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We consider monitored quantum systems with a global conserved charge, and ask how efficiently
an observer (“eavesdropper”) can learn the global charge of such systems from local projective
measurements. We find phase transitions as a function of the measurement rate, depending on how
much information about the quantum dynamics the eavesdropper has access to. For random unitary
circuits with U(1) symmetry, we present an optimal classical classifier to reconstruct the global
charge from local measurement outcomes only. We demonstrate the existence of phase transitions
in the performance of this classifier in the thermodynamic limit. We also study numerically improved
classifiers by including some knowledge about the unitary gates pattern.

Introduction. A recent breakthrough in our under-
standing of open quantum systems has been the discov-
ery of measurement-induced phase transitions (MIPTs)
in monitored quantum systems [1–4]. MIPTs have been
best characterized in random quantum circuits, but seem
to be a generic consequence of the competition between
chaotic dynamics and measurements [1–54]. The best-
studied MIPT, in random circuits, is a transition in the
properties of a quantum state conditional on a set of
measurement outcomes. It has multiple equivalent for-
mulations, of which the most relevant one for our pur-
poses is as follows [11]. When the measurement rate is
high, local measurements can rapidly distinguish differ-
ent initial states; in this “pure” phase, conditional on
the outcomes, an initially mixed state quickly becomes
pure. When the measurement rate is low, scrambling
dominates, so initially distinct states become indistin-
guishable by local measurements. In this “mixed” phase,
an initially mixed state remains mixed for times that
scale exponentially with system size [11]. Mixed-phase
dynamics forms a quantum error correcting code in the
sense that it protects initial-state information from local
observers [10, 11, 53]. Studying the MIPT as formulated
above requires repeated generation of the same set of
measurement outcomes, which in turn requires running
each circuit a number of times that grows exponentially
with system size and evolution time. Experimental stud-
ies of the MIPT have therefore been limited to very small
systems [36, 52].

In principle, the measurement outcomes in the pure
phase suffice to distinguish any two initial states. Thus
one would have a way around postselection if one could
initialize the system in a mixed state, run the circuit once
while recording the measurement outcomes, and use the
outcomes to predict some property of the resulting pure
state that can be measured in a single shot. In the orig-
inal random-circuit setting, this task is impractical, at
least on a classical computer: to distinguish the two ini-
tial states, one would need to time evolve both with the
specified measurement outcomes, and this is exponen-

tially hard even with full knowledge of the unitary evo-
lution operator and the measurement locations. (Similar
challenges arise in the problem of reconstructing infor-
mation from evaporating black holes [55–57].) Without
such knowledge, predicting any local property of the fi-
nal state is impossible: the space of possible unitaries
involves arbitrary single-site rotations, so the knowledge
gleaned from previous measurements is in a basis that is
effectively hidden from the predictor.

Here, we show that constraining the unitary dynamics
to have a single conserved charge (and measuring the lo-
cal charge density) makes it possible to accurately predict
an observable (namely the total charge) on a single run
of the circuit, even without knowledge of the gates. We
consider a one-dimensional system of L qubits with a con-
served U(1) charge Q =

∑
i qi, where qi = (Zi + 1) /2.

We initialize the system in one of two charge states |Q0〉,
or |Q1〉. We then evolve the system in time with a
brickwork of random unitaries, with each time step cor-
responding to two layers of gates acting on even and
odd sites. The gates are chosen to conserve the U(1)
charge, but are otherwise Haar-random [58, 59]. At each
timestep, we allow an eavesdropper (“Eve”) to measure
the local charge qi on each site of the system with inde-
pendent probability p. At some time tf that unless oth-
erwise specified we will take to be tf = L, Eve uses the
measurement record and a decoding algorithm to pro-
duce a guess of the charge of the initial state (Fig. 1).
Eve then shares her prediction and is told if it is correct.
Symmetric monitored quantum circuits exhibit a charge-
sharpening transition at p = p#, within the mixed phase,
that separates a phase where the final state conditional
on the circuit and measurement outcomes has a definite
charge from one where it does not [41, 42]. In the case
where Eve has unlimited resources, she can accurately
predict the outcome if p exceeds p#.

Here, we argue that if Eve only has access to the
measurement records, and has no knowledge about the
unitary gates that were applied in each circuit except
their distribution (“eavesdropping” scenario), the opti-
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FIG. 1. Setup. An eavesdropper (Eve) attempts to recon-
struct the global charge of a random quantum circuit from
local charge measurements using a classical classifier. Eve
can make exact predictions with success probability tending
to 1 in the thermodynamic limit above the success transi-
tion psuccess. The success transition of the classifier is lower
bounded by the charge sharpening transition p# of the sys-
tem. At p = ptails, the distribution of the probability of cor-
rect label changes shape (see text).

mal decoding algorithm can be constructed by counting
charge configurations consistent with the measurement
outcomes the observer receives. This involves evaluat-
ing the partition sum of a classical statistical mechanics
model, a task that can be efficiently performed on a clas-
sical computer. We also show that knowledge of the dy-
namics in between measurements can be used to improve
the classifier (“learning” scenario), and discuss various
transitions associated with this learning problem.

