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Abstract. The equilibrium of electronegative discharges is studied in the plane-parallel
approximation over a wide range of pressures and electron densities, encompassing a number
of regimes that have previously been modeled analytically. The transitions between the
various regimes (models) have been determined in the input parameter space. It is shown that
for a given feedstock gas, these transitions can be found in terms of the two input parameters
p`p andne0`p, wherep is the pressure,ne0 the electron density, and̀p the system
half-length. Herene0 is used as a convenient input related to the power, and the conversion
from electron power tone0 is given. The input parameter space is partitioned by whether ion
flux to the wall or positive–negative ion recombination is the dominant positive ion loss
mechanism. For each of the principal regimes, scaling laws are developed for the most
important plasma parameters in terms of the input parameters.

1. Introduction

Plasma processing involves electronegative gas mixtures.
The number of equations governing the equilibrium is large
and analysis becomes complicated. At the same time
there is an increased need to understand the scaling of
the plasma constituents with control parameters, since the
parameter space is much enlarged from that of electropositive
plasmas. In an early study of an electronegative positive
column the continuity and force equations for a three-species
plasma, consisting of electrons, one positive ion, and one
negative ion species, were solved numerically to obtain
the equilibrium [1]. These numerical results give little
insight into the importance of various terms in the equations
and the scaling with parameters. More recent numerical
work using fluid codes [2–4] and particle-in-cell simulations
[5, 6] have determined plasma properties at single points
within the parameter space or scaling over limited ranges of
parameters. However, these codes are computer intensive and
it is therefore very time and resource consuming to explore
all interesting parameter ranges.

An alternative approach to determine the plasma
equilibrium is to employ simplifying assumptions. The
equilibrium parameters can then be connected to the
equations describing the heating mechanism to give a
complete description. In the simplest of equilibrium models
all quantities are taken to be averages over the spatial
variables, and are therefore called point models orglobal
models. Such models are easy to use and can incorporate
additional positive and negative ion species [7–9]. The
assumptions that are used in the averaging process are
generally not uniform over the phase space, making it

difficulty to determine the model accuracy, or to distinguish
the scaling across various parameter regimes.

Another model for the equilibrium retains the spatial
variations, but employs sufficient simplifying assumptions
that solutions can be obtained [10–17]. As with the global
models, it is essential to determine the range of validity
of the approximations that are made. This procedure for
simplifying the analysis, which also uncovers the basic
structure of the discharge, was developed by Tsendin [11]
to treat a cylindrical dc discharge. In that work it was
recognized that the discharge would naturally stratify into
two regions: an electronegative core in which essentially all
of the negative ions would concentrate, and an electropositive
edge. The physical mechanism of this stratification was
investigated in [12]. However, the resulting equations
were still quite complicated such that further simplifications
were required for analysis. In particular, detachment
rather than recombination was considered to be the main
process for removing negative ions, thus linearizing the
coupled equations. The usually more important process
of recombination was considered briefly in [11], and in
more detail in [14], resulting in nonlinear equations that
did not make the scalings transparent. In an alternative
simplification, Lichtenberget al [15] further reduced the
problem by using the approximation that the negative ions, as
well as the electrons, are in Boltzmann equilibrium. In this
situation the electron profile is nearly constant, and a single
ambipolar diffusion equation can be constructed to describe
the equilibrium. Approximation solutions, originally
constructed at intermediate pressures at which the core
electronegative region and the edge electropositive region
have nearly constant (but different) ambipolar diffusion
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coefficients, were extended to lower pressure for which
the electropositive diffusion coefficient varied with position
[16]. In this work the effect of the positive ion diffusion
velocity reaching the local ion sound velocity within the
electronegative core was also considered.

In another paper [17] the previous work on three-
species, spatially non-uniform plasma was extended to
higher electronegativity, in which the positive–negative ion
recombination may dominate the diffusive flow loss and
for which the basic assumption of Boltzmann negative
ions may not hold. At higher pressure the electronegative
core has an elliptic rather than a parabolic profile, which
can be approximated by a profile with a flat region at its
centre. At high electronegativity the electropositive edge
can also disappear. The basic equations in [17], without
the Boltzmann assumption for negative ions, were also
solved numerically in [14], in cylindrical geometry, near the
transition between elliptic and parabolic profiles.

The purpose of this study is to review the models
that have been developed for the various parameter regions
[15–17], to determine the transitions between the regimes,
and to obtain scaling laws for each of the principal regimes.
For justification of the approximations the reader is referred
to the previous papers [15–17]. For equilibrium models,
with a given feedstock gas, the control parameter space
consists of two parametersp`p andne0`p wherep is the
pressure,ne0 is the central electron density and̀p is the
half length of the plasma. The discharge parameters to be
examined are the ratio of the centre negative ion density to
electron densityα0 = n−0/ne0, the fractional half-length
of the electronegative regioǹ/`p, and a scale length of
an assumed profile to be determined for various models.
The ratio of the recombination flux to the positive ion
diffusion flux leaving the discharge,0rec/0+(`p), is an
important subsidiary parameter, used to separate equilibrium
regimes. For particular types of discharges the input power
or some other electrical quantity may be chosen as a control
parameter. In this situation it may also be necessary to
consider heating mechanisms and sheath models [18], which
we do not consider in this study of equilibria.

2. Basic formalism

As in electropositive plasmas, for each charged species we
can write a flux equation

0+ = −D+∇n+ + n+µ+E

0− = −D−∇n− − n−µ−E (2.1)

0e = −De∇ne − neµeE
where the symbols have their usual meanings, and the
subscripts +,−, ande denote positive ions, negative ions,
and electrons, respectively. In equilibrium the sum of the
currents must balance:

0+ = 0− + 0e. (2.2)

We also have
n+ = n− + ne (2.3)

which is the usual quasineutral plasma approximation. In
this approximation we consider the pressure to be sufficiently
high that a constant mobility model is appropriate, which is
generally adequate when negative ions are present, but the
pressure is not so high that the electron mean free path is short
compared to the system size such that non-uniform heating
leads to a non-uniform temperature. We form a set of coupled
differential equations using the continuity equations for each
species

∇ · 0i = Gi − Li (2.4)

whereGi are the sources andLi are the sinks. Since the
electrons are very mobile, in the bulk plasma we can eliminate
the electric field by use of a Boltzmann assumption for the
electrons

De∇ne +µeneE ' 0 (2.5)

i.e. that both terms in (2.5) are large compared to the flux; this
holds for a ratio of negative ion density to electron density,
satisfyingα ≡ n−/ne < µe/µ− [17].

