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Abstract Climate-induced changes in vegetation phenology

at northern latitudes are still poorly understood. Continued

monitoring and research are therefore needed to improve the

understanding of abiotic drivers. Here we used 14 years of

time lapse imagery and climate data from high-Arctic

Northeast Greenland to assess the seasonal response of a

dwarf shrubheath, grassland, and fen, to inter-annual variation

in snow-cover, soil moisture, and air and soil temperatures. A

late snowmelt and start of growing season is counterbalanced

by a fast greenup and a tendency to higher peak greenness

values. Snow water equivalents and soil moisture explained

up to 77% of growing season duration and senescence phase,

highlighting that water availability is a prominent driver in the

heath site, rather than temperatures. We found a significant

advance in the start of spring by 10 days and in the end of fall

by 11 days, resulting in an unchanged growing season length.

Vegetation greenness, derived from the imagery, was

correlated to primary productivity, showing that the imagery

holds valuable information on vegetation productivity.
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INTRODUCTION

Vegetation growth and phenology are important indicators

of climate change on both plant level (Cleland et al. 2012)

and global scale (Walther 2010). Significant shifts in the

timing of annual phenological events have been reported in

monitoring studies based on satellite data (Jeong et al.

2011), as well as in in situ observation data on flowering

and growing season length (Kerby and Post 2013). Such

shifts in seasonality, and the duration of the individual

seasons, can have important consequences for the func-

tioning of ecosystems and ultimately on the carbon cycle

(McGuire et al. 2009). Understanding the seasonality in

relation to climate can thus be a key to an improved

understanding of ecosystem response to a warmer climate

(Richardson et al. 2013), including biologically driven

fluxes of greenhouse gases (Menzel 2002).

Several studies have found Arctic ecosystems to be

particularly sensitive to shifts in air temperature (Hinzman

et al. 2005; Post et al. 2009), which again influence the

vegetation functioning and phenology (Oberbauer et al.

2013; Høye et al. 2013). During the last two decades,

vegetation phenology in the Arctic has been monitored

using both in situ field measurements focusing on seasonal

dynamics in growth (Ellebjerg et al. 2008; Michelsen et al.

2012) and its linkage to CO2 exchange (Kross et al. 2014).

In parallel, Arctic vegetation has been monitored from

satellites (e.g., Zeng et al. 2011), allowing for regional-

scale studies. Regional studies report an increase in

growing season length from both an advancement of the

start of the growing season and a postponed senescence

(Zeng et al. 2011), and an increased productivity both

regionally (Walker et al. 2006) and locally (Tagesson et al.

2012), although the regional greenness has recently been

reported to be declining during 2010 to 2013 (Epstein et al.

2015). However, a meta-analysis by Oberbauer et al.

(2013) did not find a general advancement of the start of

the growing season based on studies from 12 different

Arctic and alpine sites. In addition, it is still uncertain how

the relationship between warming and vegetation greening

in the Arctic is affected by other variables such as water

and nutrients (Xu et al. 2013). Thus, how vegetation
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growth and ecosystem productivity respond to climate

seems highly variable and needs to be addressed at several

scales.

The use of repeat photography to detect seasonal vari-

ations at a sufficient spatiotemporal resolution has become

an increasingly applied tool, also in systems with high

spatial heterogeneity such as the alpine and Arctic regions.

The technique has been successful in capturing snow-cover

fraction and distribution (Bernard et al. 2013), phenology

in a wide variety of ecosystems based on a vegetation

greenness index (Graham et al. 2010) and a combination of

both (Buus-Hinkler et al. 2006; Ide and Oguma 2013).

Moreover, derived vegetation greenness from camera

images may serve as a good proxy for ecosystem produc-

tivity (Westergaard-Nielsen et al. 2013). Consequently,

digital cameras provide valuable high spatiotemporal res-

olution data in the assessment of ecosystem responses to

climatic changes.

In this study, we evaluate the phenological response,

expressed as the timing of transitions and durations in

vegetation greenness, of three high-Arctic plant commu-

nities in relation to snow-cover and temperature. We also

evaluate the relationship between vegetation greenness and

ecosystem productivity over several growing seasons. The

study is based on a time series of digital camera images,

eddy covariance measurements, and in situ climate data

(air and soil temperature, soil moisture, density and depth

of snow) from high-Arctic Zackenberg during the years

2000–2013. We hypothesize that snow-cover fraction and

end-of-winter snow water equivalents (SWEs), both

directly and indirectly, are dominant drivers for seasonal

shifts in vegetation growth, followed by temperature

changes. We also hypothesize that plant communities

responds to inter-annual variation in ambient weather

conditions by adjusting growing season length and activity

(derived from vegetation greenness) during the start and

peak of the growing season rather than during late season.

