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Part I. Introduction. In 1910, von Karman (1) developed a nonlinear theory for
elastic plates by including the squares of the slopes of the deflected middle surface which
were neglected in the linear theory. A time-dependent version of the equations, which is
obtained by including inertia and damping terms, is studied here. Specifically, we
consider the buckling problem, with forces applied normally at the edges. For this
problem, the plane state, w = 0, is a solution of the static (time-independent) problem
for all values of the horizontal thrust X. It is the unique solution if X is less than some
critical value Ac . For thrusts beyond Xc the static problem admits additional solutions
(buckled states) which bifurcate from w = 0. Indeed, for thrusts beyond Ac the plane
state w = 0 becomes unstable and the plate buckles. We consider the dynamic (time-
dependent) problem to determine the stability of the static buckled states, the transitions
between these and their dependence on initial data. Our method is due to Matkowsky
[2, 3] and our approach to this problem will follow closely the work of Reiss
and Matkowsky [4] who considered the nonlinear dynamic problem for buckled columns
subjected to axial compression.

We consider the problem of a simply supported rectangular plate subjected to a
constant edge thrust X. We obtain a formal asymptotic representation of the solution
by a two time method [2, 3], One time scale, t, describes the initial behavior and the
second, of "slow" time Q = d (e <5C 1), is required to describe the long-time
large-amplitude response.

The response of the plate is approximated by the leading term in the asymptotic
expansion. This consists of a fast-time high-frequency secondary motion superposed
on a primary motion that depends only on d. The primary motion depends strongly on
the initial data. For the undamped plate, the primary motion is periodic and may be
either a polarized oscillation about one of the two static buckled states or a swaying
oscillation between the two static buckled states. When damping is present, the plate
always approaches one of the static buckled states as t —> °°. It may sway back and
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forth a finite number of times before the oscillations finally polarize about and damp
to one of the static buckled states.

We also consider the effect of larger damping. We use the same technique as described
in the preceding paragraph, but the longer-time large-amplitude time scale is now
given by 9 = tt. We now find that the primary motion monotonically approaches
one of the static buckled states, in contrast to the oscillations that occur for small
damping.

The authors would like to thank Professor Edward L. Reiss for suggesting the
problem to them and for his continued interest in this work.

2. Formulation. We consider a simply-supported rectangular plate whose middle
surface coincides with the X, Y plane. The undeformed plate occupies the region —h/2 <
Z < h/2, 0 < X < a, 0 < Y < b. It is assumed that the plate is thin, i.e. h « a or b.
The deformation is caused by applying a constant compressive force H normally at
the edges X = 0, a.

The deformations of the plate are assumed to be described by a time-dependent
form of the von Karman equations. These are two coupled nonlinear fourth-order
partial differential equations. Using subscripts to denote partial derivatives, we give a
dimensionless form of the equations as

A2w + \wxx = [/, w] — wu — Tw, , 0 < x < I, 0 < y < 1, t > 0, (2.1a)

A2/ = — \[w, w\, 0 < x < I, 0 < y < 1, t > 0, (2.1b)

w = Aw = 0, x = 0, I, 0 < y < 1, t > 0, y = 0, 1, 0 < x < I, t > 0, (2.1c)

w(x, y, 0) = G{x, y, t), 0 < x < I, ^ ^

w,(x, y, 0) = J(x, y, e), 0 < y < 1,

/ = A/ = 0, x = 0, I, 0 < y < 1, t > 0, y = 0, 1, 0 < x < I, t > 0. (2.1e)

The symbol [ , ] is defined as

[F, g] = Fxxgyy + Fvygxx - 2Fxygxy , (2.2)

I = a/6. (2.3)

The parameter X is called the load and r is a coefficient of damping. The initial data
are assumed to satisfy the boundary conditions (2.1c), and the parameter e is a measure
of the size of the initial data.

