-B and immature 
cells from human BM, alongside donor-matched transitional and 
naïve B cells from the peripheral blood, to provide an overall 
picture of the consequences of early selection events on human 
B cell repertoire.

MeThODs

sample collection
Bone marrow and peripheral blood was obtained from 19 
healthy adult donors (aged 24–86 years) with no known disease 
a�ecting the immune system and undergoing total hip replace-
ment surgery at Guy’s Hospital, London, UK. �e samples were 
collected with informed consent under the REC number 11/
LO/1266.

B cell isolation and sorting
�e B cells were isolated and sorted as previously published (28). 
Brie�y, BM material was removed from the head of the femur and 
�ltered into RPMI-1640 (Sigma-Aldrich). Bone marrow mono-
nuclear cells (BMMCs) and peripheral blood mononuclear cells 
(PBMCs) were isolated using Ficoll-Paque PLUS (GE Healthcare 
Life Sciences) according to the manufacturer’s instructions. For 
the BMMCs, CD19+ B cells were then enriched to >98% using 
CD19 microbead magnetic separation (Miltenyi).

Bone marrow mononuclear cells were stained using PE 
anti-human Ig light chain lambda (MHL-38, BioLegend), APC 
anti-human Ig light chain kappa (MHK-49, BioLegend), PE/Cy7 
anti-human CD38 (HIT2, BioLegend), PerCP/Cy5.5 anti-human 
IgD (IA6-2, BioLegend), Paci�c Blue anti-human IgM (MHM-88, 
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FigUre 1 | isolation of B cells early in development. (a) B cell development pathway with phenotype used to distinguish each cell type. Starting from a CD19+ 

population: (B) Example showing the sorting strategy used to isolate pre-B (red: IgK−IgL−CD38+IgM+) and immature (orange: IgK+ or IgL+CD27−IgM+IgD−CD10+) 

B cells from bone marrow mononuclear cells (BMMCs). (c) Sorting strategy used to isolate transitional (green: IgD+CD27−CD10+) and naïve (blue: IgD+CD27−CD10−) 

cells from matched peripheral blood mononuclear cells (PBMCs). Dotted lines on the plots represent the gates based on FMO controls, and the solid lined boxes 

represent the gating used to collect the different subsets.
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BioLegend), APC/Cy7 anti-human CD10 (HI10a, BioLegend), 
and FITC CD27 (M-T271, Miltenyi Biotec). PBMCs were stained 
using CD19 APC (HIB19, BD BioScience), IgD PerCP/Cy5.5 
(IA6-2, BioLegend), CD27 FITC (M-T271, Miltenyi Biotec), and 
CD10 APC/Cy7 (HI10a, BioLegend).

B cells were sorted into Sort Lysis Reverse Transcription 
(SLyRT) (21) bu�er using the FACS Aria (BD BioSciences). 
B  cells were sorted into four cell types: large pre-B (IgK−IgL− 
CD38+IgM+), immature (IgK+ or IgL+CD27−IgM+IgD−CD10+), 
transitional (IgD+CD27−CD10+), and naïve (IgD+CD27−CD10−) 
as shown in Figure 1. Due to the lytic (RNA stabilizing) nature of 

the sort bu�er and the rarity of some of the cell populations, we 
were unable to check post-sorting purity. We set the collection 
gates well away from the FMO control gates as a precautionary 
measure (Figures 1B,C).

high-Throughput sequencing and  

Data cleanup
High-throughput sequencing was carried out as previously 
described (21, 29). Brie�y, reverse transcription was performed 
directly on the sample immediately a�er sorting and then a 
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semi-nested PCR was performed, adding multiplex identi�ers 
(MIDs) to distinguish patients (29). High-throughput sequenc-
ing was carried out using the Roche 454 GS FLX system (LGC 
Genomics), and data cleanup was performed as before (29). In 
addition, for analysis of the CDR3 peptide sequence character, 
the data were cleaned to remove sequences where the CDR3 was 
likely inaccurate as a result of sequencing error, i.e., CDR3 regions 
outside the normal distribution of CDR3 lengths (1–35 amino 
acids for heavy chain and 1–20 amino acids for light chain) and/
or sequences identi�ed by IMGT as unproductive.