MATERIALS AND METHODS

Site description

The Zackenberg valley is situated at 74�280N, 20�340W,

Northeast Greenland. The surroundings are mountainous,

extending from Zackenberg Mountain at 1400 meters

above sea level (m a.s.l.) to slopes and cliffs between 800

and 200 m a.s.l. Below 200 m a.s.l., the topography is

flatter and cut through by former and existing rivers

(Fig. 1). The Zackenberg valley covers an area of 30 km2

on the north side of Young Sound. The majority of vege-

tation grows in the flat valley below 200 m a.s.l. Despite

the proximity to the Greenland Sea, the climate can appear

continental with low humidity and high temperature fluc-

tuations due to the build-up of sea ice. Annual mean

temperature (1996–2014) is approximately -9.0 �C with

July as the warmest month (6.3 �C) and February as the

coldest at -19.8 �C (Jensen and Rasch 2014). The annual

precipitation is\250 mm, of which approximately 85 %

falls as snow. Maximum snow depth, measured from

1997–2014 by automated sensors in the valley, varies from

0.13 m (winter 2012/2013) to 1.44 m (winter 2014/2015).

The spatial distribution of snow is consistent from year to

year due to a predominant wind direction from the North

during winter (Hansen et al. 2008). Long-term monitoring

data from Zackenberg are available through the extensive

cross-disciplinary ecological monitoring program (ZERO,

www.zackenberg.dk) by Greenland Ecosystem Monitoring

(GEM).

The study is focused on four regions in the lower part of

the Zackenberg valley within the field of view of a single

camera (see Table 1; Fig. 1). Within the camera field of

view of approximately 15 km2, Cassiope-dominated heath,

Dryas-dominated heath, and fens with Eriophorum cover

10–14 % each. Grasslands dominated by graminoids cover

up to 40 % and snow beds (with deep late-winter snow

depths) with Salix, Vaccinium, and Alopecurus, cover 20 %

(Elberling et al. 2008). The four regions were thus

demarcated from a rationale to capture a variety of the

most abundant plant communities in Zackenberg as well as

a representation of plant communities growing in low to

medium and high soil moisture, respectively, to capture

possible variability across a moisture gradient (Bay 1998).

Moreover, two fen areas were included to assess the effects

of differences in the timing of snowmelt resulting from

differences in winter snow accumulation.

Water availability in the growing season is expected to

impact the growing season dynamics due to the limited

precipitation in Zackenberg. Here we used annual SWE and

soil moisture as descriptors of water availability for the

whole-growing season since the pre-melt snow pack is the

main contributor of water through the growing season

(Hansen et al. 2008). Continuous measurements of SWE and

soil moisture conditions were only available for region 4.

Image data and processing

Cameras

RGB (red–green–blue) multispectral broad band data were

obtained from digital cameras mounted at 400 m a.s.l. on

an east-facing slope of the Zackenberg Mountain. The

cameras overlooking the valley were mounted with a hor-

izontal tilt angle of 15� with varying pixel resolutions

(Table S1). The cameras obtained a daily image at noon,

local winter time (UTC), covering an area of
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approximately 15 km2 (Table S1). Images from camera 1

were converted from a native KDC format to JPG using

reaConverter (reasoft). Images from cameras 2 and 3 were

natively stored as JPG by the camera firmware, as this was

the only option. All JPG images used the standard 24-bit

format, i.e., 8 bits per color channel with digital numbers

(DNs) from 0 to 255. Replacement camera systems were

installed continuously when malfunction occurred, as well

as for improved image quality. All systems were mounted

in weatherproof boxes with a window of low-iron glass to

avoid a green cast and powered by batteries and solar

panels.

Processing

To detect snow and vegetation greenness, the annual time

series of images were manually looked through and filtered

for low-quality data (winter darkness, fog, precipitation,

and heavy shadows), resulting in an average of 71 images

per growing season covering a period from late May to

mid-September. Year 2005 was omitted due to severe data

gaps resulting from camera malfunction. The images were

processed in a custom Matlab (MathWorks Inc.) script

which imported the JPG images as individual RGB chan-

nels using the built-in image import tool. The regions were

Fig. 1 Field of view of the camera located at Zackenberg in high-Arctic Greenland. The regions of interest were selected to capture three
dominating plant communities and regions with variation in the timing of the respective snow-free dates. The area is situated approximately
500 m north of Young Sound

Table 1 Overview of the studied regions. Average snow-free date is expressed as average day of year (DOY) with\20 % of the surface covered
with snow. Average date was based on data from 2000 to 2013. Vegetation classifications were conducted as quadrat point analyses following the
ITEX standard (Bay 1998)

