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Abstract. The equilibrium of electronegative discharges is studied in the plane-parallel
approximation over a wide range of pressures and electron densities, encompassing a number
of regimes that have previously been modeled analytically. The transitions between the
various regimes (models) have been determined in the input parameter space. It is shown that
for a given feedstock gas, these transitions can be found in terms of the two input parameters
pt, andn.of,, wherep is the pressures, the electron density, anj, the system

half-length. Here:,o is used as a convenient input related to the power, and the conversion
from electron power ta,o is given. The input parameter space is partitioned by whether ion

flux to the wall or positive—negative ion recombination is the dominant positive ion loss
mechanism. For each of the principal regimes, scaling laws are developed for the most
important plasma parameters in terms of the input parameters.

1. Introduction difficulty to determine the model accuracy, or to distinguish
the scaling across various parameter regimes.
Plasma processing involves electronegative gas mixtures.  Another model for the equilibrium retains the spatial
The number of equations governing the equilibrium is large variations, but employs sufficient simplifying assumptions
and analysis becomes complicated. At the same timethat solutions can be obtained [10-17]. As with the global
there is an increased need to understand the scaling oimodels, it is essential to determine the range of validity
the plasma constituents with control parameters, since theof the approximations that are made. This procedure for
parameter space is much enlarged from that of electropositivesimplifying the analysis, which also uncovers the basic
plasmas. In an early study of an electronegative positive structure of the discharge, was developed by Tsendin [11]
column the continuity and force equations for a three-speciesto treat a cylindrical dc discharge. In that work it was
plasma, consisting of electrons, one positive ion, and onerecognized that the discharge would naturally stratify into
negative ion species, were solved numerically to obtain two regions: an electronegative core in which essentially all
the equilibrium [1]. These numerical results give little ofthe negative ions would concentrate, and an electropositive
insight into the importance of various terms in the equations edge. The physical mechanism of this stratification was
and the scaling with parameters. More recent numerical investigated in [12]. However, the resulting equations
work using fluid codes [2—4] and particle-in-cell simulations were still quite complicated such that further simplifications
[5, 6] have determined plasma properties at single points were required for analysis. In particular, detachment
within the parameter space or scaling over limited ranges of rather than recombination was considered to be the main
parameters. However, these codes are computerintensive angrocess for removing negative ions, thus linearizing the
it is therefore very time and resource consuming to explore coupled equations. The usually more important process
all interesting parameter ranges. of recombination was considered briefly in [11], and in
An alternative approach to determine the plasma more detail in [14], resulting in nonlinear equations that
equilibrium is to employ simplifying assumptions. The did not make the scalings transparent. In an alternative
equilibrium parameters can then be connected to thesimplification, Lichtenberget al [15] further reduced the
equations describing the heating mechanism to give aproblem by using the approximation that the negative ions, as
complete description. In the simplest of equilibrium models well as the electrons, are in Boltzmann equilibrium. In this
all quantities are taken to be averages over the spatialsituation the electron profile is nearly constant, and a single
variables, and are therefore called point modelglobal ambipolar diffusion equation can be constructed to describe
models. Such models are easy to use and can incorporatéhe equilibrium.  Approximation solutions, originally
additional positive and negative ion species [7-9]. The constructed at intermediate pressures at which the core
assumptions that are used in the averaging process arelectronegative region and the edge electropositive region
generally not uniform over the phase space, making it have nearly constant (but different) ambipolar diffusion
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coefficients, were extended to lower pressure for which which is the usual quasineutral plasma approximation. In
the electropositive diffusion coefficient varied with position this approximation we consider the pressure to be sufficiently
[16]. In this work the effect of the positive ion diffusion  high that a constant mobility model is appropriate, which is
velocity reaching the local ion sound velocity within the generally adequate when negative ions are present, but the
electronegative core was also considered. pressure is not so high that the electron mean free path is short
In another paper [17] the previous work on three- compared to the system size such that non-uniform heating
species, spatially non-uniform plasma was extended to leads to a non-uniformtemperature. We form a set of coupled
higher electronegativity, in which the positive-negative ion differential equations using the continuity equations for each
recombination may dominate the diffusive flow loss and species
for which the basic assumption of Boltzmann negative V.-T;=G; - L; (2.4)

ions may not hold. At higher pressure the electronegative \yhere G, are the sources ant; are the sinks. Since the
core has an elliptic rather than a parabolic profile, which g|ectrons are very mobile, in the bulk plasmawe can eliminate

can be approximated by a profile with a flat region at its the electric field by use of a Boltzmann assumption for the
centre. At high electronegativity the electropositive edge gjectrons

can also disappear. The basic equations in [17], without DV, + pon,E ~ 0 (2.5)

the Boltzmann assumption for negative ions, were also . _ s
solved numerically in [14], in cylindrical geometry, near the i.e. that both termsin (2.5) are large compared to the flux; this

transition between elliptic and parabolic profiles. holds for a ratio of negative ion density to electron density,

The purpose of this study is to review the models sat|sfy|nga_zn,/_ne < fhe/ I [17]'. L
that have been developed for the various parameter regions At relatl_v ely high electro_negatwlty, i (2'5).h0|qs bUt.
[15-17], to determine the transitions between the regimes,If the negz_;ltlve lons are not in Bolt_zmann equilibrium W'th
and to obtain scaling laws for each of the principal regimes. the po_tentlal (see .(2'26))’. we cgmblne_the flux ‘f.md conpnu!ty
For justification of the approximations the reader is referred equations to obtain a pair of differential equations which in
to the previous papers [15-17]. For equilibrium models, plane-parallel geometry are

with a given feedstock gas, the control parameter space dn
<_D+d7+ + n+/~/L+E> = Kizngne - Krecn+n— (26)
X

consists of two parametepst,, andn.of, where p is the dx
pressures.g is the central electron density arfg is the
half length of the plasma. The discharge parameters to beand

examined are the ratio of the centre negative ion density to ¢ dn.
electron densityxg = n_o/n.0, the fractional half-length o ( S n—M—E) = Kumgn, — Kyeenan_.
of the electronegative regiofy¢,, and a scale length of 2.7)