At relatively high electronegativityα, if (2.5) holds but
if the negative ions are not in Boltzmann equilibrium with
the potential (see (2.26)), we combine the flux and continuity
equations to obtain a pair of differential equations which in
plane-parallel geometry are

d

dx

(
−D+

dn+

dx
+ n+µ+E

)
= Kizngne −Krecn+n− (2.6)

and

d

dx

(
−D− dn+

dx
− n−µ−E

)
= Kattngne −Krecn+n−.

(2.7)
Hereng is the neutral gas density,Kiz is the ionization rate
constant,Krec is the recombination rate constant,Katt is
the dissociative attachment rate constant, and we have only
retained the dominant reactions. The electric field and the
density of one species may be eliminated using the Boltzmann
relation (2.5) for electrons and the plasma approximation
(2.4) of charge neutrality. Making these substitutions, and
taking µ− = µ+ andD− = D+ (T− = T+ ≡ Ti) for
simplicity, we obtain

d

dx

(
−D+

d

dx
(n− + ne)− µ+(n− + ne)Te

1

ne

dne
dx

)
= Kizngne −Krec(n− + ne)n− (2.8)

and
d

dx

(
−D+

dn−
dx

+µ+n−Te
1

ne

dne
dx

)
= Kattngne −Krec(n− + ne)n− (2.9)

where we have used the Einstein relations [18] to write
De/µe = Te. Equations (2.8) and (2.9) can be solved
simultaneously, together with the appropriate boundary
conditions, to obtain the density profiles.

2.1. Boltzmann equilibrium for negative ions

If we make the more restrictive assumption that the negative
ion species is also in Boltzmann equilibrium, then [18]

∇n−
n−
= γ ∇ne

ne
(2.10)
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whereγ = Te/Ti (Ti is the common temperature of the ionic
species). Using (2.10) together with

∇n+ = ∇n− +∇ne
we obtain the ratios

∇ne
∇n+
= 1

1 +γα

∇n−
∇n+

= γα

1 +γα
. (2.11)

Substituting (2.2) and (2.11), together with the Einstein
relations [18]

D−
D+
= µ−
µ+

De

D+
= γ µe

µ+

into (2.1), we can eliminaten− andne to obtain, after some
algebra, an equation for the positive ion flux in terms ofn+

alone,
0+ = −Da+∇n+ (2.12)

where we now have, analogous to electropositive plasmas,
an ambipolar diffusion coefficient

Da+ = D+
(1 +γ + 2γα)(1 +α(µ−/µe))

(1 +γα)(1 + (µ+/µe)(1 +α) + α(µ−/µe))
(2.13)

which is the form given by Thompson [19]. We note
immediately, sinceµ−/µe, µ+/µe � 1, that except at very
high α the second parentheses in both the numerator and
denominator are approximately equal to one, yielding

Da+ ≈ D+
1 +γ + 2γα

1 +γα
. (2.14)

This simpler form ofDa+ can be obtained directly, by
substituting (2.11) into (2.8). Thompson plottedDa+ from
(2.13) withα as a parameter. The structure is easily seen
from the simpler form (2.14). Forα � 1, γ cancels such
thatDa+ ≈ 2D+. Whenα decreases below unity, butγα � 1
thenDa+ ≈ D+/α such thatDa+ increases with decreasing
α. For γα < 1, we findDa+ ≈ γD+ ≡ Da, the usual
ambipolar diffusion coefficient without negative ions. For
plasmas in whichα � 1 in the centre of the discharge,
the entire transition region takes place over a small range
of 1/γ < α < 1 near the edge of the electronegative region,
such that the simpler value of

Da+ = 2D+ (2.15)

holds over most of the electronegative region.
Using (2.12), the steady-state positive ion continuity

equation∇ · 0i = Gi − Li is

− d

dx

(
Da+(α)

dn+

dx

)
= Kizngne −Krecn+n−. (2.16)

Within the electronegative region, we can substitute for
ne andn− using the Boltzmann relations relating electron
and ion densities(ne/ne0) = (n−/n−0)

1/γ and the plasma
approximation of charge neutralityn+ = n− + ne to obtain

n+ = n− + ne0

(
n−
n−0

)1/γ

. (2.17)

Becauseγ � 1 as a consequence of our assumption of
Boltzmann negative ions, we see from (2.17) thatne ' ne0.
Using this in (2.16) and (2.17) results in a relatively simple
differential equation in a single variablen+.

Equation (2.16) (not making the assumption thatne '
ne0) has as a boundary condition at the sheath edge,x = `p,
that the ion flow cannot exceed the local ion sound velocity,
which at the plasma edge is the Bohm velocity. Stating this
condition as an equality, it becomes the Bohm flux condition

−Da+
dn+

dx

∣∣∣∣
x=`p
= n+(`p)uB(Te, Ti, αs). (2.18)

Hereαs = α(`p) = n−(`p)/ne(`p). Since negative ions
may be present when (2.18) is satisfied, the Bohm velocity
has the general form [20]

uB =
[
eTe(1 +αs)

M+(1 +γαs)

]1/2

(2.19)

which reduces to the usual expressionuB0 = (eTe/M+)
1/2

whenαs = 0. Forαs > 1/γ , the negative ion density at the
sheath edge significantly reduces the Bohm velocity.

2.2. Conservation equations

Equation (2.16) can be used to determine three parameters:
α0 = n−0/ne0 (the ratio ofn− to ne at the plasma centre),
ne0, and Te. We can determine these by solving (2.16)
together with two particle conservation equations, which
are integrated forms of (2.6) and (2.7), and as an energy
conservation equation. These are: positive ion particle
balance,