Independent measurements estimate. For small
measurement probability p � 1, it is natural to assume
that the measurement outcomes {~m} are independent.
To estimate the charge, Eve can then simply use the av-
eraged charge Qestimate = L

M

∑M
n=1mn with M ∼ 2ptfL

the number of measurements, and determine whether it
is closer to Q0 or Q1. Assuming independent measure-
ments and using the central limit theorem, the proba-
bility of success (“accuracy”) of Eve to distinguish two
charges Q0 = L/2 and Q1 = L/2− 1 is

αlower bound =
1

2

(
1 + erf

√
ptf
L

)
. (1)

In general, measurement outcomes are correlated in in-
teresting ways that can be used to improve the charge
estimate, and this uncorrelated result lower bounds the
accuracy of other more effective classifiers.

Optimal classifier. Charge conservation and local-
ity induce correlations between measurement outcomes;
accounting for these correlations allows us to outperform
the independent-measurements estimate. For example,
measuring three out of four legs of a gate determines the
charge at the fourth, or measuring a charge q = 1 in one
of the incoming legs and q = 0 in one of the outgoing legs

fully determines the charges of the other two legs even if
they are not measured.

The constraints from charge conservation can be
turned into an efficient classifier. Intuitively, in the ab-
sence of information about the underlying physical dy-
namics, the best Eve can do is count charge configura-
tions compatible with the measurement outcomes, as-
suming that charges perform random walks with the
same diffusion constant as the quantum model. The com-
binatorics of such random walks is governed by the parti-
tion function of a classical statistical mechanics model de-
scribing a Symmetric Exclusion Process (SEP) [60] sub-
ject to quenched constraints from measurements, which
Eve could simulate efficiently on a classical computer. In
the supplemental material [61], we show that this is in-
deed the optimal scheme, in the sense that it minimizes
the misclassification probability. Formally this statistical
mechanics description emerges from averaging the Born
probabilities of the quantum models over the Haar uni-
tary gates. Remarkably, the same model also emerged in
the context of measurement-induced charge-sharpening
phase transitions in the limit of large onsite Hilbert space
dimension [41, 42].

To represent the possible charge dynamics of Haar-
random circuits, consider the time evolution of the (clas-
sical) probability distribution over computational basis
states. The initial distribution over basis states in the
Haar model is uniform over all states of a fixed charge Q.
Represent this initial probability distribution of charge
possibilities by a vector of size 2L: |φ(0)) = |Q) =(
N
Q

)−1∑
i:Q(i)=Q |i), where we use the ket-like notation

|ψ) to denote a probability vector. At each time inter-
val, each charge can either hop or remain at the same
position. Averaged over the Haar distribution for the
unitaries, each possibility has probability 1/2. The up-
date to the probability distribution |φ(t)) represented by
the unitary at position i can be represented by the appli-
cation of the transfer matrix of the symmetric exclusion
process (SEP),

Ti =




1 0 0 0
0 1/2 1/2 0
0 1/2 1/2 0
0 0 0 1


 , (2)

to the probability distribution |φ(t)).
Every time the quantum state is measured at a site

k, the corresponding probability vector |φ(t)) must be
modified such that all states inconsistent with the mea-
surement outcome on that site have probability 0. This
can be achieved by applying the projector onto the cor-
rect measurement outcome. In applying the projector,
the 1-norm of the probability distribution decreases, by
an amount corresponding to the fraction of trajectories
that were inconsistent with that measurement outcome.

Define T (~mt) to be the linear operator that updates
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FIG. 2. Optimal classifier. a) Probability distribution of the ‘probability associated with the correct charge label’, Pcorr. Inset:
Weight in lower tail of distribution of Pcorr, ε = 0.4. The distribution changes through three distinct regimes: approximately
Gaussian for 0 < p < ptails ' 0.1, power-law for p = ptails, exponential for p > ptails. b) Accuracy of the classifier. Inset: The
Binder ratio shows a crossing at ptails ' 0.1. c) The mean entropy as an order parameter for the success transition, above
which Eve can systematically make accurate predictions in the thermodynamic limit. Inset: the Binder ratio has a crossing at
psuccess ' 0.2.

the probability vector from time t to t+1, given the con-
straints represented by the measurements. After time tf ,

we have a state |φ(tf )) =
∏tf

t=1 T (~mt)|Q) representing
the uniform distribution over all charge trajectories that
are consistent with both the measurement outcomes and
the charge Q. The 1-norm of the state represents the
fraction of all possible trajectories of the charges in the
Haar-random circuit that are compatible with the con-
straints – and can be found by the dot product of the
probability vector with the (unnormalised) uniform dis-
tribution over all states |1) =

∑
i |i),

P ({~m}|Q) = (1|
tf∏

t=1

T (~mt)|Q). (3)

Eve can then use P (Q|{~m}) = P ({~m}|Q)/(P ({~m}|Q0)+
P ({~m}|Q1)) to determine which charge is more likely
given a set of measurement outcomes {~m}.

