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TRANSITIVE SEMIGROUP ACTIONS(?)

BY
C. F. KELEMEN

Following Wallace [15], we define an act to be a continuous function u: Sx X
— X such that (i) S is a topological semigroup, (ii) X is a topological space, and
(iii) u(s, u(t, x))=pu(st, x) for all 5,7€ S and x e X. We call (S, X, u) an action
triple, X the state space of the act, and we say S acts on X. We assume all spaces are
Hausdorff and write sx for u(s, x). S is said to act transitively if Sx=X for all
x € X and effectively if sx=tx for all x € X implies that s=¢. The first section of
this paper deals with transitive actions and especially with the case where the
semigroup is simple. We obtain as a corollary that if S is a compact connected
semigroup acting transitively and effectively on a space X that contains a cut point,
then K, the minimal ideal of S, is a left zero semigroup and X is homeomorphic
to K.

A C-set is a subset, Y, of X with the property that if M is any continuum con-
tained in X with M N Y3 @, then either M< Y or Y= M. In the second section,
we consider the position of C-sets in the state space and prove as a corollary that if
S is a compact connected semigroup with identity acting effectively on the metric
indecomposable continuum, X, such that SX= X, then S must be a group.

The author wishes to thank Professor L. W. Anderson for his patient advice and
criticism.

Definitions and notation. The notation is generally that of Wallace {16] for
semigroups and Stadtlander [12] for actions. Let S be a topological semigroup
then we denote by X(S) the unique minimal ideal (if it exists) of S and by E(S)
the set of idempotents of S. When the semigroup referred to is clear, the above will
be shortened to K and E respectively. We recall that if S is compact then K(S)
exists and is closed and E(S)# @. For each e € E(S), H(e) denotes the maximal
subgroup of S containing e. S is a left zero semigroup if xy=x for all x, y e S.
A left group is a semigroup that is left simple and right cancellative; it is isomorphic
to Ex G where E is a left zero semigroup, G is a group and multiplication is co-
ordinate wise [2]. An algebraic isomorphism that is simultaneously a topological
homeomorphism is called an iseomorphism.

The Q-set of the action triple (S, X, ) is the set Q={x e X | Sx= X}, thus if
Q= X the action is transitive. The action triple (S, X, u) is said to be equivalent to
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the action triple (7, Y, v) if there is an iseomorphism é: S — T and a homeo-
morphism : X — Y such that the following diagram commutes:

SXXi)X

¢x¢l v V

TxY—Y

We say that s € S acts as a constant if sX is a point. Finally X* denotes the topo-
logical closure of X. Examples of actions include topological transformation
groups, semigroups acting on their underlying space by multiplication and the
following: let X be a locally compact space and M(X) the set of all continuous
functions of X into X. With the compact open topology and composition of maps
as multiplication, M(X) is a topological semigroup. Defining u: M(X)x X — X
by u(f, x)=f(x) makes (M(X), X, p) an action triple.

Transitive action. It follows from a result of Stadtlander [10] that if a compact
semigroup, S, acts transitively on X then the restriction of the act to K(S)x X is
still a transitive action. Thus we use the transitive actions of compact simple
(K(S)=S) semigroups as a tool to study the transitive actions of arbitrary compact
semigroups.

We first show that for compact simple semigroups transitive action results from
a seemingly weaker assumption.

THEOREM 1.1. Let S be a compact simple semigroup acting on X such that Q+# @.
Then S acts transitively on X.

Proof. Let x€ Q and y be any member of X. Since S=\J {H(f) | f€ E} [1],
X=8x=\J{H(f)x | f€ E} so that x € H(f)x for some f € E. Then X=Sx=Sfx
=|J {H(e)x | e SfN E}. Thus y € H(e)x for some e € Sf N E; say y=px where
pe€ H(e). Then x=fx=fex=fp~px=fp~'ye Sy and we have X=SxcSycX,
that is Sy= X. Since y is arbitrary, the action is transitive.

The author wishes to thank the referee for pointing out the above proof which is
more concise than the original one.

A band is a semigroup S such that E(S)=S, that is, every element is an idem-
potent. We now characterize the transitive actions of a compact simple band.