V(D)J gene assignment was carried out using IMGT/HighV-
QUEST (30, 31). �e physicochemical properties of the CDR3 
amino acid sequences were calculated using the R package 
Peptides (32, 33), and clustering analysis of the Ig gene sequences 
was carried out using Levenstein distance on the CDR3 regions 
using R scripts available on our website (34).

As all of the repertoires were antigen-naïve, then true clonal 
expansions would be negligible. �erefore, in order to remove 
biases caused by PCR ampli�cation, only unique gene rearrange-
ments were used for this analysis. Where the clustering identi�ed 
more than one related sequence, a modal sequence was used to 
represent the gene rearrangement. �e data were stored in CSV 
�les, and data analysis was performed using Microso� Excel, 
GraphPad Prism, and R.

analYsis anD sTaTisTics

Frequency of gene Usage in the 

repertoire
�e frequency of each gene (both at the individual gene and at 
the gene family level) observed in the data was calculated for 
each cell subset from each donor. �e frequency (in percentage) 
of each VDJ family combination (heavy chain) or VJ family 
combination (light chain) was also calculated for each cell 
subset from each donor. �e mean values of gene combination 
frequencies were calculated for each cell subset, and 3D bubble 
plots were created using the R package plot3D (35). Statistical 
analysis (Mann–Whitney, Wilcoxon test, and ANOVA, with 
post-test analysis where appropriate) was performed using R or 
GraphPad Prism.

Physicochemical Properties  

of cDr3 regions
�e physicochemical properties of CDR3 regions at heavy and 
light chains were compared between di�erent cell types. �ese 
properties consisted of length, hydrophobicity indicated by 
GRAVY index (36), Boman index (37), molecular weight (Mr), 
isoelectric point (pI) (38), aliphatic index (39), frequency of 
amino acid classes in the CDR3 region, and Kidera factors (40). 
�e R package lem4 (41) was used for �tting and analyzing the 
mixed model of our data, describing the �xed-e�ect (cell types) 
and the random-e�ect (patients) in a linear predictor expres-
sion. �e likelihood ratio test was calculated with the statistical 
method ANOVA to estimate the statistical signi�cance between 
populations, i.e., a pair of cell subsets.

clustering and Principal  

component analysis
Principal component analysis (PCA) and clustering, using 
Minkowski distance, were applied to the Kidera factors and gene 
usage frequencies from the CDR3 data as follows. First, the mean 
values of the Kidera factors and gene usage frequencies were 
computed for each donor. Second, the mean values and frequen-
cies of all donors were grouped and then analysed by PCA and 
clustering.

Principal component analysis was performed using the prcomp 
function in R. �e Minkowski distances (with power of 4) were 
calculated using dist(method = “minkowski”) function in R based 
on all CDR3 properties. �e distances were then plotted with 
dendrograms (trees) using the dendrapply function in R.

Randomise datasets were generated by randomly shu�ing the 
sequences across four cell subpopulations. PCA analysis was then 
performed to be compared with the original dataset in order to 
show that our observations of di�erences between cell subpopu-
lations were not random events.

Mass cytometry
Peripheral blood mononuclear cells were stained with FITC 
anti-human CD14 and APC anti-human CD3 (clone M5E2 
and UCHT1, respectively), and a population of enriched B cells 
(CD3−CD14−) was collected into 50% FCS (Biosera) and 50% 
RPMI-1640 (Gibco). �e CD3−CD14− enriched B cells were 
labeled with a rhodium intercalator (Rh103, DVS Sciences) 
followed by intracellular and extracellular staining with a panel 
of 30 di�erent metal-tagged antibodies (DVS Sciences, BD 
BioSciences, and BioLegend). Cells were �xed, iridium stained 
(Ir193, DVS Sciences), and normalization beads (DVS Sciences) 
were added before analysis on the mass cytometry system (DVS 
Sciences). Between 1 and 5 × 105 stained cells were analysed per 
sample.