an assumed profile to be determined for various models.Hereng is the neutral gas densit);. is the ionization rate
The ratio of the recombination flux to the positive ion constant,X,,. is the recombination rate constark,,, is
diffusion flux leaving the dischargel’.../I'+(£,), is an  tne dissociative attachment rate constant, and we have only
important subsidiary parameter, used to separate equilibriumyetained the dominant reactions. The electric field and the
regimes. For particular types of discharges the input power gensity of one species may be eliminated using the Boltzmann
or some other electrical quantity may be chosen as a controlre|ation (2.5) for electrons and the plasma approximation
parameter. In this situation it may also be necessary to (2.4) of charge neutrality. Making these substitutions, and

consider heating mechanisms and sheath models [18], whichtaking u_ = w. andD_ = D, (T = T, = T;) for
we do not consider in this study of equilibria. simplicity, we obtain

d d 1 dn,
2. Basic formalism a \ D g (- F ) = p(n +ne)Ten7 .

= Kinghe — Kyee(n_ +ne)n_ (2.8)

As in electropositive plasmas, for each charged species we
can write a flux equation and

9 (-p Y v )
Iy = —DiVni +nip E dx T M “n, dx
= Kuungne — Kyee(n_ +no)n_ (2.9)
Fo=-D-Vn-—n-p-E (21) where we have used the Einstein relations [18] to write
. =-D.,Vn, —n.u.E D./u., = T,. Equations (2.8) and (2.9) can be solved

simultaneously, together with the appropriate boundary

where the symbols have their usual meanings, and theconditions, to obtain the density profiles.

subscripts +—, ande denote positive ions, negative ions,
and electrons, respectively. In equilibrium the sum of the A L
currents must balance: 2.1. Boltzmann equilibrium for negative ions

If we make the more restrictive assumption that the negative

Fe=T_+T.. (2.2)  ion species is also in Boltzmann equilibrium, then [18]
We also have Vn_ Vn,
= 2.10
ny=n_+n, (2.3) n_ 4 e ( )
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wherey = T,/ T; (T; is the common temperature of the ionic
species). Using (2.10) together with

Vny =Vn_+Vn,

we obtain the ratios

Vn, _ 1
Vn. l+ya

Vo  yo
Vn, 1+ya’

(2.11)

Substituting (2.2) and (2.11), together with the Einstein
relations [18]

D- _p- D.

De _ me
D,

E N M+ M+

into (2.1), we can eliminate_ andn, to obtain, after some
algebra, an equation for the positive ion flux in terms:of
alone,

F+ = —D0+Vn+ (212)

where we now have, analogous to electropositive plasmas,

an ambipolar diffusion coefficient

A+y+2yo)A +a(p—/ie))

Da+ =D,
QA +y)@+(ue/me) X +a) +alpn—/um.))
(2.13)
which is the form given by Thompson [19]. We note

immediately, sinces_ /., pu+/1. < 1, that except at very

Transitions and scaling laws for electronegative discharge models

Becausey > 1 as a consequence of our assumption of
Boltzmann negative ions, we see from (2.17) that- n.o.
Using this in (2.16) and (2.17) results in a relatively simple
differential equation in a single variable.

Equation (2.16) (not making the assumption that~
n.o) has as a boundary condition at the sheath edge/(,,,
that the ion flow cannot exceed the local ion sound velocity,
which at the plasma edge is the Bohm velocity. Stating this
condition as an equality, it becomes the Bohm flux condition

d
Dy

5 = n+(£p)uB(Tg, T;, ay).

(2.18)

x=t,

Hereo, = a(¢,) = n_(¢,)/n.(£,). Since negative ions
may be present when (2.18) is satisfied, the Bohm velocity
has the general form [20]

[ eTe(L +ay) 1z
"B = M.(1+yoay)

which reduces to the usual expressiogp = (eT,/M)Y/?
whene, = 0. Fore; > 1/y, the negative ion density at the
sheath edge significantly reduces the Bohm velocity.

(2.19)

2.2. Conservation equations

Equation (2.16) can be used to determine three parameters:

high « the second parentheses in both the numerator ando = 71-0/eo (the ratio ofn_ to n, at the plasma centre),

denominator are approximately equal to one, yielding

1+y+2ya

D+ = D
+ + 1+ya

(2.14)

This simpler form of D,+ can be obtained directly, by
substituting (2.11) into (2.8). Thompson plott&y.. from

(2.13) witha as a parameter. The structure is easily seen

from the simpler form (2.14). Fax > 1, y cancels such
thatD,. ~ 2D.. Whenx decreases below unity, byt > 1
thenD,+ ~ D./a such thatD,. increases with decreasing
a. Forya < 1, we findD,+ ~ yD. D,, the usual
ambipolar diffusion coefficient without negative ions. For
plasmas in whiche > 1 in the centre of the discharge,

ne, and 7,. We can determine these by solving (2.16)

together with two particle conservation equations, which

are integrated forms of (2.6) and (2.7), and as an energy
conservation equation. These are: positive ion particle
balance,

dn
Do

¢, ¢,
/ Ki.ngn,dx — / K, ecnin_ dx
0 0

(2.20)
negative ion particle balance (negligible negative wall flux),

x=L,

¢, ¢,
/ Karngn, dx — / Kyeenin_dx =0 (2.21)
0 0

the entire transition region takes place over a small range @nd energy balance for the electrons,

of 1/y < a < 1 near the edge of the electronegative region,
such that the simpler value of
Da+ = 2D+ (2.15)
holds over most of the electronegative region.
Using (2.12), the steady-state positive ion continuity
equationv -T'; = G; — L; is

d d
a <Da+(a)£> = Kizngne - Krecn+n—- (216)

