
An extended abstract of this paper appeared as “Transitive Signatures based on Factoring and
RSA” in Advances in Cryptology – ASIACRYPT ’02, Lecture Notes in Computer Science Vol. 2501,
Y. Zheng ed., Springer-Verlag, 2002. This is a slightly revised version of the full paper that appeared
in IEEE Transactions on Information Theory, Vol. 51, No. 6, pp. 2133–2151, June 2005.

Transitive Signatures: New Schemes and Proofs

Mihir Bellare∗ Gregory Neven†

March 2005

Abstract

We present novel realizations of the transitive signature primitive introduced by Micali and
Rivest [MR02], enlarging the set of assumptions on which this primitive can be based, and also
providing performance improvements over existing schemes. More specifically, we propose new
schemes based on factoring, the hardness of the one-more discrete logarithm problem, and gap
Diffie-Hellman groups. All these schemes are proven transitively unforgeable under adaptive
chosen-message attack in the standard (not random-oracle) model. We also provide an answer
to an open question raised in [MR02] regarding the security of their RSA-based scheme, showing
that it is transitively unforgeable under adaptive chosen-message attack assuming the security
of RSA under one-more-inversion. We then present hash-based modifications of the RSA, fac-
toring and gap Diffie-Hellman based schemes that eliminate the need for “node certificates” and
thereby yield shorter signatures. These modifications remain provably secure under the same
assumptions as the starting scheme, in the random oracle model.

Keywords: Signatures, RSA, transitive signatures.

∗Dept. of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla,
California 92093, USA. E-Mail: mihir@cs.ucsd.edu. URL: http://www-cse.ucsd.edu/users/mihir. Supported in
part by NSF grant CCR-0098123, NSF grant ANR-0129617, and an IBM Faculty Partnership Development Award.

†Dept. of Electrical Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, B-3001 Heverlee,
Belgium. E-Mail: Gregory.Neven@esat.kuleuven.be. URL: http://www.neven.org. Work done while at Dept. of
Computer Science and Engineering, University of California San Diego. Supported in part by a Research Assistantship
and a travel credit from the Fund for Scientific Research, Flanders (Belgium), in part by the Concerted Research
Action (GOA) Mefisto 2000/06 and Ambiorix 2005/11 of the Flemish Government, and in part by the European
Commission through the IST Programme under Contract IST-2002-507932 ECRYPT.

1

mihir@cs.ucsd.edu
mailto:mihir@cs.ucsd.edu
http://www-cse.ucsd.edu/users/mihir
Gregory.Neven@esat.kuleuven.be
mailto:Gregory.Neven@esat.kuleuven.be
http://www.neven.org

Contents

1 Introduction 3
1.1 Background . 3
1.2 Transitive signatures based on RSA . 4
1.3 New transitive signature schemes . 5
1.4 Eliminating node certificates via hashing . 6
1.5 Definitional contributions . 7
1.6 Related work, and versions of this paper . 8

2 Definitions 8

3 Transitive Signatures based on RSA 11

4 New Schemes 16
4.1 The FactTS -1 scheme . 16
4.2 The DLTS -1M scheme . 20
4.3 The GapTS -1 scheme . 22

5 Eliminating Node Certificates via Hashing 24
5.1 The RSATS -2 scheme . 24
5.2 The FactTS -2 scheme . 26
5.3 The GapTS -2 scheme . 28

6 From Stateful to Stateless Schemes 29

References 30

A Definitional Issues in Composition of Signatures 32

B Correctness Proof for RSATS-1 33

C Flaw in Proof of [SSM05] 34

2

1 Introduction

We present novel realizations of the transitive signature primitive introduced by Micali and Rivest
[MR02], and also provide an answer to an open question they raise regarding the security of an
RSA based scheme.