Data were normalized and �les were concatenated and cleaned 
up to remove debris (by gating on cell length and DNA+ cells), 
to exclude normalization beads (Ce140− cells), to positively 
select intact cells (Ir191+Ir193+), to positively select live cells 
(Rh103−Ir193+), and to identify CD19+ and/or CD20+ B cells. 
CD38hiCD24hi B cells were identi�ed and exported as a new 
group prior to performing SPADE (Spanning-tree Progression 
Analysis of Density-normalized Event) analysis (42). SPADE 
analysis groups cells into “nodes” based on the expression of all 30 
markers to produce a two-dimensional tree. Using a color coded 
expression scale, the nodes in the tree were manually grouped 
into larger “bubbles” to collect together nodes, and therefore 
cells, which had similar expression, i.e., all those with high IgM 
expression were grouped together in one bubble.

resUlTs

heavy chain gene Family Usage 

Distinguishes cell Types
Pre-B (large pre-B) and immature B cells, from BM samples, and 
matched transitional and naïve B cells, from PB samples, were 
sorted (Figures  1B,C) prior to high-throughput sequencing 
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using an IgM-speci�c constant region primer. Both the heavy and 
light chain (kappa and lambda) Ig genes were ampli�ed with a 
total of 96,593 heavy and 49,101 light chain sequences generated 
a�er initial data cleanup. �ese B cell populations are all thought 
to be exogenous antigen-naïve and therefore will not have been 
activated to undergo somatic hypermutation and expansion. 
We do not see evidence of somatic hypermutation in the gene 
sequences (data not shown), and therefore, we have assumed 
that any sequences with the same CDR3 region arise from PCR 
duplication. �erefore, only one example sequence of any unique 
gene rearrangement was used in this analysis, resulting in 39,577 
heavy chain and 42,542 light chain sequences grouped by donor 
and cell type. Sequencing error does not substantially a�ect the 
assignment of germline Ig genes to the sequences; however, for 
the CDR3 peptide analysis we further removed sequences where 
the peptide sequence may be inaccurate due to sequencing 
error. �is resulted in 29,074 heavy chain and 29,128 light chain 
sequences (Supplementary Tables). Sequences can be accessed on 
the National Center for Biotechnology Information’s Sequence 
Read Archive in raw format (BioProject: PRJNA39946; Sequence 
Read Archive accession: SRP081849) or in processed format with 
metadata at www.bcell.org.uk.

gene Family repertoire can Distinguish 

early human B cell subsets
Heavy chain V, D, and J family usage did not show any signi�cant 
di�erences in repertoire between pre-B and immature cells from 
the BM. �ere were, however, signi�cant di�erences between 
these BM cells and the peripheral transitional and naïve cells 
(Figure 2). IGHV3 family genes are the most predominant genes 
in the human peripheral repertoire. It was interesting that in the 
BM this was particularly the case, with IGHV3 cells actually being 
removed from the repertoire during B cell maturation: there is 
a highly signi�cant >13% decrease in the use of IGHV3 family 
genes in naïve cells with small increases in all other families to 
compensate (Figure 2A). Naïve cells also showed a signi�cantly 
decreased use of IGHJ6 and, together with transitional cells, a 
>6% reduction in use of IGHD2 family genes.

Since we had expected that peripheral transitional cells would 
fall between immature BM cells and peripheral naïve cells in the 
development pathway, and that any changes in repertoire we 
saw would re�ect this, we were surprised to see that this was not 
always the case. �ere was a signi�cant 5% increased frequency 
of IGHD3 family usage in transitional cells compared to all other 
cell types. Furthermore, there was a signi�cant >9% increase in 
IGHJ6 usage, compensated for by decreases in IGHJ3, 4, and 5 
usages, in transitional cells compared to all other cell types. �is 
is re�ected in the di�erent size of bubble V3D3J6 in the bubble 
plots (Figure  2B). �e di�erent repertoire of transitional and 
naïve cells compared to the BM cells (p < 0.05, Wilcoxon) and 
compared to each other (p < 0.001, Wilcoxon) is illustrated by a 
PCA analysis of gene family usage (Figure 2C).

