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TRANSITIVE AND FULLY TRANSITIVE GROUPS

STEVE FILES AND BRENDAN GOLDSMITH

(Communicated by Ronald M. Solomon)

Abstract. The notions of transitivity and full transitivity for abelian p-
groups were introduced by Kaplansky in the 1950s. Important classes of
transitive and fully transitive p-groups were discovered by Hill, among oth-
ers. Since a 1976 paper by Corner, it has been known that the two properties
are independent of one another. We examine how the formation of direct sums
of p-groups affects transitivity and full transitivity. In so doing, we uncover
a far-reaching class of p-groups for which transitivity and full transitivity are
equivalent. This result sheds light on the relationship between the two prop-
erties for all p-groups.

1. Introduction

Throughout this note, we will denote the p-height sequence of an element x in
a p-local abelian group G by UG(x) or simply U(x). Recall that G is transitive
if x can be mapped to y by an automorphism of G whenever x, y ∈ G satisfy
U(x) = U(y); and fully transitive if this can be accomplished by an endomorphism
of G whenever U(x) ≤ U(y) pointwise. Extensive classes of abelian p-groups with
both transitivity properties—including separable and totally projective p-groups—
are set forth in [Co], [Gr], [Hi] and [Ka]. Examples of p-groups with neither of the
properties are given in [Me] and [Hi].

Can an abelian p-group be fully transitive but not transitive, or vice versa? In
the earliest account [Ka], Kaplansky proved that transitive p-groups are indeed
fully transitive provided p 6= 2. More than twenty years later, however, Corner
[Co] answered the question in the negative by constructing fully transitive p-groups
which fail to be transitive, and a transitive 2-group which is not fully transitive.

Despite the independence of transitivity and full transitivity for abelian p-groups,
it has become increasingly clear (see e.g. [CaGo]) that there is, indeed, some basic
connection between the two. The most striking of the results in this present note
is the fundamental, but apparently unknown

Corollary 3. A p-group G is fully transitive if and only if its square G ⊕ G is
transitive.
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In Theorem 1, we will set forth an extensive class of p-groups for which transi-
tivity and full transitivity are equivalent. Corollary 3 is symptomatic of the fact
that this class contains the square of every abelian p-group.

Throughout this note all groups are reduced p-local abelian groups, and we refer
to them simply as groups. Notation follows the standard works of Fuchs [Fu] and
Kaplansky [Ka] with the exception that maps are written on the right; all undefined
terms may be found in these references.

2. Transitivity and full transitivity

It was shown by Megibben [Me, Theorem 2.4] that the direct sum of two fully
transitive p-groups need not be fully transitive. In order to obtain closure under
direct sums, we first extend the notion of full transitivity in a fairly obvious way.

Definition 1. If G1 and G2 are groups, then {G1, G2} is a fully transitive pair if
for every x ∈ Gi, y ∈ Gj (i, j ∈ {1, 2}) which satisfy UGi(x) ≤ UGj(y), there exists
α ∈ Hom(Gi, Gj) with xα = y.

For example, it is an easy exercise to verify that {G1, G2} is a fully transitive
pair whenever G1 and G2 are direct summands of a fully transitive group. The
next result shows that all fully transitive pairs of p-groups arise in this way.

Proposition 1. Let {Gi}i∈I be a collection of p-groups such that for each i, j ∈
I, {Gi, Gj} is a fully transitive pair. Then the (external) direct sum

⊕
i∈I Gi is

fully transitive.

Proof. It suffices to consider the case where I = {1, ...., n} is finite. Denote G =
G1 ⊕ · · · ⊕ Gn and suppose x, y ∈ G satisfy UG(x) ≤ UG(y). We will obtain
an endomorphism of G mapping x to y by inducting on the order of y. First
suppose py = 0. Write x = (x1, ..., xn) and y = (y1, ..., yn). By relabelling, we may
assume that the p-heights satisfy htG(x) = htG1(x1). Observe, since py = 0, that
UG1(x1) ≤ UG(y) ≤ UGi(yi) for all i. By assumption, there exist αi ∈ Hom(G1, Gi)
with x1αi = yi for 1 ≤ i ≤ n. Clearly, the n× n matrix with first row (α1, ..., αn)
and other rows zero represents an endomorphism of G mapping x to y.