Within the electronegative region, we can substitute for
n. andn_ using the Boltzmann relations relating electron
and ion densitiegn, /n.0) = (n_/n_p)" and the plasma
approximation of charge neutralityy = n_ + n, to obtain

n \¥v
ne =n_ +ny <—> . (2.17)
n_g

¢,
S, = Ze&./ Kingn,dx + 2e&Eyn+(€p)up. (2.22)
0

All volume processes in the sheaths are neglected. Here
E.(T,) is the collisional energy lost per electron—positive ion
pair created, anél,, = 2T, is the electron kinetic energy lost

to the wall per electron—ion pair lost to the wall. Given the
neutral densitys,, and the power per unit area deposited in
the electronss,, the three equations can be simultaneously
solved for the three unknowri, oo, andn.o, provided?,

is known. The plasma half-width, differs from the half-
length of the device by a sheath widthin a complete model

we must determine self-consistently with¢,,, given the
discharge heating mechanism. A common assumption (only
marginally satisfied in some capacitive radiofrequency (rf)
discharges)isthat« ¢,. The setof equations (2.16)—(2.22)
can only be solved numerically, since they are nonlinear. In
addition, particularly at relatively low pressure and lew
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there is a significant edge region in which the mobilityand  The electric field is now determined implicitly in terms of
are not constant, such that the basic equations (2.6) and (2.7)ntegrals over the source terms, plus a usually small gradient
have non-constant coefficients. There is also a fundamentalcorrection. Becausg > T;, there is alarge parameter range
problem in the regions where the negative ions have fallen in which (2.26) is not satisfied but, is still essentiality flat,

to very small values, where larger electric fields tend to as determined by the Boltzmann relation. To determine this
sweep the negative ions, that are created by attachmentcondition, explicitly, we first assume that all terms involving
into the electronegative core. As we shall see in the next variation ofn, are negligible. Then we can substitute (2.27)

section, various reasonable approximations allow analytic

into (2.6) and, using the approximations that ~ n.

solutions to be obtained by separating the plasma into a core(;, « n_), u_ = s, T = T+, and dropping small terms,
electronegative region with constant parameters, and an edg€ye obtain

electropositive region. Before doing this we explore the range
of validity of the various approximations that we have made
in this section.

2.3. Validity of reduced equations

We examine the condition for validity of the Boltzmann
equilibrium for negative ions, from which we have derived a
single ambipolar equation for the positive ions. From (2.1)
for negative ions, we have

r——p % £ (2.23)

dx
with the condition for Boltzmann equilibrium being that
‘r_/D_d"—‘ <1 (2.24)

dx

everywhere. Using the integral relation between the source
and the flux"_ can be written as

J
If we have profiles fon,, n_, andn., (2.25) can be explicitly
evaluated, as we shall do in the next section. Since the
recombination increases with the square of the density, at
high density (2.24) is no longer satisfied. We can estimate the
left-hand side of (2.24) using (2.25) and the solution which
holds where (2.24) is satisfied. We have done this in [17],
finding a parabolic solution for which (2.24) has its maximum
value atx = 0, giving the condition for which negative ions

in the electronegative plasma are in Boltzmann equilibrium,
i.e. satisfies (2.24),

X

r_ K, ecn+n_dx.

Kuungn, dx — / (2.25)

0

’=30
Since in (2.26) we have taken the largest value that (2.24)
attains, we have used a simple rather than a strong inequalit
in (2.26).

If (2.26) is not satisfied, the negative ions are not
in Boltzmann equilibrium and (2.16) is not valid, but the
electron profile may still be quite flat, which also allows
the reduction to a single differential equation for the profile.
Using (2.23) and (2.25) beyond this transition, but taking
n, = n.o, We have

x
n,M,E(X) = _</ Kattngneo dx
0

[ naran &)

recheotols/D_ < 1. (2.26)

Kecnsn_dx + D_——
dx

(2.27)
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d X X
- |: - 2D+£ + / Krecnf- dx — / Kattngneo dx]
X dx 0 0
~ Kizngneo - Krecn3~ (2.28)
We evaluate the left-hand side to obtain
d2n, 2
2D+ + (Kiz + Katt)ngneo - 2Krecn+ =0. (229)

dx2

Equation (2.29) has an elliptic integral solution.
To determine the condition for (2.29) to be valid, we add
(2.8) and (2.9). Dropping small terms, we obtain
) = (Kiz+Katt)ngne_2Krean

(2.30)

where we have used the Einstein relation to wiit®, / i
y D.. Equation (2.30) still is a function of two variables
andn_, so that a simplified form of (2.8) or (2.9) is required
to be solved simultaneously with (2.30) to obtain a general
solution. Comparing (2.30) with (2.29), we see that (2.29)
is just the approximation that the electron gradient term in
(2.30) can be dropped, i.e; *(dn./dx) < 2a0/¢,y. From
(2.30) we would expect that, with increasingat sufficiently
high pressure andy, the ionization and attachment are
increasingly balanced locally by the recombination. In this
regime the left-hand side is a perturbation to the right-hand
side; the right-hand side by itself gives the proportionality
n. o« n2, which is quite different from the parameters for
whichn, ~ n,o, a constant, withe_ varying with position.
However, in this regime both, andn_ only vary weakly
over the main part of the electronegative discharge region.

Using the same procedure that we employed to obtain
(2.26), for the validity of a parabolic solution, we can also
obtain the condition for validity of the elliptic solution. This
is more difficult, since we need to expand the elliptic solution
at the origin, and, unlike the parabolic solution, the gradient

d

dx

2p, 3= _p 9
a7 e

yfor the elliptic solution is much flatter and varies greatly with

changing parameters. The result, obtained in Lichtenberg

etal[17], is
1/2
11.55a0< )
<2Krecn30a0512) >1/2
xXexpl ———— <1

D
The exponential dependence with increasing recombination
is the result of the flattening of the elliptic solution with
increasing recombination.