light chain repertoire is less Variable
In contrast to the heavy chain repertoire, the light chain gene 
family repertoire does not distinguish between cell types. �ere 

are no signi�cant changes in kappa family usage (Figure 3A). 
Some di�erences were seen in lambda families (Figure  3B). 
�e IGLV2 family usage is signi�cantly increased by 10–15%, 
at the expense of all other families, and IGLJ1 family usage is 
signi�cantly increased by 2–5%, at the expense of IGLJ3. As a 
result of this, an ANOVA analysis of the combinatorial lambda 
family repertoire showed a signi�cant di�erence between the 
immature and the transitional and naïve stages of develop-
ment (p  <  0.001) (Figures  3C,D). However, clustering by 
PCA showed that any di�erences in light chain VJ gene usage 
were not strong enough to be able to distinguish between the 
di�erent cell types (Figure  3E). Nor were there any obvious 
di�erences between the di�erent cell types in lambda CDR3 
amino acid sequence, since PCA of the Kidera factors to assess 
the physicochemical character of the CDR3 did not distinguish 
between the groups (Figure 3F).

selection of individual IGH genes in early 

Development
As the above analysis of gene family repertoire indicated that 
there were repertoire changes between cell types, we analyzed 
all the genes individually to check if we had missed any sig-
ni�cant gene selection due to the averaging e�ect of looking at 
the family level (Figure 4). Not all the IGHV3 family genes are 
decreased in naïve cells compared to BM cells. While there are 
signi�cant decreases in IGHV3-15, IGHV3-30, and IGHV3-33 
in particular, IGHV3-9 is actually increased (Figure 4A). Other 
notable increases occur in the two main IGHV1 family genes: 
IGHV1-18 and IGHV1-69, and in the IGHV6 gene. �e IGHD2 
family decreases are contributed by IGHD2-15 and IGHD2-2, 
and while the compensatory increase in other IGHD genes 
seemed unremarkable across the board, IGHD1-7 and IGHD4-
17 did show signi�cant di�erences (Figure 4B). In spite of the 
signi�cant change in IGHD3 family use in transitional cells, this 
did not show up at the individual gene level, implying that the 
increase occurs throughout the IGHD gene family. Despite the 
lack of signi�cant changes in IGK family repertoire, there was a 
small (~3.8%) but signi�cant increase in IGKV3-11 gene use in 
naïve cells compared to immature cells. �is appeared to be at 
the expense of small (<3%) decreases in IGKV3-20 and IGKV4-1 
genes. �e increase in IGLV2 family during development seemed 
to be mainly due to signi�cant increases of 12.8 and 7% in IGL2-
14 and IGL2-23, respectively (Figure 4C).

�ere is a certain amount of interindividual variation that 
occurs in these analyses, but the trends for selection of these 
genes in the repertoire are consistent, as illustrated in Figure 4, 
where the individual donors are shown separately for genes that 
are removed from the repertoire (Figure 4D) or that are increased 
in the repertoire (Figure 4E) during early development.

heavy chain cDr3 Properties are also 

strongly selected
Although much of the CDR3 region is comprised of contri-
butions from the individual IGHV, IGHD, and IGHJ genes, 
re�ecting some of the repertoire selection e�ects that are 
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FigUre 2 | heavy chain VDJ gene family usage distinguishes cell types. (a) Mean frequency histograms of individual V, D, and J family usage for the heavy 

chain gene families of Pre-B (red), immature (yellow), transitional (green), and naïve (blue) cells (*p < 0.05 by two way ANOVA with multiple analysis correction. Error 

bars are SEM). (B) VDJ family combination usage in the different cell types. The size of a bubble represents the mean frequency of that VDJ combination. 