Now assume o(y) > p. Note UG(px) ≤ UG(py). Since o(py) < o(y), induction
yields θ ∈ End(G) with (px)θ = py. Set x′ = xθ . Then y − x′ ∈ G[p] and
UG(x) ≤ UG(y − x′); hence by the first paragraph there exists α ∈ End(G) with
xα = y − x′. Now θ + α maps x to x′ + y − x′ = y, as desired.

We will require the following consequence of Proposition 1, indicating how a
single fully transitive p-group can be used to produce many more.

Corollary 1. Let G be a fully transitive p-group and λ any cardinal. Then all
direct summands of the power

⊕
λG are fully transitive.

Proof. Because G is fully transitive, {G,G} is a fully transitive pair. Proposition
1 implies

⊕
λG is fully transitive, and the claim follows since direct summands of

fully transitive groups are fully transitive.

In [Co, Proposition 2.2], Corner proves that if G = G1 ⊕G2 is a fully transitive
p-group such that the Ulm subgroups pωG1, p

ωG2 are nontrivial and pωG is homo-
cyclic, then G is transitive. His example of a non-transitive, fully transitive p-group
G is such that pω+1G = 0, and he notes the “curious consequence” of Proposition
2.2 that G ⊕ G must be transitive (note that it is fully transitive by Corollary 1
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above). It was Corner’s result that motivated the theorem we shall soon prove. We
need two preparatory lemmas.

Lemma 1. Assume G = G1 ⊕ G2 is a fully transitive group and xi, yi ∈ Gi (i =
1, 2). If UG1(x1) ≤ UG2(y2 − x2) and UG2(y2) ≤ UG1(y1 − x1), then there is an
automorphism of G mapping (x1, x2) to (y1, y2).

Proof. Because {G1, G2} is a fully transitive pair, there exist α ∈ Hom(G1, G2)
and β ∈ Hom(G2, G1) with x1α = y2 − x2 and y2β = y1 − x1. The matrix φ =(

1 + αβ α
β 1

)
represents an automorphism of G1 ⊕G2, and an easy check verifies

that (x1, x2)φ = (y1, y2).

If G is a group and σ an ordinal number, we use fG(σ) to denote the classical
Ulm invariant of G at σ (see [Fu] or [Ka]).

Definition 2. If G is a reduced group, the Ulm support supp(G) of G is the set
of all ordinal numbers σ less than the p-length of G for which fG(σ) is nonzero.

If G1 and G2 are p-groups with supp(G1) ⊆ supp(G2), it follows that every U -
sequence relative to G1 is also a U -sequence relative to G2. In particular, we note
that for every x ∈ G1 there is an element y ∈ G2 such that UG1(x) = UG2(y) (see
[Ka, Lemma 24]). We employ this fact in the proof of the following crucial lemma.

Lemma 2. Assume G = G1 ⊕G2 is a fully transitive p-group and supp(pωG1) ⊆
supp(pωG2). If x ∈ pωG, there is an automorphism of G mapping x to an element
(c, d) ∈ G1 ⊕G2 with UG(x) = UG2(d).

Proof. Write x = (a, b) and assume for the moment that we have shown that there
exists an automorphism φ of G with xφ = (a1, b1) and htG1(p

ia1) 6= htG2(p
ib1)

whenever pia1 6= 0. But then, as noted above, our assumption on the Ulm supports
means we can choose b2 ∈ pωG2 such that UG1(a1) = UG2(b2). By full transitivity,
b2 = a1α for some homomorphism α : G1 → G2. The composite automorphism

φ

(
1 α
0 1

)
of G1 ⊕ G2 maps x to (a1, b1 + b2). Since ht(pib1) 6= ht(pib2) when

pib1 6= 0, we compute

UG2(b1 + b2) = UG2(b1) ∧ UG2(b2) = UG2(b1) ∧ UG1(a1) = UG(x).

Choosing d = (b1 + b2) gives the desired result. It remains only to establish the
existence of the elements a1, b1 and the automorphism φ as above.