The solution of this problem is unique, as was proved in [5] by the method of energy
integrals.

3. Static theory. The linearized static problem yields the critical loads for which
bifurcation may occur. We confine ourselves to a statement of the results. For all values
of X,

w = 0, f = 0 (3.1)
is a solution to the linear static problem and is the only solution if

X ̂  X„ = (jJ [m + , m, n = 1, 2, • • • . (3.2)
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If X = Xm„, the problem also has the solutions

w(x, y) = wmn(x,y) = Amn<t>m.n(x, y) (3.3)

where

2 TtzLlzc
<t>m,n(x, y) = -jytsin-j-sinnlly, m, n = 1, 2, • ■ • (3.4)

and the Am„ are arbitrary constants. The quantities \m„ are called the critical thrusts.
We define

\c(l) — min Amn
m,n

= \ a + ir if i< i,

= [m + j^J if M < I < M + 1 and I2 < M(M + 1),

= j2 ((M + 1) + ^qrj)2 ^ M < I < M + 1 and I2 > M(M + 1), (3>5)

" 7 (M + £)' ' % (<" + « + if

where M is a positive integer.
Thus, we observe that the smallest eigenvalue is simple unless 12 = M{M + 1);

in that case, it has multiplicity two. In this paper, we assume that \c(l) is a simple
eigenvalue. The case of the multiple eigenvalue is treated in [6].

The nonlinear static problem is treated because it yields the possible shapes of the
buckled states for X > \c . Employing perturbation theory, which is essentially the
method of Lindstedt and Poincare, we find that

w = y) + O(t), (3.6)

/ = t X) <XmnAmnt<t>m,n(x, y) + 0(e3), (3.7)
m ,n= 1

X = \c(l) + e2X ± 2+ 0(e3), (3.8)
* Al m,n-l

where

^ [(n2/l2)2(m2 + nl2)2]-1, (3.9)

= (_M^I.1 ) <t>i . 1 ] ? <£m,n)

= 0 if m or n is even,

[ m'n - 'In - 2m2i
l5/2 L mn(vi — 4 i2)(n2 — 4)

■]'
(3.10)

if m and n are both odd,

and
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i = 1 if I < 1,

= M if M < I < M + 1 and l2 < M(M + 1), (3.11)

= M + 1 if M < I < M + 1 and I2 > M(M + 1),

where M is a positive integer. The inner product (<t>, <p) is defined by

(4>, </-)=( f H dx dy (3.12)
J 0 •'O

and the symbol [ , ] is defined by (2.2). The calculations which led to the above results
may be found in [5].

4. Nonlinear dynamic theory. We consider the nonlinear dynamic problem with
small but finite-amplitude data and with X slightly greater than Thus we define
a small parameter t by

X - XC(Z) = «2. (4.1a)

The parameter t is thus a measure of the nearness of X to Xc .We assume that

w(x, y, 0) = G(x, G^x, y)t , (4.1b)

wt(x, y, 0) = J{x, y, t) ~ X) J;(z, y)t ■ (4.1c)
i-i

We also assume that (?,(x, y) and ./,(x, y) can be expanded in a double Fourier sine series
with a finite number of terms. That is,

Nj

Gi(x, y) = Gimn(f>m,n(x, y) j = 1,2, ■■■ , (4.Id)
m ,n= 1

Nj

J i(pC) if) ^ > J j mn^m ,n(% i \j) j ^ ' * * . (4.16)
m, n= 1

Such data is termed quiescent. We assume that the damping is small, i.e.

r = eT, (4. if)

where y is independent of e. The case r = 0(1) is discussed later.
We hypothesize that the solution depends essentially on two time scales. One scale,

which we designate by t, describes the small-time behavior. The second scale, designated
by 6 describes the longer-time large-amplitude response. For this reason, we define the
auxiliary time 6 by

0 = tt. (4.2)