1 D,

Krecneoaoe?g

K =

(2.31)
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3. Models for the principal parameter regimes wheren; is the electron (and positive ion) density at the
plasma-sheath edge(?) is the positive ion velocity at the

Various models can be constructed that approximate theedge of the electronegative region, and= 2v;,A/mu o,

plasma profiles in different regions of the parameter space.with v;, = K;.n, andx is the ion mean free path. For a given

As described in the introduction, we make the assumptions feedstock gas, ifig, n.0 and¢, are known, the unknown

that the plasma can be considered one dimensional, with thequantitiesao, ¢, and7, can be determined from the above

variation in the axial dimension, and that only one positive equations.

ion species is important. These assumptions are often

approximately satisfied, and coincide with a series of papers :

on electronegative equilibria that we draw upon [15-17]. We ?mz c')dzfggeéiz)r’] EV\; pressure, moderately low.o

introduce the regimes and their models here, and then in yhigh eo

section 4 construct the equations from which the transitions Depending on plasma parameters, it is possible for ions to

between the models are obtained. The characterization ofattain the local ion sound velocity in the electronegative

the regimes will become more precise in section 4, when the region. In this case, if we use the parabolic approximation for

transitions are defined, and in section 5 where scaling lawsnegative ions, the electronegative region terminates abruptly

are found. at a positior/_ < £, where an internal non-neutral transition
region forms [16]. the particle balance equation for positive

3.1. Regime (1), low pressure, moderately high.o ions is then

(moderate ap)

262 1zi>
— -+ ——

In [15] we used the assumption that the plasma would 31z 510

separate into an electronegative core and an electropositive 102 02

edge. In the electronegative core we found that if the @0t~ (1_§fz>] 0 [“0 (1_ﬁ> * 1} p(a-)

local recombination between negative and positive ions was (3.7)

everywhere small compared to the gradient of the positive

ion ambipolar diffusion flux, if the ambipolar diffusion Where

Kingheol— = K,ecnfo[age, (1

1/2
coefficient can be taken to be constant, and if the electron up(o_) = (LT’ o +1 ) (3.8)
density is essentially a constant within the electronegative Mio_+1/y
region, then from (2.16) the negative ion density within \yith
the core can be approximated by a parabola having a scale o =ao(l—€2/1% (3.9)
length¢ which goes smoothly to zero at the edgeof the ] - ) )
electronegative regiort (= ¢_): and equations (3.3) and (3.5) are modified accordingly. Since
) ¢ # ¢_, we have an additional parameter which requires an
n+ N _ X additional equation, which is that the local sound speed is
— =—+1l=|l1-— = )+1L (3.1) . o . .
N Neo £2 attained within the electronegative region [16]
If (3.1) is substituted into the conservation equations (2.20) 55 R 02
and (2.21) for positive ion and negative ion particle balance, % = [ao <l - 7;) + 1} neotp(a_). (3.10)
we obtain
8 ) 2D, +ag Approximatingu g («_) from (3.8) as
Kizngl = Kyecheo —04(2) +—ag | L+ (3.2
15 3 l 1+a \¥2
ug(e-) = vy < 7) (3.11)

8 2
Kattnggp = Kyecheo <7(x§ + 70[0) £ (33)

15 3
A . . herev,, = (eT;/M.)Y/?, then (3.10) yields a cubic equation
where D,. is obtained by using aw, averaged over a ¥(\;r Ve /Zé (eTi/ M) ( )Y Hbicequat

parabolic profile

_ 1+y+2ya LN L2 IZ 2\7°
Dszrﬁézgf (3.4) <?>@ﬁ<rrﬁ>=b+%<ynﬁﬂ.(&m)
wherea = %0!0- Equation (3.12) yields solutions for sufficiently low pressure
Inthe electropositive edge region the positive ion particle and low n,; otherwise the local ion sound speed is not
balance can be approximated as [16] attained in the electronegative region ang ¢_.
ZDa+050
— tKing(ty = ) = hiupo. (3.5) 3.3. Regime (3), high pressure, moderately high.o
o i . i (moderately high a)
For simplicity we taken, = n, in this edge region for
calculating the ionizationygo = (eT,/M+)Y?, andh; = At higher pressures the parabolic solution does not
ng/n.o, Which is given at low pressures by [16] adequately describe the solution to the ambipolar diffusion
4173 equation. In particular, the recombination of positive
B = [a+(u(€)/bt30) ] (3.6) and negative ions results in a central flattening of the
l+a electronegative discharge profile and a steepening of the edge
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electronegative region. Provided the ion sound limit is not 10 ' . ™

reached, the electronegative core profile can be approximatec d=l Ku=2Ku

by [17] ik b=\ . 4
N+ 2 N_ = 0ol O<x<{_—-d _f?:_jffi Lo

Parabalic

(x +d — 6)2) 0.1}

Ny X N_ = 0ohe0 (l — 72

0 —d<x<{_ (3.13)
which is flat-topped with parabolic edge regions. Substi- =

0.001 | o- =85 Ton Sound Spedy Limitation

tuting (3.,13) into the basic equations (2.20) and (2.21) and T e
using a modified (3.5), we eliminafé;, to obtain

Kattnggp = Krecagn60€fll5Kreca(2)neOd (314)

and le-05 h L

L
10 100 1000 10000
Ngoly, = U,/ A

5 . Flattopped "
3 Model e

=) -

& VA_’He,ar‘(stic

Model

T

0.0001

No Electropusitivé\Edge Region

h
(Ka,,ng + 1;’“’) 0 — Kangl, = 4&%. (3.15)

P Figure 1. Parameter space of normalized electron densiy

The additional equation for the parameter(size of the  (Ordinate) versus normalized gas densityabscissa), for oxygen,
showing regions where the various models apply. At constant

varying part of the electronegative region having a strong pressure (gas density) = n_o/n.o increases with decreasing.
density gradient) is found from the condition that the electric At constanta,q, o increases with increasing pressure.
field-driven negative ion mobility flux must balance the
negative ion diffusion flux in the strong gradient region to
makeI'_(£_) = 0 [17], which leads to (withD, = D_)

2D, aoneo/d = K ecnZoetdd. (3.16) An examination of the algebraic equations (3.2)—(3.6),

describing the low-pressure moderaigparameter regime

(1), shows that there are only two significant independent
Kaung \"? parameters £, andn.ol,,, i.e.£, does not appear separately.