1.1 Background

The concept. The context envisioned by Micali and Rivest [MR02] is that of dynamically building
an authenticated graph, edge by edge. The signer, having secret key tsk and public key tpk , can at
any time pick a pair i, j of nodes and create a signature of {i, j}, thereby adding edge {i, j} to the
graph. A composability property is required: given a signature of an edge {i, j} and a signature
of an edge {j, k}, anyone in possession of the public key can create a signature of the edge {i, k}.
Security asks that this limited class of forgeries be the only possible ones. (I.e., without tsk , it
should be hard to create a valid signature of edge {i, j} unless i, j are connected by a path whose
edges have been explicitly authenticated by the signer.) Thus the authenticated graph at any point
is the transitive closure of the graph formed by the edges explicitly authenticated by the signer,
whence the name of the concept. We refer the reader to Section 2 for formal definitions. With
regard to applications, Micali and Rivest [MR02] suggest administrative domains, where nodes
represent machines and an edge between i and j means that i and j are in the same domain. It
seems that a truly compelling application, however, remains to be found.

Realizing the concept. A transitive signature scheme can be trivially realized by accepting, as
a valid signature of {i, j}, any chain of signatures that authenticates a sequence of edges forming a
path from i to j. Two issues lead [MR02] to exclude this trivial solution: the growth in signature
size, and the loss of privacy incurred by having signatures carry information about their history.
The main result of [MR02] is a (non-trivial) transitive signature scheme, here denoted DLTS , that
is proven to be (transitively) unforgeable under adaptive chosen-message attack (see Section 2 for
formal definitions) assuming that the discrete logarithm problem is hard in an underlying prime-
order group and assuming security of an underlying standard signature scheme. They also present
a natural RSA based transitive signature scheme, here denoted RSATS -1, but point out that even
though it seems secure, and a proof of transitive unforgeability under non-adaptive chosen-message
attacks exists, there is no known proof of transitive unforgeability under adaptive chosen-message
attacks. They thereby highlight the fact that in this domain, adaptive attacks might be harder to
provably protect against than non-adaptive ones.

This work. In summary, transitive signatures (transitively unforgeable under adaptive chosen-
message attacks) at this point have just a single realization, namely the DLTS scheme. It is
standard practice in cryptography to seek new and alternative realizations of primitives of potential
interest, both to provide firmer theoretical foundations for the existence of the primitive by basing
it on alternative conjectured hard problems and to obtain performance improvements. This paper
presents new schemes that accomplish both of these objectives, and also provides an answer to the
question about the RSA scheme.

The node certification paradigm. It is worth outlining the node certification based paradigm
introduced by the DLTS scheme, which will be our starting point. The signer’s keys include those
of a standard digital signature scheme, and the public key includes additional items. (In the DLTS
scheme, this is a group G of prime order q and a pair of generators of G.) The signer associates to
each node i in the current graph a node certificate consisting of a public label L(i) and a signature on
the concatenation of i and L(i) under the standard scheme. The signature of an edge contains the

3

Scheme Signing cost Verification cost Composition cost Signature size

DLTS 2 stand. sigs 2 stand. verifs 2 adds in Zq 2 stand. sigs
2 exp. in G 1 exp. in G 2 points in G

2 points in Zq

RSATS -1 2 stand. sigs 2 stand. verifs O(|N |2) ops 2 stand. sigs
2 RSA encs 1 RSA enc. 3 points in Z

∗
N

FactTS -1 2 stand. sigs 2 stand. verifs O(|N |2) ops 2 stand. sigs
O(|N |2) ops O(|N |2) ops 3 points in Z

∗
N

DLTS -1M 2 stand. sigs 2 stand. verifs 1 add in Zq 2 stand. sigs
1 exp. in G 1 exp. in G 2 points in G

1 point in Zq

GapTS -1 2 stand. sigs 2 stand. verifs O(|N |2) ops 2 stand. sigs

2 exp. in Ĝ 1 Sddh 3 points in Ĝ

RSATS -2 1 RSA dec. 1 RSA enc. O(|N |2) ops 1 point in Z
∗
N

FactTS -2 2 sq. roots in Z
∗
N O(|N |2) ops O(|N |2) ops 1 point in Z

∗
N

GapTS -2 1 exp. in Ĝ 1 Sddh O(|N |2) ops 1 point in Ĝ

Figure 1: Cost comparisons amongst transitive signature schemes. The word “stand.” refers
to operations of the underlying standard signature scheme, which are eliminated for RSATS -2,
FactTS -2 and GapTS -2. G denotes the group of prime order q used in DLTS , and N denotes a

modulus product of two primes as used in the RSA and factoring-based schemes. Ĝ is a gap Diffie-
Hellman group and Sddh refers to the decision Diffie-Hellman algorithm in Ĝ. Abbreviations used
are: “exp.” for an exponentiation in the group; “RSA enc.” for an RSA encryption; “RSA dec.” for
an RSA decryption performed given the decryption exponent; “sq. root” for a square root modulo
N performed using the prime factors of N ’; and “ops” for the number of elementary bit operations.