We seek a formal asymptotic solution of the nonlinear dynamic problem, valid as e
approaches zero, in the form:

oo

w(x, y, t, e) ~ X) Wu)(x, y, t, 6)t', (4.3a)
J=1

f(x, y, t, t) ~ Y, f"'(x, y, t, 6)t . (4.3b)
i = 1
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The expansions are formal since we do not prove the asymptotic nature of the solutions.
The expansion coefficients wU), /(,), j = 1, 2, 3, • • • , are assumed to be bounded functions
of all their arguments. They are determined by substituting (4.1)-(4.3) into (2.1) and
equating coefficients of the same power of e. Thus, we obtain for j = 1,2 • ■ ■

LwU) = -wxxu~2) + £ - 2wteu-v (44a)

— We— 7We{'~2) = Sf , 0 < X < I, 0 < X < I, t > 0,

A 2/(" = £ [«U), u><'-")] = q, , 0 <x<l, 0 < y < 1, t > 0, (4.4b)
^ «= 1

w"> = a wa) = f,n = A/<!> = 0,

x = 0, I, 0 < y < 1, t > 0, y = 0,1, 0 < x < I, t > 0, (4.4c)
Ni

w('\x, y, 0, 0) = X) GjmAm,n(x, y), j = 1, 2, 3, • • • , (4.4d)
m ,n= 1

Nj

w,n)(x,y, 0,0)= y), (4.4e)
m, « = 1

j/, 0, 0) + W u(z, 2/, 0, 0) = X) Jy), j = 2, 3, • • • . (4.4f)
n= 1

The sums in (4.4a) and (4.4b) are defined to be zero if j = 1 and wU) = /(,) = 0 when
j < 0. The linear differential operator L is defined by

LwU) = A V" + K(l)wJn + wttU). (4.5)

To determine wn) and we set j = 1 in (4.4). Then
CO

wn\x, y, t, e) = X) e)<l>n,n(x, y), (4.6a)
m ,n = 1

where for each m, n = 1, 2 • ■ • , the coefficients A ,mn satisfy

(Almn)„ + (Xmn - \c(l))A= 0, (4.6b)

4-1mn(0, 0) = Glmn , (-41mn)i(0, 0) = J\mn . (4.6c)

Thus, we find that

-41 mn = fllil(9)« + 6l£l(0)

= almn(e) sin Wmnt + blmn(e) cos com„<

if m ^ i and n ^ 1 simultaneously, where

i2tt2

t

(4.7a)

2 = ^ (X„„ - X.(0), m * t, n*l, (4.7b)

and i is defined in (3.11). The functions almn{9), blmn(d), m,n= 1, 2 • • • are to be deter-
mined. Since wn> is to be a bounded function of all its arguments, we conclude that
ciui(d) = 0. This latter condition requires us to make a restriction on our initial data,
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namely

ffm = 0. (4.7c)

We define

6(0) b bui(8) (4.8a)

and we have

6(0) = Gui ■ (4.8b)
The other initial conditions are

Oi,»n(0) = if 1 < m < Nr , I < n < Nj ,

= 0 if m > Nt , n > Nl , ^ ^

bimn(0) = Glm„ if 1 < m < Nr , 1 < n < ArI ,

= 0 if m > N, , n > .

The solution /a> of (4.4b, c) with j = 1 is given by

/(1) = 0. (4.10)

We note that (4.4a) with j > 2 is an inhomogeneous form of (4.4a) with j = 1. A
necessary condition for the existence of a bounded solution for j > 2 is that the functions
Sj satisfy the orthogonality condition

{s, , ww ( = lim ̂  f f f s,w>(1> dy dx dt = 0, j = 2, 3 • • • . (4.11)
T —*oo 1 J o J 0 Jo

To determine the second term in the expansion for w we set j = 2 in (4.4a), (4.4c),
(4.4d) and (4.4e) with /u> given by (4.10). Substituting w'1', which is given by (4.6a)
and (4.7a), in the expression for s2 , we find that

oo

^2 ^ ' ^win[ (2(oimn)(j y&imn) cos o)mnt (2(6imn)g yb\m„) sin comnt\<f>miTt . (4.12)
m, n= 1

Then the orthogonality condition (4.11) implies that

(®lmn)l) ~~l~ mn 0,

(blmn)e + = 0, m 9^ i and n ^ 1 simultaneously.