(c) Transitional and naïve cells show difference in VDJ family usage by principle component analysis (PCA) (left) compared to a randomise data set (right).
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captured in the analysis above, the actual amino acid sequences 
encoded by CDR3 varies tremendously even within the same 
VDJ combinations. In addition to the direct e�ects of endonu-
clease action on the genes, and N region insertion by terminal 
deoxynucleotidyl transferase, the reading frame of the IGHD 
region can also vary. Since the CDR3 region encodes a crucial 
part of the antibody binding site, and key functional aspects 
of its structure are dependent on the primary sequence (43), 
we also analyzed the biophysical characteristics of the CDR3 
amino acid sequence. Initially we used Kidera factors, which 
are a set of 10 orthogonal factors that encapsulate information 
from ~140 di�erent measurable biophysical characteristics 

of peptides. �e data from PCA analysis of the CDR3 Kidera 
factors are in accordance with that for the VDJ gene analysis, 
showing that the characteristics of pre-B and immature cells 
are found in overlapping clusters (Figure 5A). Naïve cells and 
transitional cells, however, form separate yet non-overlapping 
clusters. �e data from heavy chain CDR3 Kidera analysis 
separate the groups of cells better than the gene usage data, 
with 30% of the data contributing to PC1. To elucidate which 
characteristics were mainly responsible for the di�erences, we 
analyzed some of the most common ones individually. �e 
numbers of charged, basic, and aromatic amino acids in each 
sequence, and the sequence Boman index, were signi�cantly 
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FigUre 3 | light chain gene usage and cDr3 properties cannot distinguish between cell types. (a,B) V and J family usage for kappa (a) and lambda (B) 

light chain gene families between immature (yellow), transitional (green), and naïve cell types (*p < 0.05 by two way ANOVA with multiple analysis correction. Error 

bars are SEM). (c,D) Light chain VJ usage for kappa (c) and lambda (D) light chains in immature (yellow), transitional (green), and naïve (blue) B cells. The size of a 

circle indicates the relative mean frequency of the VJ combination. (e,F) Principle component analysis (PCA) of VJ usage (e) and Kidera factors (F) in three different 

cell types for kappa (top) and lambda (bottom).
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increased in naïve cells compared to pre-B  cells (Figure  5B). 
Conversely, the number of small amino acids per sequence, the 
hydrophobicity (GRAVY index), aliphatic index, and overall 
length of sequence were all disfavored characteristics that were 

removed from the repertoire during development (Figure 5C). 
Interestingly, the selection on the size of CDR3 region did not 
seem as strong in the older donors as it did in the younger ones 
(Figure 5D).
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FigUre 4 | individual genes can be favored or disfavored as B cells mature. (a–c) Frequency of IGHV (a) and IGHD (B) gene usage in heavy chain and 

IGKV and IGLV usage in light chains (c) of different cell types are compared (*p < 0.05 by two way ANOVA with multiple analysis correction. Error bars are SEM). 

(D,e) The frequency for each cell type in each individual donor is shown for genes that are decreased during selection (D) and those that are increased (e).
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human Transitional cells are not Just 

Precursors to naïve cells
�e heavy chain gene and CDR3 PCA analysis (Figures  2C 
and 5A) indicated that transitional cells, in addition to being 
distinctive from pre-B cells and immature cells, also had a dif-
ferent repertoire to naïve cells. We used cluster analysis (based 
on Minkowski distances) to investigate the relationships further, 
which con�rmed, by both VDJ usage (Figure  6A) and Kidera 
factors (Figure 6C), that transitional cells have a di�erent reper-
toire to the other cell types. Naïve cells formed a sub-branch of 
the cluster containing pre-B and immature cells suggesting that 
the naïve repertoire is more similar to the BM cells than to the 
transitional cells. Clear examples of individual genes where the 
usage in transitional cells di�ers from the rest of the cells can 
be seen in Figure  6B, and biophysical characteristics showing 
the signi�cantly di�erent character of the heavy chain CDR3 
in transitional cells are shown in Figure  6D. Since this subset 
of cells has been reported to contain Bregs, as well as being the 
precursor to naïve B cells, we investigated the heterogeneity of 
the population by mass cytometric analysis of surface markers. 
Although the population is small, it does appear to contain a 
number of di�erent potential subpopulations, as illustrated by 
the IgM SPADE plot in Figure 6E.