certificates of its endpoints plus an edge label δ. Verification of an edge signature involves relating
the edge label to the public labels of its endpoints as provided in the node certificates and verifying
the standard signatures in the node certificates. Composition involves algebraic manipulation of
edge labels.

The paradigm is useful, but brings an associated cost. Producing a signature for an edge can
involve computing two standard signatures. The length of an edge signature, containing two node
certificates each including a standard signature, can be large even if the edge labels are small.

1.2 Transitive signatures based on RSA

The RSATS-1 scheme. This scheme, briefly mentioned in [MR02], employs the node certification
paradigm. The signer has keys for a standard signature scheme. Its public key additionally includes
an RSA modulus N and encryption exponent e, while its secret key includes the corresponding
decryption exponent d. The public label of a node i is a point L(i) ∈ Z

∗
N , and the edge label of

edge {i, j} is L(i)dL(j)−d mod N assuming i < j. Composition involves multiplying edge labels
modulo N . One can prove that RSATS -1 is transitively unforgeable under non-adaptive chosen-
message attacks assuming the one-wayness of RSA and the security of the underlying standard
signature scheme. No adaptive chosen-message attack that succeeds in forgery has been found, but
neither has it been proven that RSATS -1 is transitively unforgeable under adaptive chosen-message

4

attack.
This situation (namely a scheme that appears to resist both attack and proof) is not uncommon

in cryptography, and we suggest that it is a manifestation of the fact that the security of the scheme
is relying on properties possessed by RSA but going beyond those captured by the assumption that
RSA is one-way. Accordingly we seek an alternative, stronger assumption upon which a proof of
security can be based.

Our result. We prove that RSATS -1 is transitively unforgeable under adaptive chosen-message
attacks under the assumption that RSA is secure under one-more-inversion (and the standard
signature scheme is secure). This assumption was introduced by [BNPS03], who used it to prove
the security of Chaum’s blind signature scheme [Cha83]. It was also used in [BP02] to prove security
of the GQ identification scheme against impersonation under active attack, which had been open
from [GQ89].

1.3 New transitive signature schemes

The FactTS-1 scheme. After seeing the RSATS -1 scheme, one might wonder whether there exists a
transitive signature scheme that is provably secure (transitively unforgeable under adaptive chosen-
message attack) under the standard one-wayness assumption on RSA. We answer this question
positively by presenting the FactTS -1 scheme that is provably secure under the (even weaker)
assumption that factoring is hard.

In our FactTS -1 scheme, the signer has keys for a standard signature scheme, and its public key
additionally includes a modulus N product of two large primes. The public label of a node i is a
quadratic residue L(i) ∈ Z

∗
N , and an edge label of edge {i, j} is a square root of L(i)L(j)−1 mod N

assuming i < j. Composition involves multiplying edge labels moduloN . We prove that FactTS -1 is
transitively unforgeable under adaptive chosen-message attack, assuming the hardness of factoring
the underlying modulus, and assuming security of the underlying standard signature scheme. The
delicate part of this proof is an information-theoretic lemma showing that, even under an adaptive
chosen-message attack, for any {i, j} not in the transitive closure of the current graph, an adversary
has zero advantage in determining which of the square roots of L(i)L(j)−1 is held by the signer.

One might wonder why proofs under standard assumptions exist for DLTS and FactTS -1 but
remain elusive for RSATS -1 in spite of the obvious similarities between these schemes. The proofs
for DLTS and FactTS -1 exploit the fact that there are multiple valid edge labels for any given
edge in the graph, and that finding two different edge labels implies solving the underlying hard
problem. With RSATS -1, the edge label is uniquely determined by the two node certificates, and
this paradigm fails.