−Da+
dn+

dx

∣∣∣∣
x=`p
=
∫ `p

0
Kizngne dx −

∫ `p

0
Krecn+n− dx

(2.20)
negative ion particle balance (negligible negative wall flux),∫ `p

0
Kattngne dx −

∫ `p

0
Krecn+n− dx = 0 (2.21)

and energy balance for the electrons,

Se = 2eEc
∫ `p

0
Kizngne dx + 2eEwn+(`p)uB. (2.22)

All volume processes in the sheaths are neglected. Here
Ec(Te) is the collisional energy lost per electron–positive ion
pair created, andEw = 2Te is the electron kinetic energy lost
to the wall per electron–ion pair lost to the wall. Given the
neutral density,ng, and the power per unit area deposited in
the electrons,Se, the three equations can be simultaneously
solved for the three unknownsTe, α0, andne0, provided`p
is known. The plasma half-width̀p differs from the half-
length of the device by a sheath widths. In a complete model
we must determines self-consistently with̀ p, given the
discharge heating mechanism. A common assumption (only
marginally satisfied in some capacitive radiofrequency (rf)
discharges) is thats � `p. The set of equations (2.16)–(2.22)
can only be solved numerically, since they are nonlinear. In
addition, particularly at relatively low pressure and lowα,
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there is a significant edge region in which the mobility andne
are not constant, such that the basic equations (2.6) and (2.7)
have non-constant coefficients. There is also a fundamental
problem in the regions where the negative ions have fallen
to very small values, where larger electric fields tend to
sweep the negative ions, that are created by attachment,
into the electronegative core. As we shall see in the next
section, various reasonable approximations allow analytic
solutions to be obtained by separating the plasma into a core
electronegative region with constant parameters, and an edge
electropositive region. Before doing this we explore the range
of validity of the various approximations that we have made
in this section.

2.3. Validity of reduced equations

We examine the condition for validity of the Boltzmann
equilibrium for negative ions, from which we have derived a
single ambipolar equation for the positive ions. From (2.1)
for negative ions, we have

0− = −D− dn−
dx
− n−µ−E (2.23)

with the condition for Boltzmann equilibrium being that∣∣∣∣0−/D− dn−
dx

∣∣∣∣� 1 (2.24)

everywhere. Using the integral relation between the source
and the flux,0− can be written as

0− =
∫ x

0
Kattngne dx −

∫ x

0
Krecn+n− dx. (2.25)

If we have profiles forne, n−, andn+, (2.25) can be explicitly
evaluated, as we shall do in the next section. Since the
recombination increases with the square of the density, at
high density (2.24) is no longer satisfied. We can estimate the
left-hand side of (2.24) using (2.25) and the solution which
holds where (2.24) is satisfied. We have done this in [17],
finding a parabolic solution for which (2.24) has its maximum
value atx = 0, giving the condition for which negative ions
in the electronegative plasma are in Boltzmann equilibrium,
i.e. satisfies (2.24),

ρ ≡ 7

30
Krecne0α0`

2
p/D− < 1. (2.26)

Since in (2.26) we have taken the largest value that (2.24)
attains, we have used a simple rather than a strong inequality
in (2.26).

If (2.26) is not satisfied, the negative ions are not
in Boltzmann equilibrium and (2.16) is not valid, but the
electron profile may still be quite flat, which also allows
the reduction to a single differential equation for the profile.
Using (2.23) and (2.25) beyond this transition, but taking
ne = ne0, we have

n−µ−E(x) = −
(∫ x

0
Kattngne0 dx

−
∫ x

0
Krecn+n− dx +D−

dn−
dx

)
. (2.27)

The electric field is now determined implicitly in terms of
integrals over the source terms, plus a usually small gradient
correction. BecauseTe � Ti , there is a large parameter range
in which (2.26) is not satisfied butne is still essentiality flat,
as determined by the Boltzmann relation. To determine this
condition, explicitly, we first assume that all terms involving
variation ofne are negligible. Then we can substitute (2.27)
into (2.6) and, using the approximations thatn− ' n+

(ne � n−), µ− = µ+, T− = T+, and dropping small terms,
we obtain

d

dx

[
− 2D+

dn+

dx
+
∫ x

0
Krecn

2
+ dx −

∫ x

0
Kattngne0 dx

]
≈ Kizngne0 −Krecn2

+. (2.28)

We evaluate the left-hand side to obtain

2D+
d2n+

dx2
+ (Kiz +Katt )ngne0 − 2Krecn

2
+ = 0. (2.29)

Equation (2.29) has an elliptic integral solution.
To determine the condition for (2.29) to be valid, we add

(2.8) and (2.9). Dropping small terms, we obtain

d

dx

(
−2D+

dn−
dx
− γD+

dne
dx

)
= (Kiz+Katt )ngne−2Krecn

2
+

(2.30)
where we have used the Einstein relation to writeµ+De/µe =
γD+. Equation (2.30) still is a function of two variablesne
andn−, so that a simplified form of (2.8) or (2.9) is required
to be solved simultaneously with (2.30) to obtain a general
solution. Comparing (2.30) with (2.29), we see that (2.29)
is just the approximation that the electron gradient term in
(2.30) can be dropped, i.e.n−1

e (dne/dx) < 2α0/`pγ . From
(2.30) we would expect that, with increasingρ, at sufficiently
high pressure andα0, the ionization and attachment are
increasingly balanced locally by the recombination. In this
regime the left-hand side is a perturbation to the right-hand
side; the right-hand side by itself gives the proportionality
ne ∝ n2

−, which is quite different from the parameters for
which ne ' ne0, a constant, withn− varying with position.
However, in this regime bothne andn− only vary weakly
over the main part of the electronegative discharge region.

Using the same procedure that we employed to obtain
(2.26), for the validity of a parabolic solution, we can also
obtain the condition for validity of the elliptic solution. This
is more difficult, since we need to expand the elliptic solution
at the origin, and, unlike the parabolic solution, the gradient
for the elliptic solution is much flatter and varies greatly with
changing parameters. The result, obtained in Lichtenberg
et al [17], is

κ ≡ 1

11.55α0

(
D+

Krecne0α0`2
p

)1/2

× exp

(
2Krecne0α0`

2
p

D+

)1/2

< 1. (2.31)

The exponential dependence with increasing recombination
is the result of the flattening of the elliptic solution with
increasing recombination.
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3. Models for the principal parameter regimes

Various models can be constructed that approximate the
plasma profiles in different regions of the parameter space.
As described in the introduction, we make the assumptions
that the plasma can be considered one dimensional, with the
variation in the axial dimension, and that only one positive
ion species is important. These assumptions are often
approximately satisfied, and coincide with a series of papers
on electronegative equilibria that we draw upon [15–17]. We
introduce the regimes and their models here, and then in
section 4 construct the equations from which the transitions
between the models are obtained. The characterization of
the regimes will become more precise in section 4, when the
transitions are defined, and in section 5 where scaling laws
are found.