Efficiency. This probability can be found for a given
circuit realisation by explicitly evolving the state |Q)
using a full representation of the probability vector.
Naively, this algorithm scales as O(poly(2L)). We can
do better by noticing that the circuits and measurements
(since they are not determined by properties of the time
evolving state, but by the separate dynamics in the Haar
circuit) represent a set of predetermined linear opera-
tions applied to the initial state. Instead of applying
them to the (highly entangled) state |Q) , we can apply
them in reverse to the (weakly entangled) state |1) as

(ψ(tf )| = (1|∏tf
t=1 T (~mt). Because of the non-unitary of

the SEP dynamics, the entanglement growth generated
by the transfer matrix is significantly lower than that in
the Haar circuit, and so the system can be represented by
a Matrix Product State (MPS) with a bond dimension

that grows sublinearly in time. This allows simulation
of systems up to large sizes using MPS algorithms like
TEBD [62, 63].

The state |Q) cannot be efficiently represented on a
classical computer, and so we cannot efficiently compute
the dot-product in Eq. 3. We can however, efficiently
sample from (ψ(tf )| (since it has a low bond dimension
MPS representation) to produce an estimate of P (Q).
We also note that this statistical mechanics problem has
positive Boltzmann weights, and could be simulated effi-
ciently using Monte Carlo methods.

Success transition. In order to probe the perfor-
mance of the classifier, we consider its performance on
N = 40, 000 random Haar measurement records. Half
the records are generated from initial state |Q0〉 = |L/2〉,
i.e. the uniform distribution over bitstrings at half filling,
the other half from |Q1〉 = |L/2− 1〉.

The task assigned the classifier is determining which
state the record was generated from. Given the probabil-
ities P (Q1|{~m}), P (Q0|{~m}) from the stat. mech. model,
the classifier chooses the Q such that P (Q|{~m}) is max-
imal. The accuracy α of this classifier as a function
of measurement rate and system size is presented in
Fig. 2b). The classifier gets better at solving the task
as the measurement probability increases, as expected.

To get a better sense of the distribution of the classi-
fier predictions across different measurement outcomes,
we define the ‘probability of correct label’ Pcorr as fol-
lows. Suppose the initial state has charge Q∗ (unknown
to Eve). Eve begins with no information about the
charge, then updates her probabilities based on the ob-
served measurement outcomes. Her posterior probabil-
ity for the correct charge label Q∗ is denoted Pcorr: i.e.,
Pcorr = P (Q∗|{~m}). Note that since Eve is told the value
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FIG. 3. Biased classifier. (a) The success transition is low-
ered by including information about the hopping probabilities
in the classifier (biased model), while the accuracy transition
remains unchanged (b) The classifier accuracy α is improved
by including information about the hopping probabilities in
the classifier.

of Q∗ at the end of each run, Pcorr is measurable for each
run, so Eve has access to the entire probability distribu-
tion P (Pcorr), plotted in Fig. 2a). In terms of Pcorr, the
accuracy (Fig. 2b) is P (Pcorr > 0.5).

The entropy of the binary distribution {Pcorr, 1−Pcorr}
corresponds to the confidence of the classifier in its deci-
sion – irrespective of the ground truth label. The binder
ratio of the entropy has a crossing at psuccess ≈ 0.2,
which corresponds to a “success transition”. Above
psuccess, Eve can reconstruct the charge of the system
exactly (i.e. with success probability tending to 1 as
L→∞). Interestingly, this success transition in the clas-
sifier also has an interpretation as a charge-sharpening
transition in a charge-conserving model with large on-
site Hilbert space [41], and its critical properties are
Kosterlitz-Thouless-like [42]. In general, we have the
constraint p# ≤ psuccess, with p# ' 0.09 for qubit sys-
tems [41]: classifiers can only make systematic, exact
predictions above the sharpening transition.

The full distribution of Pcorr (Fig. 2a)) reveals a richer
structure. For low p < ptails ' 0.1, the measurement rate
is insufficient for the observer to fix the charge, result-
ing is an approximately Gaussian distribution of Pcorr.
Around p = ptails, the tails of distribution of Pcorr em-
pirically change from Gaussian to power-law like. This
apparent transition in the tails of the distribution can
also be detected from the Binder ratio of Pcorr (inset of
Fig. 2b)), and from the power-law shape of the distri-
bution of Pcorr, see inset of Fig. 2a). Note that even
though the quantity 1 − E(Pcorr) (where E(. . .) denotes
an average) is itself an order parameter for the success
transition [61], the heavy-tailed distribution allows its
Binder ratio to cross at a measurement rate that is dif-
ferent from psuccess. It would be interesting to analyze
these tail transitions further in future work.

Biased classifier. While the above classifier is op-
timal without additional knowledge about the circuit,
it can be improved if Eve has some information about
the underlying dynamics of the system (learning sce-
nario). Let us assume now that for each run of the ex-
periment, Eve receives the set of measurement outcomes
and locations {~m, ~x}, and the details of the unitary gates
{Uit}∀i,tthat were applied to generate this measurement
record.