Since FactTS -1 continues to employ the node certification paradigm, it incurs the same costs as
DLTS and RSATS -1 from the use of the standard signature scheme. However, as Figure 1 indicates,
it is otherwise computationally cheaper than DLTS and RSATS -1 for signing and verifying, reducing
the extra cost from cubic (exponentiation) to quadratic (a couple of multiplications and an inverse).

The DLTS-1M scheme. The DLTS scheme [MR02] uses two generators. We briefly note a simpler
and perhaps more natural discrete-log based scheme called DLTS -1M that uses a single generator.
This scheme is a discrete-log based analog of RSATS -1. As Figure 2 indicates, it offers some slight
performance improvements over DLTS . However, while the security of DLTS is proven under
the standard discrete-logarithm assumption [MR02], our proof of security of DLTS -1M requires a
stronger assumption, namely the hardness of the one-more discrete logarithm problem as defined
in [BNPS03].

The tradeoff here is analogous to one arising for discrete-logarithm based identification (ID)

5

Scheme
Proven to be transitively unforgeable under adaptive

chosen-message attack assuming
RO Model?

DLTS Security of standard signature scheme No
Hardness of discrete logarithm in prime-order group

RSATS -1 Security of standard signature scheme No
RSA is secure against one-more-inversion attack

FactTS -1 Security of standard signature scheme No
Hardness of factoring

DLTS -1M Security of standard signature scheme No
Hardness of one-more discrete logarithm in prime-order group

GapTS -1 Security of standard signature scheme No
One-more gap Diffie-Hellman assumption

RSATS -2 RSA is secure against one-more-inversion attack Yes

FactTS -2 Hardness of factoring Yes

GapTS -2 One-more gap Diffie-Hellman assumption Yes

Figure 2: Provable security attributes of transitive signature schemes. We indicate the assumptions
under which there is a proof of transitive unforgeability under adaptive chosen-message attack, and
whether or not the random oracle model is used.

schemes. DLTS is similar to Okamoto’s two-generator using ID scheme [Oka93] while DLTS -1M
is similar to Schnorr’s one-generator using ID scheme [Sch90]. Schnorr’s scheme is simpler, more
natural and slightly more efficient. However, while Okamoto proved his scheme secure (against
impersonation under active attack) under the standard discrete-logarithm assumption, the proof of
security for Schnorr’s scheme (which remained elusive for a while) is based on the hardness of the
one-more discrete logarithm problem [BP02].

The GapTS-1 scheme. Gap DH groups are groups where the CDH (Computational Diffie-Hellman)
problem is hard but the DDH (Decision Diffie-Hellman) problem is easy. They have been used to
yield short signatures [BLS01] and also simple, efficient schemes for threshold, blind and multi-
signatures [Bol03].

We present a transitive signature scheme GapTS -1 using these groups as well. It is proven
transitively unforgeable under adaptive chosen-message attack assuming hardness of the one-more
CDH problem introduced in [Bol03].

This scheme is actually not of direct interest, because it is inferior to DLTS -1M both with
regard to assumptions made to prove security and with regard to performance. (In any group
where one may implement GapTS -1, one may also implement DLTS -1M , and obtain security under
weaker assumptions and with lower cost.) The value of GapTS -1 is that, unlike DLTS -1M or DLTS ,
it is amenable to the hash-based modification described next, resulting in GapTS -2, a scheme that
has the shortest signatures amongst all schemes we have discussed.

1.4 Eliminating node certificates via hashing

The RSATS-2 scheme. The RSATS -1 scheme is amenable to a hash-based modification which
eliminates the need for node certificates and thereby removes the standard signature scheme, and
all its associated costs, from the picture. In the RSATS -2 scheme, the public label of a node i is

6

not chosen by the signer but rather implicitly specified as the output of a public hash function
applied to i, and RSA decryption is used to compute edge labels. We prove that RSATS -2 is
transitively unforgeable under adaptive chosen-message attack, assuming the hardness of one-more
RSA-inversion in a model where the hash function is a random oracle [BR93].