3.1. Regime (1), low pressure, moderately highne0

(moderateα0)

In [15] we used the assumption that the plasma would
separate into an electronegative core and an electropositive
edge. In the electronegative core we found that if the
local recombination between negative and positive ions was
everywhere small compared to the gradient of the positive
ion ambipolar diffusion flux, if the ambipolar diffusion
coefficient can be taken to be constant, and if the electron
density is essentially a constant within the electronegative
region, then from (2.16) the negative ion density within
the core can be approximated by a parabola having a scale
length` which goes smoothly to zero at the edge`− of the
electronegative region (` = `−):

n+

ne0
= n−
ne0

+ 1= α0

(
1− x

2

`2

)
+ 1. (3.1)

If (3.1) is substituted into the conservation equations (2.20)
and (2.21) for positive ion and negative ion particle balance,
we obtain

Kizng` = Krecne0
(

8

15
α2

0 +
2

3
α0

)
` +

2D̄a + α0

l
(3.2)

Kattng`p = Krecne0
(

8

15
α2

0 +
2

3
α0

)
` (3.3)

where D̄a+ is obtained by using anα, averaged over a
parabolic profile

D̄a+ = D+
1 +γ + 2γ ᾱ

1 +γ ᾱ
(3.4)

whereᾱ = 2
3α0.

In the electropositive edge region the positive ion particle
balance can be approximated as [16]

2D̄a+α0

`
+Kizng(`p − `) = hluB0. (3.5)

For simplicity we takene = ne0 in this edge region for
calculating the ionization,uB0 = (eTe/M+)

1/2, andhl =
ns/ne0, which is given at low pressures by [16]

hl =
[
a + (u(`)/uB0)

3

1 +a

]1/3

(3.6)

wherens is the electron (and positive ion) density at the
plasma-sheath edge,u(`) is the positive ion velocity at the
edge of the electronegative region, anda = 2νizλ/πuB0,
with νiz = Kizng andλ is the ion mean free path. For a given
feedstock gas, ifng, ne0 and `p are known, the unknown
quantitiesα0, `, andTe can be determined from the above
equations.

3.2. Regime (2), low pressure, moderately lowne0

(moderately highα0)

Depending on plasma parameters, it is possible for ions to
attain the local ion sound velocity in the electronegative
region. In this case, if we use the parabolic approximation for
negative ions, the electronegative region terminates abruptly
at a positioǹ − < `, where an internal non-neutral transition
region forms [16]. the particle balance equation for positive
ions is then

Kizngne0`− = Krecn2
e0

[
α2

0`−

(
1− 2

3

`2
−
l2

+
1

5

`4
−
l4

)
+α0`−

(
1− 1

3

`2
−
`2

)]
+ ne0

[
α0

(
1− `

2
−
`2

)
+ 1

]
uB(α−)

(3.7)

where

uB(α−) =
(
eTi

M+

α− + 1

α− + 1/γ

)1/2

(3.8)

with
α− = α0(1− `2

−/l
2) (3.9)

and equations (3.3) and (3.5) are modified accordingly. Since
` 6= `−, we have an additional parameter which requires an
additional equation, which is that the local sound speed is
attained within the electronegative region [16]

2D̄α+α0ne0`−
`2

=
[
α0

(
1− `

2
−
`2

)
+ 1

]
ne0uB(α−). (3.10)

ApproximatinguB(α−) from (3.8) as

uB(α−) = vth
(

1 +α−
α−

)1/2

(3.11)

wherevth = (eTi/M+)
1/2, then (3.10) yields a cubic equation

for `2
−/`

2:(
4λ

`

)2

α3
0

`2
−
`2

(
1− `

2
−
`2

)
=
[
1 +α0

(
1− `

2
−
`2

)]3

. (3.12)

Equation (3.12) yields solutions for sufficiently low pressure
and low ne0; otherwise the local ion sound speed is not
attained in the electronegative region and` = `−.

3.3. Regime (3), high pressure, moderately highne0

(moderately highα0)

At higher pressures the parabolic solution does not
adequately describe the solution to the ambipolar diffusion
equation. In particular, the recombination of positive
and negative ions results in a central flattening of the
electronegative discharge profile and a steepening of the edge
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electronegative region. Provided the ion sound limit is not
reached, the electronegative core profile can be approximated
by [17]
n+ ' n− = α0ne0 0< x < `− − d
n+ ' n− = α0ne0

(
1− (x + d − `−)2

d2

)
`− − d < x < `− (3.13)

which is flat-topped with parabolic edge regions. Substi-
tuting (3.,13) into the basic equations (2.20) and (2.21) and
using a modified (3.5), we eliminateKiz to obtain

Kattng`p = Krecα2
0ne0`−

7
15Krecα

2
0ne0d (3.14)

and(
Kattng +

hluB0

`p

)
`− −Kattng`p = 4D+

α0

d
. (3.15)

The additional equation for the parameterd (size of the
varying part of the electronegative region having a strong
density gradient) is found from the condition that the electric
field-driven negative ion mobility flux must balance the
negative ion diffusion flux in the strong gradient region to
make0−(`−) = 0 [17], which leads to (withD+ = D−)

2D+α0ne0/d = 7
15Krecn

2
e0α

2
0d. (3.16)

From (3.14) withd � `− (`− ' `p), α0 is approximated as

α0 '
(
Kattng

Krecne0

)1/2

(3.17)

and using the highα0 approximation forhl in (3.6)

hl ' u(`)

uB0
= 4D+α0

duB0
. (3.18)

We can readily solve (3.15) and (3.16) for the remaining
parametersd and`−. At higher pressures ifλ/(`p − `−) <
Ti/Te, the value ofhl , determined by the high-pressure
diffusion solution in the electropositive edge, is somewhat
different than the low-pressure value given by (3.6) [15]. We
have retained (3.6) in order to have a smooth transition when
d = `−.

3.4. Regime (4), high pressure, moderatene0 (high α0)

The ion sound velocity can also be reached in the higher
pressure region due to the steepening of the electronegative
edge gradients. In this case the scale lengthd in the
denominator of (3.13) is replaced bỳ, ` 6= d, and the
equilibrium equations are modified accordingly, with (3.12)
in the`− is replaced withd supplying the additional equation.

3.5. Regimes (5) and (6), low and high pressure, lowne0

(high α0)

In both the low- and high-pressure regimes there is a transition
with decreasingne0 (increasingα0) to a regime in which an
electropositive edge region no longer exists. For these parts
of parameter spacè− = `p, such that, after eliminating the
terms inKiz, (3.10) reduces to

2D̄a+α0`p/`
2 = uB(α−)(α− + 1) (3.19)

with α− given by (3.9). Sincè − = `p, the number of
variables is reduced by one, as is the number of independent
equations.