@0 = <7> (3.17) Furthermore, if we assume thAtis essentially clamped due

to the exponential dependenceiyf onT,, then the reduced

variable space can be explored using normalized parameters

4. Transitions between regimes

From (3.14) withd <« ¢_ (€~ =~ £,), g is approximated as

KrecneO
and using the higho approximation fot; in (3.6)

By~ u(t) _ 4D+ao (3.18) which are conveniently written in non-dimensional form as

Ugo dupo ongly =Lp/x andK,ecneol p /vin, Wherevy, = (eT; /M).l/2

We can readily solve (3.15) and (3.16) for the remaining iS the ion thermal velocity, assumed given, ands the ion
parameterd and¢_. At higher pressures if/(¢, — ¢_) < momentum cross section. All reaction rates are taken to

T;/T., the value ofh;, determined by the high-pressure be fixed characteristics of a given gas at a fided The

diffusion solution in the electropositive edge, is somewhat various regimes (1)—(6) for this classification scheme are
different than the low-pressure value given by (3.6) [15]. We shown in figure 1. Note that the abscissa is the normalized
have retained (3.6) in order to have a smooth transition whenpressure and the ordinate is the normalized electron density.

d=1_. At low pressure {,/1 not too large) we proceed through
the transitions from low to higk, traversing regimes (1),
3.4. Regime (4), high pressure, moderate.q (high o) (2), and (5), when reducing, ..n.of , /vy, (usually reducing

) ) ) ] neo for a particular device and feedstock gas). At higher
The ion sound velocity can also be reached in the higher yressure we proceed through the transitions from low to
pressure region due to the steepening of the electronegatlvq]ighaol traversing regimes (3), (4), and (6), when reducing
edge gradients. In this case the scale lengtin the Kreenteolp/Vin-
denominator of (3.13) is replaced Wy ¢ # d, and the The transition between the low- and high-pressure
_eqwhbngm equations are mOd',f'ed accoro!mgly, with (:_’"12) regimes is formally obtained from the high-pressure side
inthel_ is replaced witld supplying the additional equation. (regime (3)) by reducing the pressure until the flat central

) ) region disappears. At this value of pressure it can be shown
3.5. Regimes (5) and (6), low and high pressure, low.o [17]thatd = ¢_ = ¢ (with noion sound limitation), such that

(high ax) regime (3) joins smoothly to regime (1), as shown in figure 1.

In both the low- and high-pressure regimes there is atransitionH_OWEVer: this dQGS not uniquely determint_a the tra_nsitio_n,
with decreasing:.o (increasingxo) to a regime in which an ~ Since the equations for regime (1) also give solutions in
electropositive edge region no longer exists. For these parts'égime (3). We therefore need an additional physical criterion

terms inK;,, (3.10) reduces to (roughly) bracket the transition. As mentioned previously,
) we expect the parabolic solution to be inaccurate when the

2Dgsctol /6 = upe )@ +1) (3.19) nonlinear recombination flux (first term on the right-hand side
with «_ given by (3.9). Sinc&_ = ¢,, the number of of (3.2) competes with the diffusion flux (second term on the
variables is reduced by one, as is the number of independentight-hand side of (3.2)). The profile was then shown [17]
equations. to be elliptic, rather than parabolic, with a flattening of the
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central region. Since attachment balances recombination,between them shown in figure 1. Equation (4.8) also holds
from (3.3), this condition of equal fluxes can be simply at the transition between regimes (4) and (6).
expressed as Although the transitions between the various regions
Ki; = 2K, 4.1) must be obtained by solving the equations, as done in

this section, it is possible to get some additional insight
into the transitions. In particular, the rather odd form of
the transition between regions (1) and (2), and between
regions (3) and (4) can be understood from dimensional
analysis, which we present in appendix A. The analysis
indicates that in the low-pressure regions a rough scaling of
vp o« (n.0ng)Y? holds, while in the high-pressure regions

the scaling isvp o (n.0/n,)Y* since the transition occurs
(4.2) 0/ '8 i

forvp 2 vy, Whereu,, is held constant; the transition should

whereD_ is the negative ion diffusion coefficient taken here Navenco oc n;* in the low pressure region ando o< n, in

to be equal taD,. This condition is also plotted in figure 1.  the high pressure region. These proportionalities are seen to
The curves in figure 1 show the transitions and regimes hold, approximately, for parameters away from the transition

explicitly for oxygen, using the following values of the between the two pressure regions (on the left-hand edge of

which is shown in figure 1. Another criterion for the

breakdown of the parabolic solution is that the ambipolar
diffusion solution does not hold, because recombination
is sufficient to prevent the negative ions from attaining
Boltzmann equilibrium.  This transition, assuming a
parabolic solution, occurs approximately at [17]

P = %Krecneoaoei/D— =1

reaction rate coefficients (see [15]) figure 1 other factors have become important).
In obtaining figure 1 we have assumed an oxygen plasma
K, =2.13x 10714 exp(—14.5/T,) m3s?! (4.3) with the ions at room temperature. These transitions can be

different for other gases. Even for oxygen, a modification
K = 7.89x 107 exp(—3.07/T,) m®s71 (4.4) occurs if the negative ions are significantly heated. From
PIC simulations, in some examples, the negative ions have
been found to be at an elevated temperature, With- 37..
Ko =395x 108 mist (4.6) For this case the diffusion coefficient for moderate to large
ag becomedD,, = D.(1+T_/T.) = 4D., which is a factor
of two larger than the previously assumbg.. SinceD,.
is inversely proportional to the gas density, this means
that all numerical results will effectively relate to a density a

Kyee =14x 108 més? (4.5)

wherekK,, the charge exchange reaction rate, is the dominant
term for determining the cross sectian,= K., /v;,. The
electron temperature, using various analytic and particle-in-

cell (PIC) solutions, '_5_ nominally tak_en to He =256V factor of two lower in theD,,. terms. For afeedstock gas such
We see that the transition curde= ¢ lies quite close tothe o5 chorine, the numerical: shifts are much larger. Chlorine

transitionp = 1, strengthening the proposition that we can paq an attachment reaction rate coefficient approximately
use thel = {_ transition to separate the flat-topped fromthe ¢ tor of ten larger than oxygen. This shifts the low-

parabolic solution. The;. = 2K, transition, occurning 4 high pressure solution by approximately a factor of ten
at somewhat higher pressures, indicates that either solutiony\~rds lower pressure. Because of thescaling it also
should be a reasonable approximation within this region of g5nq1y raises the transition at which an ion sound limitation
parameter space. S , appears and the transition at which the electropositive region
Equation (3.12), which gives the valuetf/¢ atwhich — qisannears. In previous oxygen examples we were interested

the ion sound speed is reached, is found to hayg, at a given, regimes (1) and (2) [15, 16], while for chlorine regime (6)
pressure, no real roots for smaly, and two positive real was of primary interest [8, 17].