Solving these equations and using the initial conditions, we obtain

(4.13a)

where

N,

Wm = b(d)<t>i,i(x, y) + X) Tmn(f, t)<t>m,n(xy) (4.13b)

Jmn(6, t) = exp (—fyfl^^^sinccmnt + G'lmn coswm„<f (4.13c)I ow

with

6(0) = Gul , 6,(0) = JXil . (4.13d)
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Then wm is given by

wm = y) + X) [awXfl) sin + 62m„(0) cos umnt]<t>m,n(x, y)- (4.14)
m ,n= 1

Note that w(1> is still not completely determined since we do not know b(ff). To
find the equation satisfied by 6(0), we consider (4.4a) with j = 3. Since /<2) appears in
that equation, we first solve for it. Setting j = 2 in (4.4b) and (4.4d), with ww given
by (4.13b), we solve for /(2> as

CO CO AT,

/l2) = (6(0))2 X PiXi\krOtkr<t>k,r{x, y) + 26(0) 2 ymnPmnilkrakr<t>k,r(X, y)
k.r-1 k.r-1 ..,-1 (4.15)

CO N i

~f~ ^ ^ > Pmnpqhr'ymriYpQ&kr&k ,r(%j 1j)
k , r =• 1 m ,n= 1

V.Q = 1

where is defined in (3.9), and

Pmnvakr = ~ I (famn , <t>v. «L <t>k , r) ■ (4.16)

The initial boundary-value problem for w(3) is obtained by considering (4.4a), (4.4c),
(4.4d) and (4.4e) with j = 3 and with /(1) given by (4.10). The inhomogeneous term s3
depends on 6(0), almn(0), a2mn(d), blmn(6) and 62m„(0). Applying the orthogonality con-
dition (4.11), we find that 6(0) must satisfy the nonlinear ordinary differential equation

bee + 7be + b\ p ^ . ) , ( '""j + (Glm„)2
(4.19a)

7 be + b\-^f + ± t (M2
I  ' k ,r = \ m ,n=\ \ & mn '

• exp ( yd)aicr(2PmnmnkrPiliiicr 4:Pm„nkr) b' 2atrP«nitr = 0
J *,r = l

with initial conditions given by

&(0) = Gui , 6(0) = ./2,i . (4.19b)

We refer to the differential equation (4.19a) as the amplitude equation and the
initial-value problem (4.19) as the amplitude problem. When this problem is solved,
ww is completely determined.

Applying the orthogonality condition (4.11) to the other terms in s3 yields equations
which determine a2ra„(0) and 62„„(0). To evaluate 62il(0) and thus completely determine
ww, it is necessary to go to the fourth term in the expansion of w. We will not present
these results. Instead, we will study the approximation given by w(1).

We call the term Gul<j>iA(x, y) in the initial data the primary data. The remaining
terms are called the secondary data. The slow-time standing wave 6(0)$,A(x, y) is
called the primary motion. The rest of ww will be called the secondary motion.

5. Amplitude problem. The amplitude problem (4.19) is similar to one analyzed in
[4], The two problems differ only in the coefficients of the equation and the initial data.
Therefore the conclusions of [4] hold with the obvious modifications due to changed
constants. Here we shall only summarize the results.