DiscUssiOn

�e lack of di�erence between the heavy chain repertoire 
in pre-B and immature B cells implies that there is very little 
selective pressure at this developmental stage, which is in agree-
ment with current thinking on the tolerance checkpoints (44). 
As expected, we do see a major di�erence between immature 
BM B cells and the transitional and naïve mature peripheral B 
cells, where we would expect the repertoire to re�ect the changes 
incurred as a result of the post-immature selective processes that 
can remove up to 50% of the repertoire (8). �ere is a wealth of 
literature on the heavy chain gene usage in di�erent conditions, 
and both negative and positive associations have been made for 
various genes. For example, the common IGHV1 family genes 
IGHV1-18 and IGHV1-69 have been associated with responses 
to viral infections as well as with stereotypical receptors in CLL. 
It is interesting that these two genes increase, and a number of 
IGHV3 family genes decrease, since this recapitulates the change 
in repertoire between naïve and switched memory repertoire 
(21). Indeed, the relative use of IGHV1 and IGHV3 genes seems 
to be a marker that distinguished between a number of di�er-
ent B cell types (25). Furthermore, the signi�cant changes in 
CDRH3 are to be expected from a selected population, since this 
forms the most important part of the antibody-binding site in all 
except the smallest CDRH3 regions. What was particularly strik-
ing from these data was that the selection in CDRH3 appeared to 
change with age even at this early stage in development, particu-
larly in the length of the CDRH3 region. We, and others, have 
previously noted that shorter CDRH3 regions are selected upon 
exogenous antigen selection (21, 28, 45), and that older people 
have longer CDRH3 regions than in the young when measured 
in peripheral blood IgM-expressing cells. �ese data show that 

a longer CDRH3 exists in B cells even before exogenous antigen 
stimulation so is likely a result of changes in BM tolerance 
selection rather than any exogenous antigen selection of IgM 
memory cells.

Receptor editing to rescue potentially autoreactive B cells can 
occur a�er the immature B cell stage once the light chain has been 
co-expressed. �e light chain loci continues its rearrangement to 
form a new gene. �e kappa light chain locus rearranges before 
the lambda locus and has the potential to rearrange a number of 
times. However, at some point, the kappa locus would run out of 
genes to rearrange, or the kappa deleting element would be used, 
in which case then the lambda locus would start rearrangement 
(3, 5). With this in mind, the paucity of di�erences in light chain 
repertoire between immature, transitional, and naïve cells is quite 
surprising. �e kappa repertoire in particular does not change 
much, possibly indicating that that the ability of di�erent kappa 
genes to rescue a potentially autoreactive heavy chain gene does 
not vary much. Only IGKV3-20 and IGKV4-1 show a signi�cant 
decrease in use (Figure 4C), implying a potential contribution to 
autoreactive BCR. Indeed, IGKV4-1 has previously been shown 
to be overrepresented in systemic lupus erythromatosus, celiac 
disease, and type 1 diabetes (46, 47), and we have also shown 
that its actual expression in the peripheral repertoire is signi�-
cantly lower than its frequency of rearrangement in the genomic 
DNA (48). IGKV3-11 may possibly be a rescue gene, showing a 
signi�cant increase in use, and our previous analysis also showed 
an increase in expression of this gene in the expressed repertoire 
compared to its expected frequency of rearrangement (48). Two 
IGLV2 lambda genes were noted as being increased within the 
lambda repertoire, presumably in preference to the IGLV1 family 
genes that showed a slight decrease. Not much is known about the 
potential signi�cance of lambda light chain genes, although it has 
been reported that POEMS syndrome of neuropathy is associated 
with monoclonal expansions of IGLV1 family plasma cells (49). It 
has been reported that lambda light chains have a good potential 
for rescuing autoreactive B cells (50). Since the primer sets we used 
for these experiments ampli�ed the kappa and lambda light chains 
separately, we cannot comment on any changes in kappa/lambda 
ratio between immature and later B cells. Given the inability of 
the light chain repertoire characteristics to distinguish between 
the di�erent cell types, as shown by the PCA of Figures  3E,F, 
it is possible that any light chain-mediated autoreactive rescue 
would be more likely to be performed by a switch from kappa to 
lambda than by a switch within the loci. Alternatively, the lack 
of cell type-distinguishing features in the light chain repertoire 
could mean that the central selection events are mainly driven by 
heavy chain-encoded binding speci�cities. �e selection in heavy 
chain but not light chain also implies that the heavy–light chain 
pairing is mostly random, since if the pairing had biases then 
the same selection e�ects would appear in both chains. �is is 
in agreement with previous data where a large number of paired 
heavy and light chain rearrangements were sequenced (51, 52). It 
has been previously reported that a particular CDRH3 stereotype 
on a IGHV1-69 background might be associated with a particular 
light chain gene, but this was on a small sample size (n = 66) of 
selected CLL sequences (53), and the data here represent a much 
larger diversity in a normal unselected population of cells.
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FigUre 5 | heavy chain cDr3 characteristics distinguish between cell types. (a) Distinction between the different cell types by Kidera factors as illustrated 