ROI Characteristics

High soil moisture

1 Fen dominated by Arctagrostis, Eriophorum scheuchzeri, Polygonum spp, and mosses. Average
snow-free date: DOY 157

2 Fen dominated by E.scheuchzeri, Carex stans, and Dupontiapsilosantha. Average snow-free date:
DOY 169

Medium–low soil moisture

3 Grassland dominated by C. bigelowii, C. capillaris, and E. triste. Spread Salix arctica individuals.

Average snow-free date: DOY 166

4 Heath dominated by Cassiope tetragona, S. arctica, and Vaccinium uliginosum. Average snow-free
date: DOY 170
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demarcated by manually defined masks. Within the masks,

pixels with snow were classified using a dynamic threshold

(Salvatori et al. 2011) based on average gray level DN

from all RGB channels ((R ? G?B)/3). The threshold

function finds local histogram minima using the Matlab

‘‘findpeaks’’ function. For images without an automatically

detectable threshold, we used a manually set base thresh-

old. The initiation of snowmelt was set as the day of year

(DOY) with 90 % snow-cover fraction in a region; it was

considered snow-free when less than 20 % of the pixels

were classified as snow-covered. Accordingly, the DOY for

less than 20 % was denoted end of snowmelt (Fig. 2a, b).

Pixels classified as snow-covered were subsequently

masked away. Vegetation greenness was computed for

pixels not covered by snow as the green chromatic coor-

dinate (GCC):

GCC ¼ GDN=ðRDN þ GDN þ BDNÞ; ð1Þ

where DN is the digital number describing the 8-bit gray

level intensity in a range from 0 to 255, and R, G, and

B correspond to the red, green, and blue spectral bands,

respectively. The GCC has been shown to correlate with

NDVI in time and space (Richardson et al. 2007; Wester-

gaard-Nielsen et al. 2013) and time series of GCC has

consequently been used in an increasing number of studies

of temporal transitions in plant phenology (e.g., Ide and

Oguma 2013; Sonnentag et al. 2012). Time series of snow-

cover fraction and GCC data were then used for further

analyses.

Estimating transition dates

Various methods have been proposed to derive dates for

significant shifts in data time series describing vegetation

phenology, including absolute thresholds, derivatives,

model fit, and transformations (de Beurs and Henebry

2010). In this study, the relative and not absolute GCC

data, produced from different cameras, preclude the use of

fixed thresholds because different cameras respond differ-

ently to the visible wavelengths of light. Nevertheless,

Fig. 2 a Conceptual plot of a fitted double sigmoid model and the corresponding transitions dates. Also depicted is snow-cover fraction,
including the start of snowmelt and end of snowmelt. b Durations between transition dates and corresponding denotation. Snow melting = end of
snowmelt - start of snowmelt; Post-melting = start of spring - end of snowmelt; Greenup = end of spring - start of spring; Peak

season = start of fall - end of spring; Greendown = end of fall - start of fall
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Sonnentag et al. (2012) found an acceptable error between

camera models when extracting transition dates as relative

points based on the curvature of a model fitted to the time

series of GCC data. Earlier studies have suggested the use

of second-order polynomials when modeling high-Arctic

vegetation greenness (Buus-Hinkler et al. 2006; Tamstorf

et al. 2007); however, such models fail to describe potential

differences in the duration of greenup and senescence, i.e.,

skewed phases. Sigmoid fit models offer a better repre-

sentation of such differences, while still utilizing all pos-

sible data (Zhang et al. 2003). Moreover, they have been

found to be robust to the addition of random noise (Fisher

et al. 2006). Transition dates were therefore derived from

double sigmoid models fitted to the beginning and end of

each growing season, respectively. Each sigmoid model

can be expressed as follows:

y tð Þ ¼ c =1þ eaþbt
� �

þ d; ð2Þ

where t is the time; a and b are the parameters determining

the timing of curvature increase or decrease; c is the

amplitude; and d is the initial value of y. Six dates

describing start of spring, middle of spring, end of spring,

start of fall, middle of fall, and finally end of fall were

identified by analyzing the rate of change of curvature in

the sigmoid models (Fig. 2a; Klosterman et al. 2014):

k ¼ f 00 tð Þð Þ= ð1þ f 0 tð Þð ÞÞ
2

� �ð3=2Þ
ð3Þ

where k is the curvature and f are the sigmoid functions at

time step t. In addition, the peak of season timing was

defined as the time of maximum GCC from the curve fit. If

the maximum GCC occurred for more than one day, the

average time was selected to represent peak of season

timing. The sensitivity of the transition dates was evaluated

using 100 Monte Carlo samplings of the model parameters

(using Matlab) of the fitted sigmoid functions. The inner 90

% range was then used as confidence intervals; see

Klosterman et al. (2014).

Climate and monitoring data

Climate data

Robust year-round precipitation data in the studied period

are scarce in Zackenberg. However, the majority of the

precipitation falls as snow, and we therefore estimated the

annual SWE as the water available for plant growth assum-

ing no prior snowmelt. SWE was calculated from manually

collected snow densities and snow depth. Snow density

(g cm-3) samples were collected in the period from maxi-

mum snow depth until onset of spring snowmelt in May–

June during the years 2004–2013. The annual end-of-winter

snow bulk density was estimated frommetal tube samples of

20 cm height in snow pits dug on the heath-covered valley

floor in proximity to the main climate station (74�2802000,

20�3300800, 38 m a.s.l.) or samples made with a Standard

Federal Snow Sampler (Clyde 1932) in the same area. The

snow depth used in the SWE calculation was derived from

total depth of the snow pit or the length of the snow sam-

ple/core in the Snow Sampler. SWE was determined as the

product of the snow bulk density and snow depth divided by

the density of water. The sample size of the annual end-of-

winter SWE estimations ranges from 1 to 6 observations

(Pedersen et al. 2016). SWEs in 2000–2003 were extrapo-

lated from measured end-of-winter snow depths from an

automated snow-depth sensor at the main climate station,

using a linear model fit between SWE and snow depths based

on observations made in 2004–2013.