We first consider the amplitude problem with 7 = 0 and monochromatic data

b„ + K,(-l + M,262)6 = 0, (5.1a)
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b(0) = Gui , 6.(0) = J,n , (5.1b)
where

M.2 = 2 aUPiu^r)2, Ki = ^ (5.1c)
* W A,r = l *

and i is given by (3.11). We find that there are three singular points in the phase plane
(6, b,). They are

b = be = 0, (5.2a)

b — 0, bg = =fc , (5.2b)
Mi

which represent the unbuckled state and the two static buckled states respectively.
The singular point (5.2a) is a saddle point and the singular points (5.2b) are centers.
We define the constant H as

H = J2il2 + Kii-l + iG141V)Gi«2 (5.3)

and note that the curve with H — 0, which is usually referred to as the separatrix,
passes through the origin. If H < 0 then there are two branches of closed curves. Each
curve contains one of the singular points (5.2b). Therefore for H < 0, b{6) is a periodic
function of one sign. The plate will then oscillate periodically about one of the static
buckled states that branch from Xc(l). This is referred to as the polarized mode of vibra-
tion.

For each H > 0, we have a closed curve that contains the three singular points
(5.2). Thus 6(0) is a periodic function that changes sign twice in each period. Therefore
the plate sways between a neighborhood of each of the static buckled states that branch
from XC(Z) and passes twice in each period through the unbuckled state. This is referred
to as the swaying mode. If H = 0, then lim,_«, w(x, y, t) = 0.

Employing the definitions of strong (weak) nonlinear stability and nonlinear in-
stability used in [4], we see that the unbuckled state is nonlinearly unstable when H < 0.
For H > 0, the buckled state has weak nonlinear stability with respect to the data
(5.1b). For H = 0, we see that the buckled state has strong nonlinear stability with
respect to data (5.1b). It is thus obvious that when 7 = 0 the nonlinear stability of the
buckled state depends on the sign of H.

We now consider monochromatic data with 7 > 0. The singular points are again
given by (5.2). The origin is a saddle and the singularities (5.2b) are stable spirals (stable
nodes) if y2 — (Bi2U2/l2) < 0 (> 0). For simplicity, we consider only stable spirals.
For any initial data not on the separatrix, the solution is "captured" by one of the
singular points (5.2b) when t —* <*>. Thus the unbuckled state is nonlinearly unstable.
For and |J2.i| sufficiently small, the notion is polarized about one of the unbuckled
states for all t > 0 and is captured by this state as t —» 00. For |(V,,,| and |./2,i| suffi-
ciently large, the motion consists in a swaying between the two static buckled states
for a finite time and then becomes damped to one of the static unbuckled states. The
final state need not be the one nearest the initial point.

We next consider the case of nonmonochromatic data with zero damping. We define
the quantity
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= -Ki + t, £
k ,r = l m,n = 1

(—Y + (Glm„)2|(2Pm„m„trPilntr - 4Pm„iltr2). (5.4)
. » ̂ mn • —I

If £. > 0 then the origin b = be = 0 of the phase plane is the only singularity and it
is a center. Under these circumstances 6(0) is a periodic function. Thus the primary
motion is a periodic motion of the slow time 8 about the unbuckled state. If e and the
amplitude of the secondary motion are sufficiently small, we conclude that the unbuckled
state is nonlinearly stable with respect to the data (5.1b).

If £. < 0, then the three singular points are

b = bs = 0, (5.5a)

b = ±b0, V = 0, b0 = (1 /^(UK,)1'2 (5.5b)

The singular point (5.5a) is a saddle point and the singular points (5.5b) are centers.
The origin corresponds to the unbuckled state and the points (5.5b) correspond to two
buckled states.

If \GUI\ < 0/V.){ —2£i/Ki}1/2 the primary motion is a slow-time periodic standing
wave. It is polarized about the static buckled state b = b0( — b0) if Gul > 0 (< 0).
According to our definitions, the unbuckled state is nonlinearly unstable. If |GUi| >
(l/^i){—2£i/KI}1/2, the primary motion is a slow-time periodic wave in the swaying
mode. Thus if t and the amplitude of the secondary motion are sufficiently small, the
unbuckled state is nonlinearly stable with respect to that data. On the separatrix the
primary motion monotonically approaches the unbuckled state as 6 —» <».