Figure 1. Parameter space of normalized electron densityne0
(ordinate) versus normalized gas densityng (abscissa), for oxygen,
showing regions where the various models apply. At constant
pressure (gas density)α0 ≡ n−0/ne0 increases with decreasingne0.
At constantne0, α0 increases with increasing pressure.

4. Transitions between regimes

An examination of the algebraic equations (3.2)–(3.6),
describing the low-pressure moderateα0 parameter regime
(1), shows that there are only two significant independent
parametersng`p andne0`p, i.e.`p does not appear separately.
Furthermore, if we assume thatTe is essentially clamped due
to the exponential dependence ofKiz onTe, then the reduced
variable space can be explored using normalized parameters
which are conveniently written in non-dimensional form as
σng`p = `p/λ andKrecne0`p/vth, wherevth = (eTi/M)1/2
is the ion thermal velocity, assumed given, andσ is the ion
momentum cross section. All reaction rates are taken to
be fixed characteristics of a given gas at a fixedTe. The
various regimes (1)–(6) for this classification scheme are
shown in figure 1. Note that the abscissa is the normalized
pressure and the ordinate is the normalized electron density.
At low pressure (̀p/λ not too large) we proceed through
the transitions from low to highα0, traversing regimes (1),
(2), and (5), when reducingKrecne0`p/vth (usually reducing
ne0 for a particular device and feedstock gas). At higher
pressure we proceed through the transitions from low to
highα0, traversing regimes (3), (4), and (6), when reducing
Krecne0`p/vth.

The transition between the low- and high-pressure
regimes is formally obtained from the high-pressure side
(regime (3)) by reducing the pressure until the flat central
region disappears. At this value of pressure it can be shown
[17] thatd = `− = ` (with no ion sound limitation), such that
regime (3) joins smoothly to regime (1), as shown in figure 1.
However, this does not uniquely determine the transition,
since the equations for regime (1) also give solutions in
regime (3). We therefore need an additional physical criterion
to separate the two regions. We use two such criteria to
(roughly) bracket the transition. As mentioned previously,
we expect the parabolic solution to be inaccurate when the
nonlinear recombination flux (first term on the right-hand side
of (3.2) competes with the diffusion flux (second term on the
right-hand side of (3.2)). The profile was then shown [17]
to be elliptic, rather than parabolic, with a flattening of the
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central region. Since attachment balances recombination,
from (3.3), this condition of equal fluxes can be simply
expressed as

Kiz = 2Katt (4.1)

which is shown in figure 1. Another criterion for the
breakdown of the parabolic solution is that the ambipolar
diffusion solution does not hold, because recombination
is sufficient to prevent the negative ions from attaining
Boltzmann equilibrium. This transition, assuming a
parabolic solution, occurs approximately at [17]

ρ ≡ 7
30Krecne0α0`

2
p/D− = 1 (4.2)

whereD− is the negative ion diffusion coefficient taken here
to be equal toD+. This condition is also plotted in figure 1.

The curves in figure 1 show the transitions and regimes
explicitly for oxygen, using the following values of the
reaction rate coefficients (see [15])

Kiz = 2.13× 10−14 exp(−14.5/Te) m3 s−1 (4.3)

Katt = 7.89× 10−17 exp(−3.07/Te) m3 s−1 (4.4)

Krec = 1.4× 10−13 m3 s−1 (4.5)

Kcx = 3.95× 10−16 m3 s−1 (4.6)

whereKcx , the charge exchange reaction rate, is the dominant
term for determining the cross section,σ = Kcx/vth. The
electron temperature, using various analytic and particle-in-
cell (PIC) solutions, is nominally taken to beTe = 2.5 eV.
We see that the transition curved = `− lies quite close to the
transitionρ = 1, strengthening the proposition that we can
use thed = `− transition to separate the flat-topped from the
parabolic solution. TheKiz = 2Katt transition, occurring
at somewhat higher pressures, indicates that either solution
should be a reasonable approximation within this region of
parameter space.

Equation (3.12), which gives the value of`−/` at which
the ion sound speed is reached, is found to have, at a given
pressure, no real roots for smallα0, and two positive real
roots for largerα0, with the smaller root giving the value of
`−/` [16]. At the transition there is a double root for`−/`.
We find numerically that for all pressures this corresponds
approximately toα− = 0.5. Using this value, the transitions
between regimes (1) and (2) and between regimes (3) and (4)
are readily calculated, as indicated on figure 1.

The transition from regime (2) to regime (5) at which the
electropositive region disappears is easily obtained by setting
the flux leaving the electronegative plasma equal to the Bohm
flux out of the electropositive region

ne0(1 +α−)uB(α−) = ne0uB0. (4.7)

using (3.11) foruB(α−), we obtain

(1 +α−)
(

1 +α−
α−

)1/2

=
(
Te

Ti

)1/2

. (4.8)

Substituting a value ofγ = Te/Ti = 100 into (4.8) we obtain
α− = 8.5. Using this value ofα− in the complete set of
equations in either regime (2) or (5), we obtain the transition

between them shown in figure 1. Equation (4.8) also holds
at the transition between regimes (4) and (6).

Although the transitions between the various regions
must be obtained by solving the equations, as done in
this section, it is possible to get some additional insight
into the transitions. In particular, the rather odd form of
the transition between regions (1) and (2), and between
regions (3) and (4) can be understood from dimensional
analysis, which we present in appendix A. The analysis
indicates that in the low-pressure regions a rough scaling of
vD ∝ (ne0ng)

1/2 holds, while in the high-pressure regions
the scaling isvD ∝ (ne0/ng)

1/4 since the transition occurs
for vD & vth, wherevth is held constant; the transition should
havene0 ∝ n−1

g in the low pressure region andne0 ∝ ng in
the high pressure region. These proportionalities are seen to
hold, approximately, for parameters away from the transition
between the two pressure regions (on the left-hand edge of
figure 1 other factors have become important).

In obtaining figure 1 we have assumed an oxygen plasma
with the ions at room temperature. These transitions can be
different for other gases. Even for oxygen, a modification
occurs if the negative ions are significantly heated. From
PIC simulations, in some examples, the negative ions have
been found to be at an elevated temperature, withT− ' 3T+.
For this case the diffusion coefficient for moderate to large
α0 becomesDa+ = D+(1 +T−/T+) = 4D+, which is a factor
of two larger than the previously assumedDa+. SinceDa+

is inversely proportional to the gas densityng, this means
that all numerical results will effectively relate to a density a
factor of two lower in theDa+ terms. For a feedstock gas such
as chlorine, the numerical; shifts are much larger. Chlorine
has an attachment reaction rate coefficient approximately
a factor of ten larger than oxygen. This shifts the low-
to-high pressure solution by approximately a factor of ten
towards lower pressure. Because of theα0 scaling it also
strongly raises the transition at which an ion sound limitation
appears and the transition at which the electropositive region
disappears. In previous oxygen examples we were interested
in regimes (1) and (2) [15, 16], while for chlorine regime (6)
was of primary interest [8, 17].