Air temperatures were measured 2 m above terrain level at

hourly frequency at the main climate station, and were

expected to be representative for all the analyzed regions since

they are located at similar elevations andwithin amaximumof

1.5 km from the climate station. Soil temperature data at 5 cm

depth were available from 2000 to 2013, measured at a Salix-/

Cassiope-dominated heath near the main climate station. Soil

moisture data at 10 cm depth were available from 2004 to

2013 as bi-weeklymeasurements of volumetric water content

from a mixed heath site in proximity to region 4. Incoming

shortwave radiation at hourly frequency from 2000 to 2011 is

likewise expected to be representative for all regions. Exact

instrumentation and protocols for temperature logging, soil

moisture measurements, and radiation measurements are

described in the annual ZERO reports.1 The area west of the

Zackenberg River is not represented directly with soil tem-

perature and moisture, as the area has been impossible to

access frequently due to the highbaseflow in the river. Instead,

camera data are available allowing for the inclusion of areas

west of the river in this study.

Ecosystem productivity

Measurements of the net ecosystem exchange of CO2

(NEE) using the eddy covariance technique have been

conducted since 2000 at the Cassiope-dominated heath site

in Zackenberg, i.e., within region 4. Until 2007, the eddy

covariance system consisted of a closed path infrared gas

analyzer LI-6262 (Li-Cor Inc., USA) and a 3D sonic

anemometer Gill R2 (Gill Instruments Ltd., UK). In the

autumn 2007, the instrumentation was upgraded to a LI-

7000 (Li-Cor Inc., USA) and a Gill R3 (Gill Instruments

Ltd., UK). The two systems were running in parallel during

two autumn months, and no significant differences were

found between the obtained CO2 fluxes. Gross primary

production (GPP) was derived from the NEE

1 Available from www.zackenberg.dk.
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measurements using a light response curve approach.

Details on the eddy covariance measurements, data pro-

cessing, flux footprint, and flux partitioning can be found in

Lund et al. (2012). Modeled daily averages of GPP were

subsequently regressed on daily GCC within region 4 to

link the camera imagery to quantified in situ measurements

of ecosystem productivity.

Statistics

Statistical analyses of correlations and trends between the

growing season (as inferred from the camera imagery) and

the ambient biotic and abiotic conditions were computed

with the Statistical Analysis System (SAS Institute), using

ordinary least squares linear regressions and generalized

linear models.

RESULTS

The terminology in this section is based on Fig. 2a, b. An

event occurring relatively earlier in time is denoted as an

advance. Events occurring relatively later in time are

referred to as a postponement.

Snow-cover

There was no significant advancement of end of snowmelt

during the studied period. We did not, however, linearly

correct for leap years, meaning that an uncertainty could

theoretically be resulting from this. The longest snowmelt

duration (i.e., days from 90 % to\20 % snow coverage)

was seen for regions 1, 2, and 4 (average of 9.5 days,

SD ± 4.1), and the shortest for region 3 (average of

7.5 days, SD ± 1.9). Region 1 (i.e., early snow-free fen)

had the longest post-melting duration on average, equaling

11 days (Fig. 3; Table 2). In contrast, the shortest post-

melting duration was seen for the other fens, region 2.

Phenological transitions

The biotic transition dates are defined as start of spring

(SOS), middle of spring, end of spring, peak of season

timing, start of fall, middle of fall, end of fall (EOF); see

Fig. 2b. The 90 % confidence interval of the transition

dates resulting from the Monte Carlo samplings were on

average ?3.5 and -3.6 days, i.e., the sensitivity was a

week for all transition dates on average. SOS dates were

estimated within ?3.9 and -2.4 days, and EOF within

?4.4 and -6.0 days.

SOS, i.e., start of spring (Fig. 2b), occurred between

DOY 154 and 190 with an average of DOY 173 (22 June,

SD ± 9.7) for all the regions. EOF was on average 73 days

after SOS (2 September, SD ± 8.2), ranging from DOY

226 to 265. Peak of season timing occurred between DOY

192 and 220. The earliest peak of season timing for all

regions was observed in year 2013, which had very limited

snowfall and consequently a dry growing season. Inter-

estingly, the SD for the timing of the peak season was the

lowest for the transition dates illustrated in Fig. 3, followed

by EOF. End of snowmelt and SOS showed the greatest

variation both in time and space of the illustrated transition

dates.