There is a trivial, optimal, exponentially classically
hard algorithm – the observer can run the circuit start-
ing from |Q0〉, and |Q1〉, measure the charge in the loca-
tions specified and count how many times the measure-
ment record ~m arises. We expect this algorithm to suc-
ceed above the charge-sharpening transition (p > p#).
A more interesting task is to find an efficient classical
algorithm that improves on the zero-knowledge classifier
above. Define the hopping amplitude of a unitary h(U) =

|〈01|U |10〉|2. This has the properties h(U) = 1
2 , where

the overline indicates average over Haar, h(SWAP) = 1
and h(I) = 0. We can then modify the classifier above
using the disordered hopping probabilities:

Ti(t) =




1 0 0 0
0 pit 1− pit 0
0 1− pit pit 0
0 0 0 1


 (4)

and three classifiers – unbiased, with pit = 1
2 , biased, with

pit = 1 − h(Uit), and antibiased, with pit = h(Uit). The
unbiased model is the same as before, the biased model
has hopping amplitudes that match the Haar-random cir-
cuit, and the antibiased model has hopping amplitudes
that are opposite to the biased one. The performance
of the biased classifier are summarized in Fig. 3. As ex-
pected, the biased model improves the accuracy of the
classifier, although it does not change the location of the
accuracy transition. The biased model has a lower suc-
cess transition at psuccess ' 0.15, closer to the fundamen-
tal sharpening bound p# ' 0.09 . Additional results on
the antibiased classifier are presented in the supplemental
material [61].

Discussion. When the measurement rate p is high
enough, the history of measurement outcomes suffices to
distinguish any two initial states, and quantum informa-
tion in the system is unprotected from its environment.
Even if the environment contains this “which-state” in-
formation, extracting it and predicting the state of the
system naively requires (a) full knowledge of the circuit,
and (b) eL resources for a chain of length L. We showed
here that, for local dynamics with a conservation law,
one can extract which-state information with polyno-
mial overhead and with no knowledge of the gates in
the circuit, by exploiting hydrodynamic correlations be-
tween measurements at different times. The threshold
for in-practice extractability, psuccess, exceeds that for in-
principle extractability, p#. An interesting open question
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is whether, between these thresholds, the charge can be
extracted given full knowledge of the circuit but only
polynomial resources on a classical computer.

Our setup is analogous to the problem in black-hole
physics where Alice drops a qubit into an old black hole
and Bob attempts to reconstruct it from the emitted
radiation [55]. The question addressed here is distinct
(but in a sense “dual”) to the problem of finding opti-
mal decoders in the volume-law phase of the standard
MIPT [10, 11, 53]. There, the measurement record con-
tains no information about the encoded qubit, but is in-
stead used to find a unitary operation on the circuit that
unscrambles the input qubit. In our setup, the input
qubit has leaked into the environment, and the task is
instead to unscramble the environment. It would be in-
teresting to extend our results to this decoding problem
in symmetric circuits, and to explore consequences for
covariant error correction [64, 65].
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[13] N. Lang and H. P. Büchler, Entanglement transition in
the projective transverse field ising model, Phys. Rev. B
102, 094204 (2020).

[14] S. Vijay, Measurement-Driven Phase Transition within
a Volume-Law Entangled Phase, arXiv e-prints ,
arXiv:2005.03052 (2020), arXiv:2005.03052 [quant-ph].

[15] O. Lunt and A. Pal, Measurement-induced entanglement
transitions in many-body localized systems, Phys. Rev.
Research 2, 043072 (2020).

[16] Q. Tang and W. Zhu, Measurement-induced phase transi-
tion: A case study in the nonintegrable model by density-
matrix renormalization group calculations, Phys. Rev.
Research 2, 013022 (2020).

[17] X. Turkeshi, R. Fazio, and M. Dalmonte, Measurement-
induced criticality in (2+1)-dimensional hybrid quantum
circuits, Phys. Rev. B 102, 014315 (2020).

[18] Y. Fuji and Y. Ashida, Measurement-induced quantum
criticality under continuous monitoring, Phys. Rev. B
102, 054302 (2020).

[19] M. Szyniszewski, A. Romito, and H. Schomerus, Univer-
sality of entanglement transitions from stroboscopic to
continuous measurements, Phys. Rev. Lett. 125, 210602
(2020).

[20] J. Iaconis, A. Lucas, and X. Chen, Measurement-induced
phase transitions in quantum automaton circuits, Phys.
Rev. B 102, 224311 (2020).

[21] B. Yoshida, Decoding the Entanglement Structure of
Monitored Quantum Circuits, arXiv:2109.08691 [cond-
mat, physics:hep-th, physics:quant-ph] (2021).

[22] A. Lavasani, Y. Alavirad, and M. Barkeshli,
Measurement-induced topological entanglement transi-
tions in symmetric random quantum circuits, Nature
Physics 17, 342 (2021).