by principal component analysis (PCA). Distribution of CDRH3 physicochemical properties that have an increased trend from pre-B (P), immature (I), transitional (T) 

to naïve (N) cells (B), and a decrease in naïve cells compared to pre-B cells (c) (*p < 0.05 ANOVA). (D) The heavy chain CDR3 length in all cell types in young and 

old donors (young donors: 18–50 years; old donors: over 65 years) (*p < 0.05 ANOVA). Values on the y axis of (B–D) are as per the individual graph titles.
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What we had not expected to see in these data was the large 
di�erence between transitional and naïve B cells, which does not 
seem in accord with an immature–transitional–naïve pathway 
of development. One assumes that processes in nature have 
evolved to require minimum energy or resource, and if this is 
the case, then any change in repertoire between creation (pre-B 
cells) and end point (naïve B cells) would be in a single linear 
direction. �e actual cell–cell di�erences may vary depending 
on which point the selection pressure were applied, but one 
would not expect to see a change in direction of increase/
decrease one way, followed by a change in direction back again, 
half way through a development pathway, i.e., for a gene that was 
being removed from the repertoire through the development 

pathway we would expect the percentage representation in the 
repertoire to be pre-B  >  immature  >  transitional  >  naïve. In 
actual fact, for some genes, we see varying patterns such as 
transitional > (pre-B = immature) > naïve. For this reason, and 
in the light of results exempli�ed by use of IGHV3-53 or use 
of non-polar CDR3 amino acids (Figures  6B,D), we assume 
that a large proportion of the cells in our transitional subset 
are not intermediates between BM immature and peripheral 
naïve B cells. We sorted our CD19+IgD+CD10hiCD27− cells, 
based on the previous information that CD10, CD24, and 
CD38 decrease as cells develop from immature to naïve. �is 
information had been obtained by studying the reconstitution 
of di�erent phenotypic subsets a�er B cell depletion (9). �ere 
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FigUre 6 | Transitional cells have a unique heavy chain immunoglobulin repertoire. (a,c) Minkowski distance clustering analysis of heavy chain VDJ family 

usage (a) and CDRH3 Kidera factors for pre-B (P) immature (I), transitional (T), and naïve (N) cells in each donor (c). (B) The frequency of gene use (%) for different 

cell types in each individual donor for genes that have a distinctive distribution in transitional cells. (D) CDRH3 physicochemical properties in different cell types for 

properties that have distinctive distributions in transitional cells (*p < 0.05 ANOVA). Values on the y axis are as per the individual graph titles. (e) High-dimensional 

clustering of CD24hiCD38hi transitional B cells indicates heterogeneity within the transitional population with respect to IgM expression, illustrated as a SPADE plot. 

Populations numbered 1–13 have been grouped according to the expression of IgM, IgD, CD21, and CD23, as shown in Figure S1 in Supplementary Material.
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