There was a statistically significant advancement of SOS

of 10 days averaged for all regions (R2
= 0.10; P = 0.021)

during the study period, with no significant difference

between the regions (p = 0.84). The EOF also advanced at

a similar rate during the 14-year period (11 days on aver-

age, R2
= 0.19; P = 0.0012), with no difference between

the regions. The net result was consequently an unchanged

Fig. 3 Average transition dates in the period 2000-2013 for the four regions. Error bars showing standard deviation of the transition date over the
13 measured years
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growing season length. The longest greenup duration, i.e.,

days between SOS and end of spring (Fig. 2b), was

observed for region 1 (fen with early snowmelt). The

longest peak season duration, i.e., days between end of

spring and start of fall, was seen for the driest region 4.

Regions 3 and 4 had the lowest peak GCC on average,

resulting from a flatter peak season period as modeled by

the sigmoid functions. Hence, the plant communities in

regions 3 and 4 have species with lower greenness (and in

region 4, more consistent greenness). Average greendown

duration for the regions (the period from start of fall to

EOF) was 27 days for regions 3 and 4, and four to five days

longer in regions 1 and 2 (Fig. S1).

Snow-cover, soil moisture, and transition dates

We found the timing of end of snowmelt to be significantly

correlated with SOS (P\0.005), (Table 2) and EOF

(Table 3). The correlations were significantly different

between the regions (Table 3, see result for region*end of

snowmelt, regarding SOS). Generally, a late end of

snowmelt resulted in short greenup durations (e.g., year

2002) and relatively longer greendown durations (Fig. S2).

Years with late snowmelt, and consequently late SOS,

usually had late EOF. The relatively snow rich years 2008,

2010, and 2012 all had later EOF compared to the years

2009, 2011, and 2013 with less snow (Fig. 4).

We correlated the average soil moisture vol% from

10 cm depth in July with EOF and greendown duration,

respectively, in region 4, to evaluate the effect of soil

moisture during mid-growing season on the late season

vegetation growth. The timing of EOF was significantly

correlated to the average July soil moisture (R2
= 0.77;

P = 0.002, Fig. 5) as well as with the greendown duration

(i.e., period between start of fall and EOF) (R2
= 0.45,

P = 0.047). Consequently, years with moist July conditions

have longer senescence phases and a later end of fall, and

vice versa. The soil moisture isolated did not explain the

growing season duration or the peak value in GCC (of

which the latter was normalized to values between 0 and 1

to allow comparison between cameras). However, a com-

bination of SWE and July soil moisture explained 72 % of

variations in growing season duration (R2
= 0.72,

P = 0.022).

Temperature and transition dates

Below-zero temperatures in the autumn were expected to

accelerate senescence, and thus affect the duration of the

greendown period. However, we did not find a correlation

between degree days freeze (i.e., the sum of daily mean

temperatures below 0 �C) in the autumn months August/

September and greendown duration. The timing of the first

occurrence of daily air temperature averages below 0 �C in

Table 2 Linear ordinary least squares regression between end of snowmelt (\20 % snow-cover) and start of spring (SOS). ‘End of snowmelt to
SOS’ refers to days between the two variables. All correlations were statistically significant with a P value\0.005

Region R2 Slope RMSE End of snowmelt
to SOS in days

Stdev. of End of
snowmelt to SOS

1 0.60 0.68 5.32 10.5 5.86

2 0.79 0.67 3.74 5.6 4.89

3 0.84 1.23 4.22 6.2 4.41

4 0.92 1.00 3.19 6.1 3.05

Table 3 Generalized linear model analysis of correlation between (1) end of snowmelt/start of spring (SOS), and end of snowmelt/end of fall
(EOF), respectively, and (2) greenup duration and greendown duration response to the predictors SOS, EOF, and SWE. Responses of greenup
and greendown durations are reported both for region 4 only and all regions (results from all regions are shown in parenthesis). There were
statistically significant differences between the regions regarding the greenup duration, whereas we found no significant effect of the interactions
region*SOS, region*EOF, SWE*SOS, or SWE*EOF

Predictor Mean sq error P value Predictor Mean sq error P value

End of snowmelt and SOS End of snowmelt and EOF

End of snowmelt 3734 \0.001 End of snowmelt 1224 \0.001

Region*End of snowmelt 66 =0.017 Region*End of snowmelt – =0.85

Greenup duration Greendown duration

SWE 264 (710) =0.002 (\0.001) SWE 366 (223) =0.026 (0.014)

SOS 231 (1248) =0.003 (\0.001) EOF 2227 =0.004 (\0.001)

Region – (=0.51) Region – (=0.43)
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autumn was not correlated to EOF or greendown duration

either. Likewise, we did not find degree days thaw (i.e., the

sum of daily mean temperatures above 0 �C) during May–

July or the summer warmth index (i.e., the sum of monthly

average air temperatures above 0 �C) to be explanatory

variables for SOS or the greenup duration. In contrast,

average soil temperature in June measured in region 4 was

significantly correlated to the duration of greenup in the

same region (R2
= 0.56; P = 0.008), indicating that higher

soil temperatures coincided with longer greenup duration,

although this is likely a secondary effect of snow rich years

having higher soil temperatures in early season due the

insulating snow. The duration of greendown (i.e., senes-

cence) or timing of EOF was not correlated to average soil

temperatures in the corresponding period.