roots for largefyg, with .the smaller root giving the value of In this study we do not treat the regimes at very high
¢/t [16]. Atthe transition there is a double root for /(. pressurex > 1, in (2.31) where the electron density cannot
We find numerically that for all pressures this corresponds g taken to be constant, or at low pressure where the constant
approximately taxr_ = 0.5. Using this value, the transitions  4pijity assumption can fail. We also do not consider the
between_reg|mes (1) and (_2) gnd betwegn regimes (3) and (4)sca|ing for lowag (o < 1), where some terms become
are readily calculated, as indicated on figure 1. _ important that were assumed to be small in this work. These
The transition from regime (2) to regime (5) atwhich the  egtrictions somewhat limit the range of validity of figure 1.
electroposn!ve region d|sappear_s is easily obtained by settingg, example, although the abscissa of normalized pressure
the flux leaving the electronegative plasma equal to the Bohmp 55 peen taken to large values in the figure, the failure of the

flux out of the electropositive region constant electron density assumption reduces the accuracy of
the last decade. We return to these limitations in section 5.

neo(1 +a_)upg(a—) = neoupo. (4.7)
using (3.11) fom g («_), we obtain 5. Scaling laws
1+a \Y? T,\? Scaling laws are useful to determine the plasma behaviour
A +a) ( ~ ) = (f) (4.8) near some known solution. As described in the introduction,

approximate scaling laws are obtained from global
Substituting avalue of = 7,/T; = 100 into (4.8) we obtain  models (volume-averaged over assumed electropositive and
a_ = 85. Using this value ofvr_ in the complete set of electronegative profiles). These models are most accurate
equations in either regime (2) or (5), we obtain the transition where internalion loss processes dominate over the flux to the
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walls (regimes (3), (4), and (6)) or when the electropositive

The second approximate equality is obtained from a self-

edge has disappeared (regimes (5) and (6)). In regime (1),consistent analysis in the lows regime (see appendix B).

which is furthest from the regime covered by global models,

Substituting (5.8) into (5.5) and solving (5.3) and (5.5)

fairly precise scaling laws can be uncovered using the resultstogether, we obtain the following proportionalities:

of section 4. Although not large in parameter space, this
regime is physically very important, as it encompasses low ¢, —
pressures and high densities, which are very useful for plasma
processing. We shall consider this regime in considerable (pgp)l/z(neogp)—Zﬁ

detail, and the other regimes more briefly. In all of the
scaling analysis we employ the implicit assumption that the
exponentially strong dependence &f, on 7, essentially
clamps the temperature on all other equations.

5.1. Regime (1), low pressure, moderately high.q
(moderate ap)

Using (3.3)-(3.5) we eliminate the temperature sensitive

reaction ratek;, to solve forog andé /¢, (here? = £_), with

an approximate assumed temperature. Furthermore, as note

previously,¢, only appears in the product formg, = n,¢,
andN,q = n.of,. Thenag andé/¢, can be written, from the
resulting two equations, in the convenient forms [15]

og = —g + [(2)2 + %52:’: 1[\230 gé’]l/z (5.1)
and
% = (Kupe Ny + [(Kars Ng)? + Bunp f (@0) /0 Ny)
x (hiugo + Kai No)1Y2H2(hipo + Kau N1 (5.2)

where f(ag) = Dg+/D+ is the ap-dependence of the
diffusion in (3.4). For > 2, (5.1) reduces to

15 Kay N, £,\"?
~|— —= 5.3
o0 < 8 Krec NeO £ ( )
and for
K. Ny < hjupo (5.4)

but keepingro > 2 such that, from (3.4)f (cx0) = 2, (5.2)
dv a0

reduces to
) 1/2
6 [thBOONg]

with o = (n,0)~. The relations (5.3) and (5.5) are still
coupled and, furthermor, from (3.6) is

o

which is a complicated function of parameters and also
depends sensitively on temperature throigh We do not
have explicit scaling in (5.3) or (5.5) becausgen (5.6) has
two terms. There is an intermediate transition for

(5.5)

2K, /mougo + () /upo)31° (5.6)
1+2K; /moupo '

() /upo)® = a = 2K, /mougo. (5.7)

For relatively smallyg with £/, significantly less than unity,
we use the approximatian>> (u(€)/ugo)?. Thenk; can be
approximated by

by~ a"® =~ (2n/7L,) = (2/ma Ny)Y2. (5.8)
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15 Ky N VP (Luso\"® g
8 Krec NeO 4 Urh ¢

(5.9)
and
u@:(wa ! (wmnmy“
Upo (ON)Y5 \ 8 Kyee Neo
o (neol ) Y. (5.10)

Thet/¢, scaling with parameters is very weak and can often
be neglected.

Approximation (5.8) is not valid near the transition from
H—zgime (1) to regime (3), since féy¢, ~ 1 the flux into the
electropositive region is much larger than the flux generated
in that region. There, from (5.6), the approximation

hy >~ u(f)/upo (5.11)
holds, where
4v,h Ep
) = — Ly, 5.12
u(f) N, ¢ ao ( )

Substituting (5.11) and (5.12) into (5.5) we find tidag,, ~
1. using this result in (5.3) we find, near the transition
between regimes (1) and (3),

>l/2

>1/2 ( pzp
X

neofp
which is independent of,. This square root scaling
essentially holds over all of the other regimes, except that
the numerical factor 015/8)/? slowly becomes unity as
the parameters change towards lowgyand highet,.

An important physical parameter is the wall fli,, .