We prove this by induction on the maximum m of the set

SG(a, b) = {i < ω : htG1(p
ia) = htG2(p

ib) 6= ∞}.
If S = ∅, simply take φ = 1G. If m = 0, we proceed as follows. Clearly ht(pa) >
ht(pb) or ht(pa) < ht(pb) by definition of SG(a, b), say the former. Then htG1(pa) >
htG1(a) + 1; hence pa = pa1 for some a1 ∈ G1 with ht(a1) > ht(a). Put b1 = b.
Clearly, ht(pia1) = ht(pib1) only if pia1 = 0. Since UG1(a1 − a) = (ht(a),∞, ...) ≥
UG2(b1) and {G1, G2} is a fully transitive pair, we have a1 − a = b1α for some α ∈
Hom(G2, G1). The automorphism

(
1 0
α 1

)
of G1 ⊕ G2 maps (a, b) to (a1, b1) as

desired. If ht(pa) < ht(pb) , we proceed as above to obtain a suitable automorphism

of the form

(
1 α
0 1

)
, finishing the case m = 0.
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Now assume that SG(a, b) is nonempty and has maximum m > 0. Note that
SG(pa, pb) has maximum < m. By induction, there exists ψ ∈ Aut(G) such that
(pa, pb)ψ = (a2, b2) and ht(pia2) 6= ht(pib2) whenever pia2 6= 0. Set x′ = (a′, b′) =
xψ. Because px′ = (a2, b2), it follows that SG(a′, b′) is empty or has maximum 0. By
the above paragraph, there exists φ ∈ Aut(G) such that (a′, b′)φ = xψφ = (a1, b1)
and ht(pia1) 6= ht(pib1) whenever pia1 6= 0. This establishes our claim.

Before turning to the main theorem, we observe a consequence of Lemmas 1 and
2 which indicates that a fully transitive p-group G with transitive direct summand
H is itself transitive provided pωG and pωH have the same Ulm supports.

Proposition 2. Assume G = G1⊕G2 is a fully transitive p-group and supp(pωG1)
⊆ supp(pωG2). If G2 is transitive, then G is transitive.

Proof. By [Co, Lemma 2.1], we need only verify that Aut(G) acts transitively on
pωG. Suppose x, y ∈ pωG have the same Ulm sequences in G. By Lemma 2
there exist φ1, φ2 ∈ Aut(G) such that if xφ1 = (x1, x2) and yφ2 = (y1, y2), then
UG2(x2) = UG(x) = UG(y) = UG2(y2). Note that UG2(x2) ≤ UG1(y1 − x1), since
UG(x1 − y1, x2 − y2) ≥ UG(xφ1). Since G2 is transitive and G is fully transitive,
there are β ∈ Aut(G2) and α ∈ Hom(G2, G1) with x2β = y2 and x2α = y1−x1. Put

ψ =

(
1 0
α β

)
, an automorphism of G. An easy check verifies that xφ1ψφ

−1
2 = y,

as required.

The following result is complementary to Corollary 1.

Corollary 2. Assume the p-group G is transitive and fully transitive. If {Hi} is
a collection of direct summands of any power of G, then the external direct sum
G⊕ (

⊕
Hi) is transitive and fully transitive.

Proof. Proposition 1 implies G⊕ (
⊕
Hi) is fully transitive. Since supp(pωG) con-

tains supp(pωHi), the direct sum is also transitive by Proposition 2.

We now give a result indicating when transitivity and full transitivity are equiv-
alent.

Theorem 1. Assume G is a p-group which has a decomposition G = G1⊕G2 such
that pωG1 and pωG2 have the same Ulm supports. Then G is fully transitive if and
only if G is transitive.