Ecosystem productivity

The shift from positive to negative NEE flux (i.e., the

timing in early growing season when the system switches

from functioning as a net source to a net sink of atmo-

spheric CO2 on a daily basis) in region 4 occurred on

average at DOY 178, whereas the shift from negative to

positive NEE in late growing season occurred at DOY 229

in the studied period (2000–2013). Consequently, the

source to sink shift date was also significantly correlated

with SOS (Table 4). On average, EOF occurred 7 days later

than the shift from sink to source was measured, but they

were not correlated.

The link between vegetation greenness and actual

ecosystem productivity was validated against modeled

Fig. 4 Temporal modeling of GCC from 2008 to 2013 in region 4. GCC values are normalized to GCC at start of season. Data are based on the
same camera model to allow direct comparison

Fig. 5 Timing of end of fall (EOF) plotted against July soil moisture
in ROI 4. Gray curved lines are 95 % confidence intervals. Bars
indicate EOF timing sensitivity based on the Monte Carlo samples
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daily average GPP data based on NEE. We found GCC

from region 4 (the region representing the eddy covariance

fetch) to be a highly significant predictor for GPP, with a

significantly different relationship depending on camera

model (Table S2). This means that the correlation model

between GCC and GPP is unique for a given camera.

The statistics from Table S2 allowed us to fit a three-

dimensional polynomial model of GCC and GPP during the

growing season, to evaluate the possible seasonal biases in

the correlation between GPP and GCC as a function of

DOY. Due to the effect of the camera type, we based the

model on data from camera type 3 (see Table S1). The

model fit improved significantly when adding a second

order in the temporal dimension, while adding a second

order in the GPP-GCC dimension did not improve the

model fit compared to a first-order linear polynomial

(Fig. 6).

DISCUSSION

Region-specific variations

The highly significant correlation between end of snowmelt

and SOS is consistent with earlier studies on Arctic

ecosystems (Mastepanov et al. 2013) and NDVI measure-

ments of greenup (Buus-Hinkler et al. 2006). The faster

greenup durations seen in regions 2 and 4 are likely a

combination of deeper snowpacks and higher spring soil

temperatures (average increase from -0.9 to 2.8 �C in

5 cm in the same period) and air temperature (average

increase from 2.2 to 3.4 �C in the same period) during the

snow-free period. Indeed, the correlation between average

soil temperatures in June and SOS underlines this argu-

ment. Higher soil temperatures during the start of the

growing season, resulting from the preceding winter’s

snow regime, will also increase nutrient availability (Jo-

hansson et al. 2013) which could also decrease the greenup

duration. Long greenup durations, as seen in region 1,

could accordingly be due to low soil temperatures (caused

by thin, less insulating snow-cover in winter) prohibiting

an immediate greenup after snowmelt (Lipiec 1990). The

model slopes in Table 2 indicate that a later end of

snowmelt means a shorter post-melting duration (time

between end of snowmelt and SOS) in regions 1 and 2

(fen), a stable duration in region 4 (heath), regardless the

timing of end of snowmelt, and an slightly increasing post-

melting duration with a late end of snowmelt in region 3

(grassland). This is likely resulting from differences in the

greenness build-up during spring of the different plant

communities (e.g., proportion of mosses and vascular

plants), as well as generally shallower snow depths in a

gradient from fen to grassland to heath, which will affect

the soil temperature regime during spring.

The lower peak GCC and longer peak season duration in

the drier regions is in agreement with earlier NDVI mea-

surements of similar plant communities (Ellebjerg et al.

2008), and short greendown durations in these regions

indicates a faster senescence due to limited water avail-

ability in late season rather than light or temperature. This

argument is supported by the correlation between July soil

moisture and both EOF and greendown duration, and show

that soil moisture holds potential as a predictor for the

timing of EOF. This is relevant since the literature has

reported EOF to be challenging to find proxies for (Cleland

et al. 2007). As soil moisture is closely linked to SWE, the

relationship between soil moisture and EOF is arguably

valid for all the regions. The lack of a correlation between

phenological transition dates in the fall and temperature

variables likewise suggests that a general atmospheric

warming may not prolong the growing season markedly

because it is rather limited by incoming solar radiation and

water availability. Other key phenological events such as

flowering duration and interactions with pollinators can,

however, be accelerated from a warmer climate in Arctic

ecosystems (Schmidt et al. 2016).

The general advancement in SOS (least pronounced in

region 1) was mainly related to an earlier end of snowmelt.