Normalizing this ton.ou go, Which is useful in regimes (1)—

(4), we have

~

g =

(E’ Ran N (5.13)

8 Kec Neo

Iﬂ+w(norm) = hl~ (514)

As discussed above, from (5.6) divides into two regions.
For smallerxg, A, is given by (5.8), which when substituted
in (5.14) gives

1/2
l-‘+w(norm) - ( ) X (pﬁp)_l/z. (515)

7o Ng

For higherag, we substitute (5.11), (5.12), and (5.34) with
£,/¢ >~ 1in (5.14) to obtain

15 K4 Ny vy,

1
F+w(norm) = ( S K..N 0)
rectVe

o (ply) M (neot )2

upoo N,
(5.16)

with has the samg¢, scaling as (5.15).

Comparing I'vygormy N (5.15) and (5.16) with the
scaling ofwg in (5.9) and (5.13), we see that thé, scalings
are inverse to one another.



5.2. Regime (2), low pressure, moderate.o (moderately
high o)

The scaling ol is approximately that given by (5.3) with
£/t, ~ constant~1. forT's, we evaluat&'.({_) até_ = £,
to obtain

Uth A (Zp
Ciwmorm) = 4———— 5.17
+w(norm) Ugo ep ¢ ( )
Again ignoring the weak , /¢ scaling we have
l-‘+w(norm) X (pep)il/z(neoep)il/z (518)

which is the same as in regime (1).
5.3. Regime (3), high pressure, moderately high.o
(moderate ap)

Here we again use the global scalingsgfwhich is valid at
high pressures as given in (3.17), with = v;;A,

d (30)1/2( vk )1/2 1 Qe
ep 7 KrecaO"leO zp (KrecNeOKattNg)l/4

o (pl,y) "ot ) "4, (5.19)
Substituting (5.19) into (5.17) with replacinge,
r _ RRuar )P (KNt (pe,)Y/*
Fwnorm) = MBO(I{rec]VeO)l/4 (neozp)_l/4
(5.20)

Transitions and scaling laws for electronegative discharge models

Table 1. Values ofag versusp (mTorr) andn, (cm) for
T.=25eV,{,=2cm.

p
1 10 100 1000
Neo = 1010
£y/A 0.67 6.7 67 670
Qo 0.95 3 6.9 21.9
Nneo
10 109 10° 108
p =10
Kiecnteolp /v 0.7 0.07 0.007 0.0007
o 1.1 3 7.5 23.7

5.6. lllustrating the boundaries and scalings

Consider as a base case a practical configuration that has
been simulated by a PIC code of an feedstock capacitive
discharge between plates of 6 cm spacing [15]. The high
voltage across the discharge gave sheaths of approximately
1 cm, such that the plasma half-width can be taken to be
£, = 2 cm. The simulation was performed at a pressure
p = 10 mTorr @, = 3.2 x 10** cm~3) and an electron
densityn,o = 109 cm=3. First, taking a nominall, =

2.5 eV, corresponding to our oxygen discharge of figure 1,
we calculate from (4.3) and (4.4) the reaction rakgs ~
6.4x10m¥standK,,, = 2.3x10"m3sL. Usingthe

we find that thez; dependence is very weak and independent Value ofK,;, the values oK. andK.. from (4.5) and (4.6)

of ¢,.

5.4. Regime (6), high pressure, low. (high o)

and takingv,, = 3.9 x 10* cm s1(1/40 eV), we calculate

ap from (5.9) for the base case, obtaining = 3. The
normalized coordinates afg/A = 6.7 andK,.cn.ol , /v, =

0.07, putting the base case well in the pressure range of the

Regime (5) is generally unimportant. Regimes (4) and (6) parabolic approximation, and just inside region (1), near the
can be quite important for strongly attaching gases, such Porder with region (2), justifying our use of the region (1)
as chlorine, which are also often used in applications at formulae. Using the scaling from (5.9) to determinever
higher pressure [8]. As seen in section 3, the equations@ wide range of parameters, we then construct table 1. The
become quite complicated. However, the important scalings 9ross scaling ofo oc p/ 2n,4"° is corrected by the crossing
are not too different from regime (3). We have already Ofthe transition between regions (1) and (3) which eliminates
considered this regime, for chlorine feedstock gas, using the 158 numerical factor from deep within region (1) to deep

various approximations and models in [17].

5.5. Transition from wall to recombination dominated
loss

within region (3). Both the normalized and unnormalized
values of the pressure and electron density rate are given to
facilitate the understanding of the physical conditions.

In a second illustration of the use of these scalings we
take the same base case from the PIC simulation but use

We can also find the scaling of the transition between the the average temperature obtained from that simulation of
wall flux dominated regime and the recombination dominated 7. = 2 €V. The distribution is actually bi-Maxwellian with
regime. Noting, as previously, that the recombination flux is @ colder bulk and a hotter tail [15]. We note that this average

equal to the attachment, we have

_ Crec _ KNy _
1—‘+(£p) hjupo

RL 1 (5.21)

which is equivalent to the conditiok;, = 2K, in figure 1.

Substituting forz; from (3.18) withd /£, given by (5.19) and
agp given by (3.17), we obtain

15 /0N,
o 56 Uy

o (p€,)¥*(neol )M,

1/2
Ry > (KattNgKrecNeO)l/4

(5.22)

temperature is different from the nominal temperature used
for constructing figure 1. Using, = 2 eV we find that
K. = 1.8 x 10017 m® s 1. BecauseX,,; is most sensitive

to the bulk distribution which is cooler, it is actually lower
than the above value. Using the above valueswjthiven by
(5.9) we obtainxg = 2.7. The value from the PIC simulation

is g = 1.5[15]. Recognizing for this small value af that

a correction to the scaling formula is required, we use (5.1) to
compute the revised value@§ = 2.24 to be used in (5.9) for
scaling. We did a second PIC simulation, also in region (1),
with ¢, = 1.2cm,p = 50 mTorr, andk.o = 2.5x 10° cm=3.