In this study we do not treat the regimes at very high
pressure,κ > 1, in (2.31) where the electron density cannot
be taken to be constant, or at low pressure where the constant
mobility assumption can fail. We also do not consider the
scaling for lowα0 (α0 < 1), where some terms become
important that were assumed to be small in this work. These
restrictions somewhat limit the range of validity of figure 1.
For example, although the abscissa of normalized pressure
has been taken to large values in the figure, the failure of the
constant electron density assumption reduces the accuracy of
the last decade. We return to these limitations in section 5.

5. Scaling laws

Scaling laws are useful to determine the plasma behaviour
near some known solution. As described in the introduction,
approximate scaling laws are obtained from global
models (volume-averaged over assumed electropositive and
electronegative profiles). These models are most accurate
where internal ion loss processes dominate over the flux to the
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walls (regimes (3), (4), and (6)) or when the electropositive
edge has disappeared (regimes (5) and (6)). In regime (1),
which is furthest from the regime covered by global models,
fairly precise scaling laws can be uncovered using the results
of section 4. Although not large in parameter space, this
regime is physically very important, as it encompasses low
pressures and high densities, which are very useful for plasma
processing. We shall consider this regime in considerable
detail, and the other regimes more briefly. In all of the
scaling analysis we employ the implicit assumption that the
exponentially strong dependence ofKiz on Te essentially
clamps the temperature on all other equations.

5.1. Regime (1), low pressure, moderately highne0

(moderateα0)

Using (3.3)–(3.5) we eliminate the temperature sensitive
reaction rateKiz to solve forα0 and`/`p (here` = `−), with
an approximate assumed temperature. Furthermore, as noted
previously,̀ p only appears in the product formsNg = ng`p
andNe0 = ne0`p. Thenα0 and`/`p can be written, from the
resulting two equations, in the convenient forms [15]

α0 = −5

8
+

[(
5

8

)2

+
15

8

Katt

Krec

Ng

Ne0

`p

`

]1/2

(5.1)

and
`

`p
= {KattNg + [(KattNg)

2 + (8vthα0f (α0)/σNg)

×(hluB0 +KattNg)]
1/2}[2(hluB0 +KattNg)]

−1 (5.2)

where f (α0) = D̄a+/D+ is the α0-dependence of the
diffusion in (3.4). Forα0� 5

8, (5.1) reduces to

α0 ≈
(

15

8

Katt

Krec

Ng

Ne0

`p

`

)1/2

(5.3)

and for
KattNg � hluB0 (5.4)

but keepingα0 � 5
8 such that, from (3.4),f (α0) = 2, (5.2)

reduces to
`

`p
≈
[

4vthα0

hluB0σNg

]1/2

(5.5)

with λ = (ngσ )
−1. The relations (5.3) and (5.5) are still

coupled and, furthermorehl , from (3.6) is

hl =
[

2Kiz/πσuB0 + (u(`)/uB0)
3

1 + 2Kiz/πσuB0

]1/3

(5.6)

which is a complicated function of parameters and also
depends sensitively on temperature throughKiz. We do not
have explicit scaling in (5.3) or (5.5) becausehl in (5.6) has
two terms. There is an intermediate transition for

(u(`)/uB0)
3 = a ≡ 2Kiz/πσuB0. (5.7)

For relatively smallα0 with `/`p significantly less than unity,
we use the approximationa � (u(`)/uB0)

2. Thenhl can be
approximated by

hl ' a1/3 ' (2λ/π`p) = (2/πσNg)1/2. (5.8)

The second approximate equality is obtained from a self-
consistent analysis in the lowα0 regime (see appendix B).
Substituting (5.8) into (5.5) and solving (5.3) and (5.5)
together, we obtain the following proportionalities:

α0 =
(

15

8

Katt

Krec

Ng

Ne0

)2/5(1

4

uB0

vth

)1/5

(σNg)
1/10

∝ (p`p)1/2(ne0`p)−2/5 (5.9)

and

`/`p '
(
vth

uB0

)2/5 1

(σNg)1/5

(
15

8

Katt

Krec

Ng

Ne0

)1/5

∝ (ne0`p)−1/5. (5.10)

The`/`p scaling with parameters is very weak and can often
be neglected.

Approximation (5.8) is not valid near the transition from
regime (1) to regime (3), since for`/`p ∼ 1 the flux into the
electropositive region is much larger than the flux generated
in that region. There, from (5.6), the approximation

hl ' u(`)/uB0 (5.11)

holds, where

u(`) = 4vth
σNg

`p

`
α0. (5.12)

Substituting (5.11) and (5.12) into (5.5) we find that`/`p ∼
1. using this result in (5.3) we find, near the transition
between regimes (1) and (3),

α0 '
(

15

8

Katt

Krec

Ng

Ne0

)1/2

∝
(
p`p

ne0`p

)1/2

(5.13)

which is independent of̀ p. This square root scaling
essentially holds over all of the other regimes, except that
the numerical factor of(15/8)1/2 slowly becomes unity as
the parameters change towards lowerne0 and higherng.

An important physical parameter is the wall flux0+w.
Normalizing this tone0uB0, which is useful in regimes (1)–
(4), we have

0+w(norm) = hl. (5.14)

As discussed above, from (5.6)hl divides into two regions.
For smallerα0, hl is given by (5.8), which when substituted
in (5.14) gives

0+w(norm) =
(

2

πσNg

)1/2

∝ (p`p)−1/2. (5.15)

For higherα0, we substitute (5.11), (5.12), and (5.34) with
`p/` ' 1 in (5.14) to obtain

0+w(norm) =
(

15

8

KattNg

KrecNe0

)1/2 4vth
uB0σNg

∝ (p`p)−1/2(ne0`p)
−1/2 (5.16)

with has the samep`p scaling as (5.15).
Comparing0+w(norm) in (5.15) and (5.16) with the

scaling ofα0 in (5.9) and (5.13), we see that thep`p scalings
are inverse to one another.
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5.2. Regime (2), low pressure, moderatene0 (moderately
high α0)

The scaling ofα0 is approximately that given by (5.3) with
`/`p ' constant∼1. for0+w we evaluate0+(`−)at`− = `p
to obtain

0+w(norm) = 4
vth

uB0

λ

`p

`p

`
α0. (5.17)

Again ignoring the weak̀p/` scaling we have

0+w(norm) ∝ (p`p)−1/2(ne0`p)
−1/2 (5.18)

which is the same as in regime (1).