For arbitrary initial data and y > 0, the secondary motion is a slowly damped super-
position of fast-time periodic standing waves for 6 sufficiently large and < 0. Thus,
for large 6, the qualitative behavior is similar to that discussed when y > 0 with mono-
chromatic data. Depending on the magnitude of Gu i , the primary motion for small 6
will be either in the polarized mode or the swaying mode. For sufficiently large 6, the
primary motion will be in the polarized mode and lim„^oo b(9) = ±60 . The final state
need not be the same as that attained in the monochromatic case. Thus, the unbuckled
state is nonlinearly unstable for X > \c(l) and each of the buckled states branching
from \c(l) is also unstable even though these states are linearly stable, i.e. stable to
infinitesimal perturbations. The static buckled states considered as a pair are dynami-
cally stable for sufficiently small disturbances since the solution always approaches
one of them as t —> co. It should be noted that the final state need not be the one nearest
to its initial value.

6. The effect of greater damping. To see what the effect of damping is on the
solution, we now consider the case when

r = 0(1). (6.1)
Otherwise, the assumptions are the same as those of Sec. 4. We will see that this causes
a qualitative change in the motion of the plate.

We again assume that the solution depends upon two time scales; however, the
longer-time large-amplitude time scale 6 is now defined by

6 = e2t. (6.2)

We seek a formal asymptotic solution of problem (2.1), valid as e approaches zero, in
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the form (4.3a, b) with 9 given by (6.2). Substituting (6.1), (6.2) and (4.3) into (2.1)
and equating coefficients of each power of «, we obtain a system of equations for the
coefficients wU)(x, y, t, 9) and f'\x, y, t, 9). We shall not present the calculations here
and shall merely state some of the results. The calculations may be found in [5].

The leading term in the expansion of w is given by (4.6a) where now the coefficients
Alm„ satisfy

(-41 tnn) 11 + r(Alm„), H j2 O^mn ~ ^c(l)) A J mn = 0, (6.3)

Blmn( 0, 0) = G lmn (B tmn) ,(0, 0) = J Imn-

subject to the initial data (4.6c). Thus we find that

Almn(t, 9) = an{9) exp (-Tt) + bn(9) if m = n = 1, ^ ^

= exp (—iTt)(almn(6) sin umJ + blmn(9) cos wmnt),

a,i(0) = (-Jui/T), 6„(0) = GU1 + (Jui/T), (6.4b)

T -I- irr
(0) = ^ if m ^ i n 96 1, m,n <N> ,

COmn

= 0 if m, n > Ni ,

blm„(0) = Glmn if ffl^t,(i^l, m,n < Ni ,

= 0 if m, n > ,

where u>mn is defined in (4.7b) and i is defined in (3.11). The coefficients almn(9), blmn(9),
an{9) and bn(d) are to be determined. Since all of these coefficients except ba(9) are
exponentially damped, it will be our principal task to determine bn(9).

We find that bu(9) satisfies

(M. - (btl - \,mb„3) = 0 (6.5)

where X,<2> is the 0(e2) term in (3.8). The solution of this first-order ordinary differential
equation subject to the initial conditions (6.4b) is

GUi exp (tf')

where

n = l/Gui2. (6.7)

Thus bn is a monotonic function which, as 9 becomes infinite, approaches the constant
±(X,<2>)~1/2 which are the equilibrium points of (6.5). These represent the static buckled
states when T = 0(1). Thus the leading term in the expansion describes a stationary
state whose dependence on the initial data is one of sign only.

Finally we mention that the buckling problem for a circular plate was also considered

(6.6)
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and results similar to those above were obtained. The detailed calculations can be
found in [5],
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