THEOREM 1.2. Let S be a compact simple band acting transitively and effectively
on X. Then S must be a left zero semigroup, X and S are homeomorphic and the action
is equivalent to multiplication in S. )

Two lemmas are necessary to complete the proof.

LEMMA 1.3. Let S be a compact simple band acting transitively on X. Then every
element of S acts as a constant.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1969] TRANSITIVE SEMIGROUP ACTIONS 371

Proof. It is shown in [10] that if T is a compact semigroup acting transitively on
X and e€ E N K, then (H(e), eX) is a topological transformation group which is
transitive on eX and H(e)x=eX for each x € X. Since S is a band, S=F N K and
H(e)=e. Therefore eX is a point for each e € S.

The proof of Theorem 1.2 as stated could now follow from Lemma 1.3 and a
result of Day and Wallace [4], however we choose to present the following lemma
to cover the noneffective case. Let S be compact, p a closed left congruence on S,
and also let p denote the natural map from S onto S/p. If v: Sx S/p— S/p is
defined by v(s, p(¢)) = p(st), then v is an act called.the canonical act [10]. Stadtlander
has shown that if Y=Sx is an orbit of the action triple (S, X, ) such that SY=Y
and if p is defined as {(s, #) € Sx S | sx=tx} then (S, Y, u) is equivalent to (S, S/p, v)
where v is the canonical act.

LeEMMA 1.4. Let S be a compact simple band acting transitively on X by the function
p and let xo€ X and define p={(s,t) € Sx S| sxo=1x,}. Then p is a two-sided
congruence, (S, X, ) is equivalent to (S, S/p, v) where v is the canonical action and
S/p is a left zero semigroup.

Proof. By Lemma 1.3, every element of S acts as a constant, thus p is a two-sided
congruence and since X'=Sx, is an orbit, we know (S, X, ) is equivalent to
(S, S/p, v) by Stadtlander’s result. Because every element of S acts as a constant,
we have u(s, p(2))=u(s, p(s))=p(s?)=p(s) for all 5,1 S. Now let ¢, t, € S/p then
t=p(51), ta=p(s;) for s;,5,€S. But then #;t,=p(s1)p(s2) = p(5152) =v(51, p(52))
=p(s,)=¢,; which shows that S/p is a left zero semigroup.

Proof of Theorem 1.2. We have only to note, since every element acts as a
constant and S acts effectively, that p=A the diagonal of S. Thus S=S/p and an
application of Lemma 1.4 completes the proof.

The following lemma is a partial converse to Lemma 1.3 to be used in the proof
of Corollary 1.9.

LemMA 1.5. Let S be a compact simple semigroup acting effectively on X such that
some element of S acts as a constant then S is a band.

Proof. Since S is simple, we know S is iseomorphic to (Se N E) x eSe x (eS N E)
when the latter is endowed with the Rees multiplication and e € E [17]. We will
show that eSe=e thus making S iseomorphic to the band (Se N E) x{e} x (eS N E).
Since § is simple every element acts as a constant, thus e(SeX)=y for some y € X.
Let g € eSe, then gx=egex=e(gex)=y=ex for all xe X, but S acts effectively,
therefore g=e, thus eSe=e.

We now investigate the effect a cut point in the state space has in a transitive
action by a compact connected semigroup. First recall that if G is a compact
connected group acting transitively on X then X is homogeneous [9], that is, for
every x, y € X, there is a homeomorphism 4: X — X such that A(x)=y. Further-
more X is a continuum and if nondegenerate must contain at least two noncut
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points which together with the fact that X is homogeneous implies that every point
of X is a noncut point. Thus in the group case X cannot contain a cut point. This
does not follow for semigroups however as the following example illustrates. Let
S=[-1, 1] with the usual topology and for s,,s,€[—1,0] and 1, 1, €[0, 1]
define multiplication in S as follows: s,5,=35;, §1¢; =S5, 1,1, =the usual product of
the real numbers #, and 1,, t,5, =the usual product of the real numbers #, and s,.
Then S is a compact connected topological semigroup with identity. Now let
X=[0, 1] with the usual topology. Define u: Sx X — X as follows where s, and 1,
are as above and x € X:u(s,, x)= —s$, and u(1,, x)=the usual product of the real
numbers 7, and x, then u is a transitive and effective act. Thus, the state space of a
transitive act by a compact connected semigroup may contain cut points, however,
in Corollary 1.9 already mentioned in the introduction, it is shown that this has a
profound effect on the multiplication of S. We begin with the following lemma.