It may be a consequence of elevated spring air tempera-

tures (Euskirchen et al. 2006; Menzel et al. 2006) or a

consequence of a decrease in spring snow-cover in Zack-

enberg (Pedersen et al. 2016). Since the timing of the first

spring thawing temperature sets the threshold to the earliest

possible advancement in end of snowmelt (Chapin 1983),

increased spring temperatures are likely to have the largest

effect on the regions with late snowmelt.

Table 4 Results of ordinary least squares linear regressions. The ecosystem switch from source to sink for atmospheric CO2 (NEE-spring) was
significantly correlated to end of snowmelt and thereby start of spring (SOS). A statistically significant relationship was not found for end of fall
(EOF) and the shift back to CO2 source in autumn (NEE-senescence)

Correlated variables R2 Slope Intercept RMSE P value

End of snowmelt/NEE-spring 0.85 0.844 35.2 12.6 \0.001

SOS/NEE-spring 0.75 1.0 5.7 5.6 \0.001

EOF/NEE-senescence 0.13 0.29 167.9 6.3 =0.22
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Inter-annual variation

The inter-annual variability in snow-cover is marked,

which is in agreement with the reported observations by

Pedersen et al. (2016). This variability seems to affect the

whole-growing season, with an increasing effect in early

growing season. The seasonal patterns in GCC in the dry

regions 4 and 3 had a tendency to offset a late greenup with

a relatively higher peak GCC value, while EOF had little

variance (Fig. 4). Moreover, the growing season duration

was significantly longer in years with high SWE and soil

moisture content in July. This indicates that the represented

plant communities are, to a certain extent, adapted to such

inter-annual variation in end of snowmelt, which have been

present in Zackenberg for several decades (Pedersen et al.

2016), perhaps as a result of their phenotypic plasticity

(Totland and Alatalo 2002). From an ecosystem produc-

tivity perspective, the ability to offset variation in SOS by

increasing peak greenness agrees with Parmentier et al.

(2011) who found that timing of snow melt isolated did not

correlate with net CO2 uptake, but rather the whole-

growing season must be considered.

An increase in growing season duration resulting from

both an advancement in SOS and delay of EOF has been

reported from satellite-based studies of high-latitude phe-

nology (Zeng et al. 2011, 2013). The satellite studies fur-

thermore report a highly heterogeneous pattern across

geographical location and sensor type. The advancement in

SOS in high latitudes based on the MODIS sensor (Zeng

et al. 2011) corresponds with our findings from Zacken-

berg, whereas a reported delay in EOF of 2.2 days per

decade (Zeng et al. 2011) contradicts our findings of a

Fig. 6 Three-dimensional correlation model of GPP, GCC, and Day of Year. The model is based on a second-order polynomial in the X-plane
(time) and a first-order in the GPP/GCC plane, and expressed as f(x, y) = 12.82 - 0.1347*x ? 18.77*y ? 0.00052*x2 - 0.2198*x*y. The model
fit was statistically significant (adjusted R2

= 0.71, P\0.001, RMSE = 0.28)
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coincident advancement in EOF. As requested in the

aforementioned MODIS-based study, this suggests the use

of ground-based vegetation index data as a platform for

inter-calibration of satellite-derived vegetation indices and

phenology metrics.

GCC and ecosystem productivity

The statistically highly significant correlation between

GCC and GPP justifies the use of GCC as a proxy for

ecosystem productivity. As earlier reported by Lund et al.

(2012), the shift from source to sink is correlated to end of

snowmelt (P\0.001). Here we found the source–sink shift

for CO2 in NEE during spring to be correlated with SOS,

which further underpins the applicability of GCC as a

proxy for temporal shifts in ecosystem exchange of CO2.

The relationship between EOF and the autumnal NEE shift

from sink to source was not correlated, which we interpret

as a result of litter fall and a resulting increase in respira-

tion rates from microbial decomposition of the litter

(Mikan et al. 2002). Hence, the shift to a net release of CO2

during senescence would appear earlier than the camera-

based EOF, in agreement with the findings in our study.

Despite being both site- and camera-specific, the sig-

nificant fit of the visualized model (Fig. 6) suggests that

GCC can be used as an indicator for GPP in very low

productive Arctic regions in general. The better model fit

obtained by adding a second-order polynomial suggests a

variation in the intersect of the linear correlation between

GPP and GCC over time. This is likely related to a hys-

teresis caused by a higher photosynthetic efficiency per leaf

area in spring than in late season (Westergaard-Nielsen

et al. 2013). Consequently, the establishment of robust 3D-

models can improve the potential use of GCC as a site-

specific GPP proxy in the studied area.

The link between growing season duration and ecosys-

tem productivity is ambiguous (Euskirchen et al. 2006; Hu

et al. 2010), with indications of both decreasing and

increasing ecosystem productivity following longer grow-

ing seasons. Growing season length can thus not solely be

used as an indicator of productivity (Parmentier et al.

2011). However, Xia et al. (2015) suggest a combination of

season duration and peak GPP as a robust measure of

annual GPP across a number of biomes and disturbances.