For that case we foundo, ~ 6.8. Scaling with (5.9)
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from ag = 2.24 we obtaineg = 6.3, which is in good

depending on whether the local positive ion velocity does

agreement with the PIC simulation. Thus, judicious use of notreach or reaches the local ion sound velocity, respectively.

the scaling formulae, together with a PIC simulation, allows
high accuracy without additional simulations.
Although the electron density is a convenient scaling

At high pressure the central part of the electronegative core
become flattened, but the edges can still be modelled by
parabolic regions which have the same type of transition.

parameter, the power absorbed is the usual control parametefThe key quantity is_ = n_(£_)/n.o, increasing downward

If we use the total absorbed power as a control parameter weon figure 1, withe_ ~ 0.5 at the transition. For either low
must determine the power absorbed by the ions, as well asor high pressure an additional transition occurg_at= 8.5,

by the electrons. This requires a knowledge of the heating independent of feedstock gas, where the electropositive edge
mechanisms. Here we shall consider only the power absorbedegion essentially disappears.

by the electronsP,;,., which may or may not approximate
the total powerP,;;.
For the regimes of (1), (2) and (5) wherg, < T'+(¢)),

Scalings have been obtained, in some of the more
important parameter regimes, giving the dependences of the
plasma quantities on the input parametgts, andn.of,.

the electron absorbed power per unit area is approximately These are particularly useful in scaling results that have been

(18] obtained from time-consuming numerical analysis, such as
Pupse = neohiupo(Ee + 2T,) (5.23) PIC simulations, to other parameters. The scaling results

where€, is the energy lost per ionization, which depends on ndicate that many of the important plasma quantities scale
K;. as [18] similarly across the pa_rameter bo_u_ndarles, _W|th only small
Kore (order unity) changes in the coefficients which connect the

Ee=Eir * ngm' (5.24) plasma quantities to the input quantities. For example, the

124

very important electronegative quantity = n_o/n.o scales
over the entirep ¢ ,—n.of , parameter space approximately as
ag o (p€)pY?(n.ot,)~Y/?, thus allowing reasonable good
values ofag to be obtained in any part of the space if one
value is known.

In applying the models and scalings, discussed in this
paper, some care must be exercised in relating the model
assumptions to the physical problem. We have already
discussed the inaccuracies resulting from using reaction rates
based on a Maxwellian electron distribution to compute
plasma quantities in situations where the plasma is not

For low pressure withil, = 2.5V, &£. does not depend

sensitively orf,. Since we are taking, to be nearly constant,
we also assumé&. = constant. Substituting fdr; from (5.8)
in (5.23), withT, « &., we have the scaling
)1/2

neo X Pabse(pep (525)

In the recombination-dominated regimes, (3), (4), and
(6), whererl,... > I'+(£,), the power absorbed per unit area
can be approximated by

Papse = Krecnan_£,E, (5.26) Maxwellian. This was the case in the example of a low-

) o pressure PIC simulation for a parallel-plate rf discharge that
with 7, = n_, andK.. = constant. This gives was used to illustrate the scaling. In that situation the
12 scaling could be used effectively, but the reaction rates had

ne o P2 012 (5.27) . . _ _ :

+ abse™ p : to be adjusted first, on the basis of a point comparison,
and usingro, from (5.13), before the _scalmg could be used to give a_ccu_rate resglts.
However, with changes of pressure the distribution function
oo X pam(pgp)—l. (5.28) also changes, leading to varying reaction rates at a given

average electron temperature. This has been observed
experimentally in electropositive plasmas [21], and in PIC
simulations of electronegative plasmas [5,6]. A more
complete analysis, including the electron kinetics from
which the non-Maxwellian electron distribution has been
We have reviewed the equilibrium plasma profiles that are obtained, has been performed for both electropositive and
obtained in the various regimes in thg¢,—p¢, parameter  electronegative plasmas [22].
space of an attaching (electronegative) gas. Throughout the ~ Other assumptions that must be checked are: having
analysis the assumptions that the plasma is one dimensionagffectively a one-dimensional discharge and having only
and that the plasma consists of one positive and onethree charged species. For example, in a discharge with
negative ion species, in addition to electrons, have beenan oxygen feedstock gas, operated at high power, there can
used. The models used divide the space into six regimes.be a substantial component of atomic oxygen ions. The
Specifically, using the reaction rates for oxygen, a map existence of such a significant fourth charged component
of the parameter space has been obtained in terms ofwould modify all of the basic equations and consequently all
the dimensionless parameters,..n.of,/v,, and €,/A. of the analysis. This situation has only been treated within
The transition between the low-pressure and high-pressurea global analysis in which there are no spatial variations of
regimes has been discussed in terms of various criteria, whichthe species [7]. There are probably interesting possibilities
define a diffuse but relative narrow region#f/A for which of connecting multi-species global analysis with the three-
the transition takes place. species, spatially-varying analysis presented here, but they
At low pressure, the electronegative core can be have not yet been explored. All real plasma devices have
modelled by either a parabola or a truncated parabola, more than one spatial dimension. The high-aspect-ratio case,

Thusn,q scales the same with,;,. in both regimes.

6. Conclusions and discussion
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treated here, reasonably well approximates many devices Appendix B
The other limit, of a long thin device, is also treatable by the

types of models considered here, but details have not beerEquating ionization to loss whdn,, > Ty,

worked out. For cylindrical plasma devices with the diameter

approximately the same as the axial length, there are certainly Vizleolp = upohineo (B.1)
differences in the quantitative relations between the plasma | 3 )

quantities and the input parameters. How well the scalings Which forz; = a**, from (5.8), gives

apply is yet to be explored.

1/3
Finally, we mention, again, that our models deal only Vil ~ g0 (2"1'2)"') ) (B.2)
with the equilibrium, rather than the complete discharge. ) TUBO
For different types of excitation it is possible to understand R .
a more complete analysis, taking into account sheath earranging, 2/3 13
widths, ion energy lost in high-voltage sheaths, and other 23 ~ Mo <2)‘i ) (B.3)
input parameters such as applied voltages. This has e z§/3 wt,
been extensively done for electropositive plasmas, including I .
scalings (for a review, see [18, ch 11]). The analysis here substituting back inta,,
can also be connected to the sheath dynamics to completely 2 13 /o5 \1/6
: N Ai Ai 13
specify the problem. Upo (B.4)
mugol, 7ty
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