[23] X. Turkeshi, A. Biella, R. Fazio, M. Dalmonte, and
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I. OPTIMALITY OF THE STAT. MECH. DECODER

It is a known result [1] that the optimal classifier (in the sense of minimizing the misclassification
probability in the infinite data limit) for a dataset consisting of data, label pairs (X,Y ) drawn from
joint distribution p(x, y) with x, y ∈ {0, 1}, is given by the Bayes’ classifier

h(x) = argmaxy (p(y|x)) . (1)

Here h(x) is a classifier assigning labels y ∈ {0, 1} to datapoints x. Colloquially, the best we can
do is to assign labels to datapoints such that they maximise the probability that that label would
have been generated in the data distribution given that datapoint.
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In order to perform optimally at the classification task, we need efficient access to the distri-
bution p(y|x). In machine learning applications, the problem is most commonly that the data
distribution p(y|x) is unknown, and we must therefore model it in order to make appropriate pre-
dictions. In the setting considered here, the problem is different – we know the full joint distribution
of the data and the labels, and have expressions for all of the marginals. The task is to enumerate
the settings in which knowledge of that distribution gives rise to a classically simulable classifier.

A. Data distribution

Introduce a label y, and define two states |Qy〉, with y ∈ {0, 1} the label of the initial state.
Given an initial state |Qy〉, we draw a set of unitaries u from independent haar distributions at each
location in a brick wall pattern. We then perform measurements of the local charge at random
space time positions. Call this measurement record m (consisting of both the locations of the
measurements and their outcomes). Then the joint distribution of m, y, u can be decomposed as
follows:

p(m, y, u) = p(m|y, u)p(y|u)p(u) = ||C(m,u)|Qy〉||2p(y)p(u). (2)

Where C(m,u) is the brick wall circuit, with the projectors corresponding to the measurement
outcomes in m applied at the correct positions, and we have used that p(y|u) = p(y), i.e. that
unitary realisations and choices of initial states are independent.

The total dataset is sampled from p(m, y, u), and consists of (m, y, u) triples. The general goal
is to investigate the conditions under which knowledge of (m,u) (or incomplete knowledge thereof)
suffices to determine the label y. From Eq. 3 we can give the optimal classification rule for (m,u)
pairs

h(x, u) = argmaxy (p(y|x, u)) ., (3)

In this instance, evaluating η(x, u), which is required for assigning the optimal label (in terms
of the classifier accuracy) requires evaluating Eq. 2 for fixed (x, u). Determining the probability
of a specific measurement outcome m for a fixed measurement outcome u is exponentially hard on
a classical computer since it requires full simulation of the dynamics of the quantum wavefunction
in a volume law phase. Interestingly, it is also in principle exponentially hard on a quantum
computer. An arbitrary measurement outcome is exponentially unlikely to arise (in the number of
measurements N , which scales in our setup as O(L)). As such, exponentially many samples are
required to perform the classification optimally. We do not investigate here the performance of
non-optimal classifiers, although preliminary experiments with neural network classifiers have not
shown promising results.

B. Classifying without knowledge of the unitary gates

Despite the problems with classically performing the optimal classification, in the main paper
we argue that given access to only a subset of the information contained in the unitary realisation
u we can perform a conditionally optimal classification (i.e, the best we can do given access to only
that information). We first consider the case where we ignore the unitaries completely for each
measurement record and try to determine the charge only from the information contained in the
locations and outcomes of measurements. The dataset with the u realisations ignored is the same
as that generated by sampling from the marginal distribution

p(m, y) =

∫
du p(m|y, u)p(y)p(u) = Eu

[
||C(m,u)|Qy〉||2p(y)

]
. (4)
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Consider the case of balanced, binary classes p(y) = 1/2, y ∈ {0, 1}, then:

p(y|m) =
p(m, y)∑
y′ p(m, y

′)
=

EU
[
||C(m,u) |Qy〉 ||2

]

EU [||C(m,u) |Q0〉 ||2 + ||C(m,u) |Q1〉 ||2]
. (5)

We will show in Sec. I C that p(m, y) = EU
[
||C(m,u)|Qy〉||2

]
= psm(m, y) is precisely the probabil-

ity of the measurement record m occuring in a constrained SEP model. From Eq. 5, we can see that
the optimal classification rule is therefore to pick the class label that maximises this probability for
a given measurement record. This is the classification rule that we investigate in the main paper.

Eq.5 also demonstrates the the transitions outlined in the paper for the case in which we use
no information about the unitaries are in some sense properties of the stat. mech. model alone.
In particular, we can generate born weighted measurement records from Eq. 4 by running the
stat. mech. model simulation starting from the state |Qy) and sampling at each measurement
location an outcome from the marginal distribution of measuremnent outcomes at that site. This
is efficiently simulable with TEBD for low entanglement initial states [2] (we demonstrate that
the high entanglement states discussed for generality in the main paper are not important to the
concepts presented in Sec. IV).