5.3. Regime (3), high pressure, moderately highne0

(moderateα0)

Here we again use the global scaling ofα0 which is valid at
high pressures as given in (3.17), withD+ = vthλ,

d

`p
=
(

30

7

)1/2(
vthλ

Krecα0ne0

)1/2 1

`p
= ( 30

7 vthλ)
1/2/`

1/2
p

(KrecNe0KattNg)1/4

∝ (p`p)−3/4(ne0`p)
−1/4. (5.19)

Substituting (5.19) into (5.17) withd replacing̀ ,

0+w(norm) =
( 56

15vthλ/`p)
1/2(KattNg)

3/4

uB0(KrecNe0)1/4
∝ (p`p)

1/4

(ne0`p)−1/4

(5.20)
we find that thehl dependence is very weak and independent
of `p.

5.4. Regime (6), high pressure, lowne0 (high α0)

Regime (5) is generally unimportant. Regimes (4) and (6)
can be quite important for strongly attaching gases, such
as chlorine, which are also often used in applications at
higher pressure [8]. As seen in section 3, the equations
become quite complicated. However, the important scalings
are not too different from regime (3). We have already
considered this regime, for chlorine feedstock gas, using
various approximations and models in [17].

5.5. Transition from wall to recombination dominated
loss

We can also find the scaling of the transition between the
wall flux dominated regime and the recombination dominated
regime. Noting, as previously, that the recombination flux is
equal to the attachment, we have

RL = 0rec

0+(`p)
= KattNg

hluB0
= 1 (5.21)

which is equivalent to the conditionKiz = 2Katt in figure 1.
Substituting forhl from (3.18) withd/`p given by (5.19) and
α0 given by (3.17), we obtain

RL = 15

56

(
σNg

vth

)1/2

(KattNgKrecNe0)
1/4

∝ (p`p)3/4(ne0`p)1/4. (5.22)

Table 1. Values ofα0 versusp (mTorr) andne0 (cm) for
Te = 2.5 eV,`p = 2 cm.

p

1 10 100 1000

ne0 = 1010

`p/λ 0.67 6.7 67 670
α0 0.95 3 6.9 21.9

ne0

1011 1010 109 108

p = 10
Krecne0`p/vth 0.7 0.07 0.007 0.0007
α0 1.1 3 7.5 23.7

5.6. Illustrating the boundaries and scalings

Consider as a base case a practical configuration that has
been simulated by a PIC code of an O2 feedstock capacitive
discharge between plates of 6 cm spacing [15]. The high
voltage across the discharge gave sheaths of approximately
1 cm, such that the plasma half-width can be taken to be
`p = 2 cm. The simulation was performed at a pressure
p = 10 mTorr (ng = 3.2 × 1014 cm−3) and an electron
densityne0 = 1010 cm−3. First, taking a nominalTe =
2.5 eV, corresponding to our oxygen discharge of figure 1,
we calculate from (4.3) and (4.4) the reaction ratesKiz '
6.4×10−17 m3 s−1 andKatt = 2.3×10−17 m3 s−1. Using the
value ofKatt , the values ofKrec andKcx from (4.5) and (4.6)
and takingvth = 3.9× 104 cm s−1(1/40 eV), we calculate
α0 from (5.9) for the base case, obtainingα0 = 3. The
normalized coordinates are`p/λ = 6.7 andKrecne0`p/vth =
0.07, putting the base case well in the pressure range of the
parabolic approximation, and just inside region (1), near the
border with region (2), justifying our use of the region (1)
formulae. Using the scaling from (5.9) to determineα over
a wide range of parameters, we then construct table 1. The
gross scaling ofα0 ∝ p1/2n

−2/5
e0 is corrected by the crossing

of the transition between regions (1) and (3) which eliminates
the 15/8 numerical factor from deep within region (1) to deep
within region (3). Both the normalized and unnormalized
values of the pressure and electron density rate are given to
facilitate the understanding of the physical conditions.

In a second illustration of the use of these scalings we
take the same base case from the PIC simulation but use
the average temperature obtained from that simulation of
Te ' 2 eV. The distribution is actually bi-Maxwellian with
a colder bulk and a hotter tail [15]. We note that this average
temperature is different from the nominal temperature used
for constructing figure 1. UsingTe = 2 eV we find that
Katt = 1.8× 10−17 m3 s−1. BecauseKatt is most sensitive
to the bulk distribution which is cooler, it is actually lower
than the above value. Using the above values withα0 given by
(5.9) we obtainα0 = 2.7. The value from the PIC simulation
is α0 = 1.5 [15]. Recognizing for this small value ofα0 that
a correction to the scaling formula is required, we use (5.1) to
compute the revised value ofα0 = 2.24 to be used in (5.9) for
scaling. We did a second PIC simulation, also in region (1),
with `p = 1.2 cm,p = 50 mTorr, andne0 = 2.5×109 cm−3.
For that case we foundα0 ' 6.8. Scaling with (5.9)
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from α0 = 2.24 we obtainα0 = 6.3, which is in good
agreement with the PIC simulation. Thus, judicious use of
the scaling formulae, together with a PIC simulation, allows
high accuracy without additional simulations.

Although the electron density is a convenient scaling
parameter, the power absorbed is the usual control parameter.
If we use the total absorbed power as a control parameter we
must determine the power absorbed by the ions, as well as
by the electrons. This requires a knowledge of the heating
mechanisms. Here we shall consider only the power absorbed
by the electrons,Pabse, which may or may not approximate
the total powerPabs .

For the regimes of (1), (2) and (5) where0rec � 0+(`p),
the electron absorbed power per unit area is approximately
[18]

Pabse ' ne0hluB0(Ec + 2Te) (5.23)

whereEc is the energy lost per ionization, which depends on
Kiz as [18]

Ec = Eiz +
Kexc

Kiz
Eexc. (5.24)

For low pressure withTe & 2.5 V, Ec does not depend
sensitively onTe. Since we are takingTe to be nearly constant,
we also assumeEc = constant. Substituting forhl from (5.8)
in (5.23), withTe � Ec, we have the scaling

ne0 ∝ Pabse(p`p)1/2. (5.25)

In the recombination-dominated regimes, (3), (4), and
(6), where0rec � 0+(`p), the power absorbed per unit area
can be approximated by

Pabse ' Krecn+n−`pEc (5.26)

with n+ ' n−, andKrec = constant. This gives

n+ ∝ P 1/2
abse`

−1/2
p (5.27)

and usingα0, from (5.13),

ne0 ∝ Pabse(p`p)−1. (5.28)

Thusne0 scales the same withPabse in both regimes.