Following this rationale, camera-derived GCC data has a

unique applicability in temporary setups of eddy covari-

ance campaigns with overlapping time series of images.

When a robust site-specific model has been established

(Fig. 6), camera data can subsequently be used as proxy for

ecosystem productivity, which could provide valuable

input to an improved understanding of the spatiotemporal

variation between GPP and plant phenology. Nevertheless,

further research on applied methods to allow direct

comparison of GCC from different sites and cameras is

urgently needed to expand and improve the scientific value

of camera-derived indices in ecosystem monitoring.

Technical considerations

Using JPG images introduces artifacts related to the image

compression and conversion between color spaces. The

available data did not offer lossless images, and we chose

JPG as this involved the fewest processing steps and thus

fewer risks of losing image information. However, using

averaged values from regions with[160 pixels will miti-

gate the risk of introducing significant artifacts, and using

JPG has been found not to affect the timing of extracted

transition dates (Sonnentag et al. 2012). The use of a

dynamic threshold in the binary classification of snow-

covered pixels allows for detection of snow, despite

changes in scene illumination. However, misclassified

pixels are unavoidable. The active layer in the soil can still

be frozen immediately after end of snowmelt, resulting in

poor drainage of the melt water and thus standing water at

the ground surface. From certain illumination angles

causing high reflectance in the camera direction, such

water-covered pixels could erroneously be classified as

snow. Consequently, we conservatively chose the 20 %

snow-cover date as end of snowmelt. Following snowmelt,

there was a local minimum in the computed GCC before it

increased as a result of greenup (Fig. S3). We interpret the

GCC dip as being caused by the water-saturated conditions

following snowmelt. The moist conditions in a majority of

illumination angles appear darker than dry conditions,

which can result in lower GCC. A similar phenomenon is

known from satellite-derived time series of NDVI, which

decrease over very moist surfaces that cause NIR absorp-

tion (Farrar et al. 1994).

The influence of scene illumination is apparent in GCC

(Sonnentag et al. 2012), and data can be filtered from

several daily images to mitigate short-time variations. The

available frequency in this study does not allow for daily

averaging so we addressed the issue by fitting a smoothing

model. Nevertheless, missing data or a number of succes-

sive days with poor illumination (e.g., severe reflections or

fog) may result in a model bias. We addressed the problem

by visually sorting the images and dismissing outlier

images. Preferably, this subjective selection should be

avoided, yet we did not find automated selection criteria

(e.g., Ide and Oguma 2013) to be sufficiently effective. The

fitted sigmoid models and the associated computed transi-

tion dates are numerically solved, and thus include an

uncertainty. We have quantified the uncertainty to be larger

at the end of season than seen for the start of season, and

with a bias toward an underestimation of the growing

season length. Based on the end of season uncertainty, we
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see no marked differences in the timing of EOF between

the four regions. However, SOS seen in region 1 is still

earlier than the corresponding dates for regions 2, 3, and 4,

when taking the uncertainty into account. In general, the

region-specific variations are less pronounced when

including the uncertainty, while the annual variation is

considerably larger.

Arguably, bi-directional effects are influencing the time

series of GCC and must be taken into consideration when

comparing the different regions. The low camera angle

should preferably have been closer to 45�, to avoid

potentially systematic GCC bias between erectophile and

planophile plant communities (Jones 1984). At the initial

installation of the cameras, the coverage and continuity of

the field of view were prioritized instead of camera angle.

Ultimately, the fixed position of the cameras allows us to

compare the time series inter-annually, but possible biases

in absolute GCC values must be considered when com-

paring data from the regions.

CONCLUSIONS

In this study, we present 14 years of image- and gross

primary productivity data from high-Arctic Zackenberg.

We show that the green chromatic coordinate vegetation

index can successfully be used to determine phenological

transitions in vegetation growth in high-Arctic ecosystems.

Moreover, we show that timing of snowmelt and end-of-

winter snow water equivalents are closely linked to not

only spring greenup, but also peak timing and peak green

chromatic coordinate value as well as the growing season

duration. We find that air temperatures are not the primary

explanatory variable for growing season length when based

on transition dates from the green chromatic coordinate. In

addition, we do not find a significant increase in average

growing season length due to a significant average

advancement in start of spring of 10 days and end of fall of

11 days. Rather, snow water equivalents and soil moisture

were the most limiting factors for plant growth in the

studied area, of the analyzed parameters, suggesting that

elevated temperatures alone will not prolong the growing

season. Finally, we conclude that the green chromatic

coordinate is a robust proxy for gross primary productivity

across years with considerable climatic variations, and that

it, in combination with temporal modeling of seasonal

plant phenology, has great potential in estimating plant

productivity and ecosystem carbon cycling in low pro-

ductive high-Arctic ecosystems. However, further research

on the derivation of absolute or comparable data across

camera models are needed to improve and expand the use

of camera-derived vegetation indices in ecosystem

monitoring.
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