C. Derivation of the Stat. Mech. model

The probability of a measurement record-label pair m, y arising in the dataset is given by (Eq. 8)

p(m, y) =

∫
du p(m|y, u)p(y)p(u) = Eu

[
||C(m,u)|Qy〉||2p(y)

]
(6)

Alternatively, using two copies of the circuit C:

Eu
[
||C(m,u)|Qy〉||2p(y)

]
= Eu

[∑

k

〈k| ⊗ 〈k|C(m,u)⊗ C∗(m,u)|Qy〉 ⊗ |Qy〉p(y)

]
. (7)

=
∑

k

〈k| ⊗ 〈k|Eu [C(m,u)⊗ C∗(m,u)] |Qy〉 ⊗ |Qy〉p(y). (8)

We can see that the key object is the averaged operator

Eu [C(m,u)⊗ C∗(m,u)] . (9)

Each unitary in the circuit is U(1) symmetric and haar random. In terms of total charge sectors
0, 1, 2, and the projectors thereon (P0, P1, P2), the unitary at time t and spatial index i can be
written:

Uit = eiθ0P0 + U1P1 + eiφ2P2. (10)

At each spacetime position in Eq. 8, the following operator is applied to both copies of the replicated
initial state:

Tit = EUit [Uit ⊗ U∗it] = P0 ⊗ P0 +
1√
2

(
1 1
1 1

)
⊗
(

1 1
1 1

)
P1 ⊗ P1 + P2 ⊗ P2, (11)

where we have performed Haar averages within the different charge sectors. Since Eq. 11 projects
out any permutation non-symmetric contribution, all the dynamics of in Eq. 8 takes place within
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the symmetric subspace of the doubled Hilbert space. We can write the dynamics in terms of a
basis for this space:

Π |i〉 ⊗ |i〉 → |i) (12)

where Π is the projector onto the symmetric subspace. In this doubled basis, each doubled two
site operator Tit is replaced by a single operator T with the following components

Tjk = 〈j| ⊗ 〈j| T |k〉 ⊗ |k〉 =




1 0 0 0
0 1

2
1
2 0

0 1
2

1
2 0

0 0 0 1



jk

(13)

whose form is exactly that of the transfer matrix of the symmetric exclusion process. Define T (m)
to be the circuit with all of the unitary matrices replaced by these transfer matrices, with projectors
at each position and onto each outcome indicated by m. Define also (1| = ∑ 〈k|⊗ 〈k|. Then, Eq. 8
is equal to:

p(x, y) = p(y)(1|T (x)|Qy) (14)

This distribution function can be efficiently computed using the methods described in the main
text, and from this the optimal classification scheme follows naturally.

D. Bayesian Model Averaging

Since the dataset under consideration consists of (m, y) pairs, the u records have been
marginalised already, and the optimal classifier is as described above. The classifier described
above can be understood as combining multiple models of the data distribution (i.e., those with
different values of u) according to the principles of Bayesian Model Averaging [3, 4].

One could consider, instead of the practise described in the above, choosing the maximum
likelihood unitary realisation for each datapoint. The classification rule can be described as follows:

h(x) = argmaxy (p(y|x, u∗)) (15)

where u∗ is the most likely model given the data

u∗ = argmaxu (p(u|m, y)) . (16)

The proof outlined above shows that this practise cannot improve over the stat. mech. classifier
outlined in the previous section, since it includes no more information about the model than that
classifier. An alternative explanation for this difference in performance comes from the literature on
Model Selection. Consider each value of u as specifying a different model. Given access to multiple
models and their likelihood, one can do better than choosing the maximum likelihood model
(according to a logarithmic scoring rule [5]) by performing Bayesian Model Averaging (BMA).

h(x) = argmaxy

(∫
du p(y|x, u)p(u|m, y)

)
(17)

In which the posterior probabilities of each label associated with each model are combined with
weights given by each models likelihood – i.e. more likely models are taken into account with
greater weight than less likely models. This process of weighting each of the models in the set is
equivalent to our marginalised stat. mech. classifier.
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FIG. 1: Transitions in the antibiased problem. Each column shows one decoder setup (unbiased, biased,
antibiased) and each row shows the behaviour of the crossing in the binder ratio associated with each
transition (tails, success). The data show that biasing the decoder using data from the unitary realisations
improves the performance of the decoder.

II. BIASED DECODERS

How much better can we do with knowledge of the unitaries? Recall that the dataset is drawn
from the joint distribution:

p(m, y, u) = p(m|y, u)p(y)p(u) = ||C(m,u)|Qy〉||2p(y)p(u). (18)

Instead of considering m, y pairs, consider instead pairs (m,u), y, that is, the task is now to predict
a label given a tuple m,u consisting of both measurement outcomes and unitary gate settings.

There is a natural, optimal scheme given exponential resources. The probability distribution
p(y|m,u) follows from Eq. 18 by standard probability manipulations. Eq. 18 can be simulated
exactly on a classical computer given knowledge of the unitaries and the measurement outcomes,
with a cost that scales exponentially in the size of the data.

More interestingly, by marginalising over fewer parameters from the Haar distribution of uni-
taries, we are left with a classifier that can include some information about each given unitary
realisation. In performing this marginalisation, we can attain a classically efficient algorithm for
decoding the measurement records. Importantly, this process of marginalisation yields a classifier
that is optimal given only the remaining information.