6. Conclusions and discussion

We have reviewed the equilibrium plasma profiles that are
obtained in the various regimes in thene0`p–p`p parameter
space of an attaching (electronegative) gas. Throughout the
analysis the assumptions that the plasma is one dimensional
and that the plasma consists of one positive and one
negative ion species, in addition to electrons, have been
used. The models used divide the space into six regimes.
Specifically, using the reaction rates for oxygen, a map
of the parameter space has been obtained in terms of
the dimensionless parametersKrecne0`p/vth and `p/λ.
The transition between the low-pressure and high-pressure
regimes has been discussed in terms of various criteria, which
define a diffuse but relative narrow region of`p/λ for which
the transition takes place.

At low pressure, the electronegative core can be
modelled by either a parabola or a truncated parabola,

depending on whether the local positive ion velocity does
not reach or reaches the local ion sound velocity, respectively.
At high pressure the central part of the electronegative core
become flattened, but the edges can still be modelled by
parabolic regions which have the same type of transition.
The key quantity isα− ≡ n−(`−)/ne0, increasing downward
on figure 1, withα− ' 0.5 at the transition. For either low
or high pressure an additional transition occurs atα− = 8.5,
independent of feedstock gas, where the electropositive edge
region essentially disappears.

Scalings have been obtained, in some of the more
important parameter regimes, giving the dependences of the
plasma quantities on the input parametersp`p andne0`p.
These are particularly useful in scaling results that have been
obtained from time-consuming numerical analysis, such as
PIC simulations, to other parameters. The scaling results
indicate that many of the important plasma quantities scale
similarly across the parameter boundaries, with only small
(order unity) changes in the coefficients which connect the
plasma quantities to the input quantities. For example, the
very important electronegative quantityα0 = n−0/ne0 scales
over the entirep`p–ne0`p parameter space approximately as
α0 ∝ (p`)p1/2(ne0`p)

−1/2, thus allowing reasonable good
values ofα0 to be obtained in any part of the space if one
value is known.

In applying the models and scalings, discussed in this
paper, some care must be exercised in relating the model
assumptions to the physical problem. We have already
discussed the inaccuracies resulting from using reaction rates
based on a Maxwellian electron distribution to compute
plasma quantities in situations where the plasma is not
Maxwellian. This was the case in the example of a low-
pressure PIC simulation for a parallel-plate rf discharge that
was used to illustrate the scaling. In that situation the
scaling could be used effectively, but the reaction rates had
to be adjusted first, on the basis of a point comparison,
before the scaling could be used to give accurate results.
However, with changes of pressure the distribution function
also changes, leading to varying reaction rates at a given
average electron temperature. This has been observed
experimentally in electropositive plasmas [21], and in PIC
simulations of electronegative plasmas [5, 6]. A more
complete analysis, including the electron kinetics from
which the non-Maxwellian electron distribution has been
obtained, has been performed for both electropositive and
electronegative plasmas [22].

Other assumptions that must be checked are: having
effectively a one-dimensional discharge and having only
three charged species. For example, in a discharge with
an oxygen feedstock gas, operated at high power, there can
be a substantial component of atomic oxygen ions. The
existence of such a significant fourth charged component
would modify all of the basic equations and consequently all
of the analysis. This situation has only been treated within
a global analysis in which there are no spatial variations of
the species [7]. There are probably interesting possibilities
of connecting multi-species global analysis with the three-
species, spatially-varying analysis presented here, but they
have not yet been explored. All real plasma devices have
more than one spatial dimension. The high-aspect-ratio case,
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treated here, reasonably well approximates many devices.
The other limit, of a long thin device, is also treatable by the
types of models considered here, but details have not been
worked out. For cylindrical plasma devices with the diameter
approximately the same as the axial length, there are certainly
differences in the quantitative relations between the plasma
quantities and the input parameters. How well the scalings
apply is yet to be explored.

Finally, we mention, again, that our models deal only
with the equilibrium, rather than the complete discharge.
For different types of excitation it is possible to understand
a more complete analysis, taking into account sheath
widths, ion energy lost in high-voltage sheaths, and other
input parameters such as applied voltages. This has
been extensively done for electropositive plasmas, including
scalings (for a review, see [18, ch 11]). The analysis here
can also be connected to the sheath dynamics to completely
specify the problem.
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Appendix A

We consider the edge scaling

vDi = 0i/ni (A.1)

and requirevDi > vthi , wherevthi = constant. From (2.20)
with recombination neglected

0i ∝ ngne0`p. (A.2)

Using (5.3), with̀ p/` ' constant, or (3.17) we take

α0 ∝ (ng/ne0)1/2
and consequently

ni ∝ α0ne0 ∝ (ngne0)1/2. (A.3)

Combining (A.1), (A.2), and (A.3),

vD ∝ (ngne0)1/2 (A.4)

which gives the boundary scaling between regions (1) and
(2) of ne0 ∝ n−1

g .
In contrast, at high pressure, there is a near balance

between ionization and recombination in the bulk, so that

0i ∝ ngne0d (A.5)

whered is the edge region thickness given from (3.16) as

d ∝ n−1/4
e0 n−3/4

g . (A.6)

Substituting (A.3), (A.5), and (A.6) in (A.1) gives

vD ∝ (ne0/ng)1/4 (A.7)

which gives a boundary between regions (3) and (4) of
ne0 ∝ ng.

Appendix B

Equating ionization to loss when0+w � 0+rec,

νizne0`p ' uB0hlne0 (B.1)

which forhl = a1/3, from (5.8), gives

νiz`p ' uB0

(
2νizλi
πuB0

)1/3

. (B.2)

Rearranging,

ν
2/3
iz '

u
2/3
B0

`
2/3
p

(
2λi
π`p

)1/3

(B.3)

substituting back intohl ,

hl '
(

2λi
πuB0`p

)1/3( 2λi
π`p

)1/6

u
1/3
B0 (B.4)

or finally

hl '
(

2λi
π`p

)1/2

. (B.5)
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