LEMMA 1.6. Ler S be a compact connected simple semigroup acting transitively on
X such that no element of S acts as a constant. Then X has no cut points.

Proof. Sx= X implies that X is a continuum and since no element acts as a
constant, X is a nondegenerate continuum for all f € E. But then fX contains at
least two noncut points of fX and since (H(f), fX) is a transitive topological
transformation group [10] making fX homogeneous [9], we have that every element
of fX is a noncut point of fX. We now show for every s € S, sX=fX for some
feE. Let seS. Because S is simple, S=|_ {H(e) | e€ E} [1], thus s € H(f) for
some f € E and since (H(f), fX) is a topological transformation group, s(fX)=fX.
Hence, fX=s(fX)<sX=(fsf)X<fX, whence fX=sX. Thus, for each s€ S, no
point of sX is a cut point of sX.

Suppose p € X cuts X, then X\{p}=Y U Z where Y and Z are mutually separated.
Let A={se S|sX<YU{p}} and B={se S| sX<Z U {p}}, then S=4 U B. For
let s € S and suppose p ¢ sX, then since sX is connected, sX< Y or sX<Z, thus
s€ AU B. Now suppose p € sX, then since p is a noncut point of sX, sX\{p} is
connected which implies that sX\{p}< Y or sX\{p}<Z and s € 4 U B. Therefore
S=A U B. Now suppose that 1€ A N B, then tX<(Y U {p}) N(ZV{p)={p}
which is impossible since no element acts as a constant, hence 4 N B=@. It is
easy to show that 4 and B are both closed and thus contradict the fact that S is
connected. Therefore X has no cut points.

Since a left group that is not left zero always acts transitively on itself with no
element acting as a constant, we have the following corollary.

COROLLARY 1.7. A compact connected left group that is not a left zero semigroup
contains no cut points.

It follows from a result of Stadtlander [10] that if S acts transitively on X then
K(S) acts transitively on X and since K(S) is connected whenever S is [13] we can
apply Lemma 1.6 to the action of K(S) on X to obtain the following theorem.
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THEOREM 1.8. Let S be a compact connected semigroup acting transitively on X
such that no element of K(S) acts as a constant. Then X has no cut points.

It is easy to see that if S acts effectively then K(S) does also, thus we can put
together Lemma 1.5 and Theorems 1.2 and 1.8 to obtain the following result, first
proved for semigroups by Faucett [5].

COROLLARY 1.9. Let S be a compact connected semigroup acting transitively and
effectively on X. Then either (i) X has no cut points or (ii) K(S) is a left zero semigroup
and X is homeomorphic to K(S).

C-sets in the state space. Let Y={(0,y) | —1<y=<1} and let
X={(xsin(1/x)|0<xs1}UY,

then Y is a C-set in X and the complement of Y is an open dense half line in X.
C-sets of this type have been studied independently by Day and Wallace [4] and
Stadtlander [19]. It follows from their results, for example, that a compact con-
nected semigroup with identity cannot act on the space X defined above such that
@ # Q# X. This also follows from the results to be given below.

In [8], Hunter has shown that if S is a compact connected semigroup with
identity and if Y is a nondegenerate C-set contained in S, then Y*=K(S) and
K(S) is a group. We use the techniques of Hunter as an important tool in the proof
of the following theorem.

THEOREM 2.1. Let S be a compact connected semigroup with identity acting on the
continuum X with SX=X and suppose Y is a nondegenerate C-set in X. Then
Y<eX for some e € E(S) N K(S).

We need the preliminary result that follows.

THEOREM 2.2. Let S be a compact connected semigroup with identity and zero
acting on the continuum X with SX = X and such that zero acts as a constant. Then X
cannot contain a nondegenerate C-set.