In the main text we consider the case where we know only the hopping probabilities from the
unitary distribution. Consider the following parametrisation of the U(1) symmetric two qubit
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FIG. 2: a) Illustration of the percolation setup. The primal lattice of unitary gates is indicated with solid
black lines, whereas the dual lattice is indicated in dashed gray lines. Gates are indicated with blue squares
overlaid with gray circles, measurements of 1 with empty red circles, and of 1 with filled red circles. Shown
is a configuration in which a percolating cluster exists on the dual lattice but not on the primal lattice. b)
Loops on the dual lattice (surrounding vertices on the primal lattice) allow filling out unmeasured outcomes.
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FIG. 3: Transitions in detection in circuits starting from either a Néel state, or a Néel state with a single
spin flip. See Fig. 1 in main text for comparison to the same quantities computed for initial states |Q0〉 and
|Q1〉 balanced real superpositions over bitstrings with the same charge. The key observations don’t depend
on the specific details of the initial state - just its charge.

unitaries:

U(α, ρ, ψ, χ) =




1 0 0 0

0 ei(α+ψ)
√

1− ξ ei(α+χ)
√
ξ 0

0 −ei(α−χ)√ξ ei(α−ψ)
√

1− ξ 0
0 0 0 eiρ


 . (19)

The Haar distribution we consider comes from drawing ρ, ψ, χ, α ∼ U(0, 2π) and ξ ∼ U(0, 1). If in
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FIG. 4: Detector transitions in the L class classification problem. a) Accuracy vs. p. The accuracy increases
with increasing p (and increasing L. b) The binder ratio of the accuracy - defined as the kurtosis of the
distribution of boolean correct/incorrect values. This exhibits a crossing at p = ptails ∼ 0.1. c) The mean
entropy exhibits a crossing at psuccess (rather than order parameter like behaviour) since its behaviour is
now extensive with L in the fuzzy phase.
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FIG. 5: a) Cumulative histograms of Pcorr for varying p. System size is fixed at the largest studied L = 20,
and 40, 000 samples are drawn from the measurement distribution for each value of p. As discussed in the
main text, the form of the distribution of Pcorr changes at ptails ∼ 0.1 from a gaussian (erf on a cumulative
plot) to an exponential distribution. b) Cumulative distribution of the entropy of the classifier posterior
distribution as a function of p. Distribution changes form at around psuccess, at which there is a transition
in Eve’s ability to determine the charge. c) Trends in the distribution of Pcorr and system size. Note the
reversal of the trend in the tail around ptails.

the average of Eq. 11 we average only over ρ, ψ, χ, α, the resulting transfer matrix

Tjk = 〈j| ⊗ 〈j| T |k〉 ⊗ |k〉 =




1 0 0 0
0 1− ξ ξ 0
0 ξ 1− ξ 0
0 0 0 1



jk

, (20)
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FIG. 6: Transitions in the tails of the order parameter distribution. a) The (theoretical) accuracy, calculated
from the same data, but as E(P (Qmax|m)), where Qmax(m) = argmaxQP (Q|m) is “most likely label” for a
given measurement record, rather than as the fraction of correctly classified instances. The two should agree
in the infinite data limit, since P (Qmax|m) is the correct classification rate for each measurement recrod. b)
The binder ratio for this quantity (whose mean is the accuracy). The binder ratio exhibits a transition at
p ∼ 0.15, a point which coincides with neither of the transitions discussed in the main paper.

is precisely that of the biased decoder we discuss in the main paper. In Fig. 3 of the main paper (and
Fig. 1 of the supplementary) we show that including information about the hopping probabilities
suffices to shift the success transition downwards, allowing Eve to detect the charge at a lower
critical measurement rate.

Whether an efficient, optimal scheme exists that incorporates all of the information from the
unitary gates remains an open question. Doing so would require efficiently evaluating the full
distribution of Eq. 18.

A. Numerics

We compare the performance of the biased decoder with two alternatives: the unbiased decoder,
and the antibiased decoder – that with all of the hopping probabilities ξ flipped→ 1−ξ. If including
the effects of the biases improves the accuracy and confidence of the decoder, it should outperform
both. This is in fact what we see (Fig. 1). When compared to the unbiased decoder, the biased
decoder has the same accuracy threshold, but a smaller success threshold. When comparing to
the antibiased decoder, the biased decoder has the same success threshold, but a smaller accuracy
threshold. The biased decoder strikes a better balance between accuracy and confidence than either
the unbiased or the antibiased decoder.

III. PERCOLATION TRANSITION

In this section we discuss the details of the percolation transition that occurs at p ∼ 0.3.
Consider each unitary in the circuit as a vertex in a diagonal lattice. On each edge of that

lattice there are three measurement probabilities – either the site is unmeasured, or the site is
measured, in which case there are two possible outcomes: 0, indicating the absence of a charge,
and 1, indicating the presence of a charge. The general layout is shown in Fig. 2.

An important factor is that the conservation law implies that each measurement gives more
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information about the charge than just the value at a particular site. In particular, draw the dual
lattice as indicated in gray dashed lines in Fig 2. Then any simple loop that we can draw on this
lattice must enclose exactly zero charge (since the charge entering the loop via one boundary must
equal the charge leaving via the other. The same is not true for loops that enclose the whole system
(for open boundary conditions, which we consider here, these amount to lines of measurements that
touch both boundaries at any point). These loops must enclose the total charge of the initial state.
By counting the measurement outcomes along this spanning line, we can determine the charge of
the initial state. The existence of a spanning line of measurements is equivalent to the existence
of a percolating cluster of measurements on the dual lattice.