Proof. Suppose G is fully transitive and that x, y ∈ pωG satisfy UG(x) = UG(y).
By Lemma 2, there are φ1, φ2 ∈ Aut(G) such that xφ1 = (x1, x2), yφ2 = (y1, y2) ∈
G1 ⊕G2 satisfy UG(x) = UG1(x1) and UG(y) = UG2(y2). Because UG(x) = UG(y)
we have UG1(x1) ≤ UG2(x2), UG2(y2); hence UG1(x1) ≤ UG2(y2 − x2). Similarly,
UG2(y2) ≤ UG1(y1−x1). The conditions of Lemma 1 are fulfilled, hence there exists
ψ ∈ Aut(G) with (x1, x2)ψ = (y1, y2). Now xφ1ψφ

−1
2 = y, and we see that Aut(G)

acts transitively on pωG. By [Co, Lemma 2.1], G is transitive.
Conversely, assumeG is transitive. Let B denote the square of the standard basic

p-group. Then H = G ⊕ B is transitive since B is separable ([CaGo, Proposition
2.6]). The structure of the groups B and pωH = pωG1 ⊕ pωG2 implies that H has
no Ulm invariants equal to one. Therefore H is fully transitive by [Ka, Theorem
26(b)], whence G is fully transitive.
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Theorem 1 has many corollaries. Corollary 3 is merely a noteworthy special case
of Corollary 4.

Corollary 3. A p-group G is fully transitive if and only if G⊕G is transitive.

Corollary 4. The following conditions are equivalent for a p-group G.

(i) For all cardinals λ,
⊕

λG is fully transitive.
(ii) For some λ > 0,

⊕
λG is fully transitive.

(iii) For all λ > 1,
⊕

λG is transitive.
(iv) For some λ > 1,

⊕
λG is transitive.

Proof. The implications (i) ⇒ (ii) and (iii) ⇒ (iv) are trivial. Assume (ii) holds,
and λ > 1 is a fixed cardinal. Note that G is a summand of a fully transitive group,
hence is fully transitive. By Corollary 1,

⊕
λG is fully transitive. Because λ > 1

we can obviously decompose
⊕

λG = G1 ⊕G2 in such a way that

supp(pωG1) = supp(pωG2) = supp(pωG).

Hence
⊕

λG is transitive by Theorem 1. Therefore (iii) holds.
Finally, assume (iv) holds. Writing

⊕
λG = G1 ⊕ G2 as above, it follows from

Theorem 1 that
⊕

λG is fully transitive since it is transitive. Therefore G is fully
transitive, and Corollary 1 yields condition (i).

Since transitive p-groups are fully transitive if p 6= 2, and squares of fully tran-
sitive p-groups are necessarily transitive, we obtain

Corollary 5. For p 6= 2, the class of fully transitive p-groups is precisely the class
of direct summands of transitive p-groups.

Corner [Co] has given an example of a 2-groupG which is transitive but not fully
transitive. It follows from Corollary 4 that for all λ > 1, the power

⊕
λG is neither

transitive nor fully transitive. In particular, the square of a transitive 2-group need
not be transitive. For p 6= 2, Corollary 2 implies that all powers of a transitive
p-group are both transitive and fully transitive, simply because the group itself is
also fully transitive in this case.

The final corollary extends Theorem 1 and Proposition 1 by exploiting Hill’s
powerful criteria for transitivity and full transitivity.

Corollary 6. Let {Gi}i∈I be a collection of p-groups. Assume there exists an ordi-
nal σ such that Gi/p

σGi is totally projective and {pσGi, p
σGj} is a fully transitive

pair for each i, j ∈ I. Then
⊕

i∈I Gi is fully transitive. If there exists a partition

I = J ∪K such that the groups
⊕

i∈J p
σ+ωGi and

⊕
i∈K pσ+ωGi have equal Ulm

supports, then
⊕

i∈I Gi is also transitive.

Proof. Let G =
⊕

i∈I Gi. Proposition 1 shows that pσG =
⊕

i∈I p
σGi is fully

transitive. Since G
pσG

∼= ⊕
i∈I

Gi

pσGi
is totally projective, G is fully transitive by

[Hi, Theorem 4]. If the second condition in the corollary is also met, then pσG is
transitive by Theorem 1, and it follows again from [Hi] that G is transitive.

Observe that the total projectivity of the quotients Gi/p
σGi in Corollary 6 is

automatic if σ is a finite ordinal. Megibben’s result [Me, Theorem 2.4] and Hill’s
result [Hi, Theorem 6] demonstrate that Corollary 6 can fail if one of these quotients
is not totally projective.
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