Proof. Let OX=6 € X. Once it has been shown that 6 cannot be an element of
a nondegenerate C-set in X, the proof of Theorem 2.2 proceeds almost exactly the
same as the proof of Theorem 1 of [8], thus we will show only that 8 cannot be an
element of a nondegenerate C-set in X. In order to do this we will use the notion of
an ideal in X. If the semigroup S acts on the space X and [ is a subset of X such
that S/</, then [ is called an ideal of X. For A< X, define

Io(A) = U{I < A | [is an ideal of X}.

If S is compact and A is an open set containing an ideal of' X, then /,(4) is an
open ideal of X. It is easy to see that under the conditions of this theorem, every
ideal of X is connected.
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Now, suppose 6 € Y a nondegenerate C-set in X and let U be open in X such that
feUand YN (X\U)# . Let V be open in X such that § e V= V*< U and let
W=1Iy(V). Then W is an open connected set, W* is a continuum and § € W< W*
<U. But W*N Y# 2 and W* Y, hence W< W*< Y, a contradiction since a
C-set has empty interior. ’

Let S be a compact connected semigroup with identity and let T be a compact
connected subsemigroup of S such that (i) TN K(S)# &, (ii) 1 € T and (iii) if R
is a compact connected subsemigroup of T satisfying (i) and (ii) then R=T. T is
said to be algebraically irreducible from 1 to K(S). In [7], Hofmann and Mostert
show that if S is a compact connected semigroup with identity then S contains
an algebraically irreducible semigroup and every algebraically irreducible semi-
group is abelian.

We recall the Rees quotient [20]. Let S be a semigroup, I a closed ideal of S
and define p={(s,1) e S |s=t or 5,1 €I} then p is a closed congruence and we
call the factor semigroup S/p the Rees quotient and denote it by S/I. We now use
Theorem 2.2 to prove Theorem 2.1.

Proof of Theorem 2.1. Let 7 be a subsemigroup of S algebraically irreducible
from 1 to K(S), then T is a compact connected abelian semigroup with identity
acting on X with TX=X. Let T'=T/K(T) be the Rees quotient and X' = X/K(T)X
be the ordinary topological quotient and let »: T— T’ and 8: X — X' be the
canonical maps, then 7" acts on X’ by 7(7)B(x) = B(zx) [10] and satisfies the hypothe-
sis of Theorem 2.2. It is routine to show that if D is a continuum in X’ and
E=B-1(D) then E is a continuum in X.

We now show that Y< K(T)X. Suppose not then ¥Y=B(Y) is a nondegenerate
subset of X’ which is a C-set. For let M be a continuum in X’ with M N Y# &
and consider the two cases (i) Y N K(T)X= @ and (ii) Y N K(T)X# &. In case (i),
B~*(Y)=Y since B|xixax i a homeomorphism, and Y meets the continuum
B-1(M), thus B~Y(M)< Y or Y=B~1(M) which implies M< ¥V or Y= M. In case
(ii), Y N K(T) X+ 2 implies K(T)X< Y since K(T)X is a continuum hence B~(Y)
= Y and the same argument as in case (i) shows that Yisa C-set. But this contradicts
Theorem 2.2, therefore Y< K(T)X.

Since T is abelian, K(T) is a group and K(T)< K(S) which implies K(T)< H(e)
for some e € K(S) N E(S), thus Y K(T)X<H(e)X<elX.

Note. We have actually proved a slightly stronger result than that stated since
Y is contained in the state space of the abelian topological transformation group
(K(T), eX).

As an application of Theorem 2.1, we prove the following corollary, which is a
special case of a more general theorem in [18].

COROLLARY 2.6. Let S be a compact connected semigroup with identity acting
effectively on the metric indecomposable continuum X with SX= X, then S is a group.

Proof. Let Y be a composant of X, then, as is well known, Y is a C-set so
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Y<eX for some e EN K. But Y*=X [6], thus X=eX and ly=y=ey for all
»y € X which implies 1 =e since S acts effectively. But 1 € K implies K is a group
and K=S.
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