Importantly, this percolation problem is modified by the additional information given in each
measurement. By drawing loops that enclose a single unmeasured site, the value of that unmea-
sured site is completely constrained by charge conservation. We term the sites whose values we
implicitly measure ’unmeasured sharp sites’. By adding unmeasured sharp sites to measured sites,
the effective measurement rate is increased, and the percolation transition shifts to a lower value
of p. Examples of these loops (considered as vertices on the primal lattice) are shown in Fig. 2b).

Determining the charge from a percolating cluster is implicitly solved by our statistical me-
chanics model - since, if there is such a cluster, only one charge label will be consistent with the
measurement outcomes. This percolation behaviour is visible in the histograms of Pcorr in the
main paper (and in Fig. 5) as a shift to a binary distribution as the measurement rate crosses the
percolation transition at p ∼ 0.3.

IV. VARIATIONS

In this section we discuss two variations of the model described in the main text.

A. Product initial states

The presentation in the main text focuses on discriminating the charge of circuits applied to
balanced superpositions of charge states |Q〉 = 1

(NQ)

∑
i:Q(i)=Q |i〉. These states are maximally

entangled. The same effects described in the main text can be demonstrated starting from product
initial states (Fig. 3).

B. Distinguishing many charge states

The general problem we set up is that of distinguishing two charge states, |Q0〉 and |Q1〉. One
can also consider a more general formulation, where the system starts off in a superposition of all
charge states ⊗Ni |+〉N . If we add a single terminal measurement of the global charge to the system,
we can reframe the job of the eavesdropper as determining the charge that this measurement will
collapse the system to. The result is an L class classification problem, wherein the job of the
eavesdropper is to pick from the L possible values of the charge. The decoder in this instance
runs in the same way as described in the main paper for the original problem formulation, except
that Eve now picks the most probable value from all L charge possibilities. Fig. 4 shows that this
problem exhibits the same transitions as a function of measurement rate.
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V. ADDITIONAL DATA

A. Cumulative distributions

In Fig. 5a, b we present additional data on the transitions at ptails and psuccess, showing the
form of the cumulative distributions of Pcorr and the posterior distribution of the entropy of the
classifier, showing transitions in behaviour at ptails and psuccess respectively.

B. The transition at ptails

Pcorr, the quantity analysed in the main text, has a transition in the form of its distribution
at some critical value ptails, which, by analysing the binder ratio (which is, up to a scaling and
shift, the kurtosis of the order parameter distribution, i.e. the weight in its tails), we located
at ptails ∼ 0.1. The transition in the distribution Pcorr is not a transition in the averaged order
parameter of the standard kind. In fact, the average of Pcorr, E(Pcorr) can be shown to correspond
to the exponential of the 2nd Rényi entropy of the posterior distribution of the classifier as follows.
Consider a fixed measurement record m, arising in the data with probability p(m). That value of
m might have been generated from label Q1 (with probability P (Q1|m)), or it might have been
generated from label Q0 (with probability 1− P (Q1|m) = P (Q0|m). Pcorr as defined in the paper
corresponds to the probability of the label that the measurement record was actually generated
from. So,

E(Pcorr) = Em
[
Eq|m(Pcorr)

]
= Em

[
P (Q0|m)2 + P (Q1|m)2

]
] = Em

[
e−2R2(m)

]
] (21)

where R2(m) is the 2nd renyi entropy of the charge distribution the classifier for the measure-
ment record m. This quantity is actually an order parameter for the success transition at psuccess,
being related to the Shannon entropy of the charge distribution. We therefore interpret the tran-
sition at ptails is a discontinuous change in the behaviour of the total distribution of Pcorr (in the
thermodynamic limit), that does not show up in the average.

Fig. 5c presents data supporting the validity of this interpretation, demonstrating how the
behaviour of the distribution of Pcorr changes with system size. A clear flow reversal is demonstrated
at ptails.

Fig. 6 gives further perspective on the transition at ptails. Instead of considering Pcorr, the
probability associated with the ground truth label, we can look instead at the distribution of
P (Qmax|m), the probability associated with the ’most likely’ label - that is, the probability the
model assigns to its label prediction. Because the classifier is optimal, this quantity averages to the
accuracy - since the probability the model assigns to its predicted labels matches the distribution of
those labels in the dataset, the probability of the “most likely” label corresponds to (one minus) the
misclassification rate (the rate at which “unlikely” measurement records show up in the dataset).
We can see in Fig. 6 that this theoretical accuracy indeed tracks the accuracy calculated empirically
in Fig. 2 of the main text. The quantity P (Qmax|m) also exhibits a transition in the form of its
distribution. This is shown in Fig. 6b).

VI. NUMERICAL DETAILS

Measurement records were generated from an exact simulation of the dynamics of the quantum
state vector for time L. All of the data presented is for 20, 000 samples for each charge, measurement
rate, size combination. Open boundary conditions were used for both data generation and decoding.
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The decoder performs a TEBD simulation of Eq. 3, (main paper) using the tooling provided by
the quimb [6] library. The TEBD threshold was set to 1× 10−10.
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