The FactTS-2 scheme. The fact that squaring modulo a composite is a trapdoor one-way function
makes FactTS -1 amenable to a similar elimination of node certificates via hashing. We present the
FactTS -2 transitive signature scheme where the public label of a node i is not chosen by the signer
but rather specified via the output of a public hash function applied to i. (A difficulty, addressed
in Section 5.2, is that the hash output might not be a quadratic residue.) We prove that FactTS -2
is transitively unforgeable under adaptive chosen-message attacks in the random oracle model
assuming factoring the underlying modulus is hard.

As Figure 1 indicates, the major cost savings is elimination of all costs associated to the standard
scheme. However, signing now requires computation of square roots modulo N by the signer based
on the prime factorization of N , which has cost comparable to an exponentiation modulo N . Thus
overall the main gain is the reduction in signature size.

The GapTS-2 scheme. The GapTS -1 scheme is also amenable to a similar hash-based modification,
resulting in a scheme, GapTS -2, whose parameters are depicted in Figure 1. The signature here is
simply a group element, and by the nature of gap DH groups, this means the GapTS -2 scheme has
the shortest signatures of all.

DLTS and DLTS-1M . The DLTS and DLTS -1M schemes are not amenable to the hash-based
modification since the discrete exponentiation function is not trapdoor over the groups used for
these schemes.

Stateful versus stateless schemes. The five basic schemes DLTS , DLTS -1M , RSATS -1,
FactTS -1, GapTS -1 are stateful. (Meaning, the signing algorithm maintains state across invocations.)
As discussed in Section 6, there is a simple, general way to modify these schemes to result in stateless
ones. It may be interesting to note, however, that the RSATS -2 and GapTS -2 schemes are naturally
stateless. (FactTS -2 is not, and needs to be modified according to Section 6 if we want a stateless
version.)

1.5 Definitional contributions

Regarding the composability property, Micali and Rivest [MR02, p. 238] (we have modified the
notation to be consistent with ours) say: “... if someone sees Alice’s signatures on edges {i, j} and
{j, k} then that someone can easily compute a valid signature on edge {i, k} that is indistinguishable
from a signature on that edge that Alice would have produced herself.” This seems to suggest that
composition is only required to work when the given signatures were explicitly produced by the
signer, while surely they meant composition to work even if the given signatures were themselves
obtained via composition. Formulating an appropriate requirement turns out to be more delicate
than one might imagine. One could require the simple condition that valid signatures (meaning,
ones accepted by the verification algorithm relative to the signer’s public key) can be composed to
yield valid signatures. (This would follow [JMSW02], who require a condition that implies this.)
But this requirement is too strong in the current context. Indeed, as we show in Appendix A, the
DLTS scheme does not meet it, meaning there are valid signatures which, when composed, yield
an invalid signature. The same is true for our schemes.

It can be proved that for DLTS and our schemes, finding valid signature inputs that make the
composition algorithm return an invalid signature is computationally hard assuming the scheme is

7

secure. But we prefer to not tie correctness of composition to security. Instead, we formulate cor-
rectness of composition via a recursive requirement that says that as long as one obtains signatures
either directly via the signer or by applying the composition operation to signatures previously
legitimately obtained or generated, then the resulting signature is valid. (This would be relatively
easy to formulate if the signer was stateless, but needs more care due to the fact that the natural
formulation of transitive signature schemes often results in a stateful signer.) As part of the for-
malization we provide in Definition 2.1, we follow [JMSW02] and require a very strong form of the
indistinguishability requirement mentioned in the quote above, namely that the signature output
by the composition algorithm is not just indistinguishable from, but identical to, the one the signer
would have produced. (As argued in [JMSW02], this guarantees privacy.) The DLTS scheme, as
well as all our schemes, meet this strong definition.

1.6 Related work, and versions of this paper

Transitive signatures are one case of a more general concept promulgated by Rivest [Riv00] in talks,
namely that of signature schemes that admit forgery of signatures derived by some specific operation
on previous signatures but resist other forgeries. Johnson, Molnar, Song and Wagner [JMSW02]
formalize a notion of homomorphic signature schemes that captures this. Context Extraction
Signatures, as introduced earlier by [SBZ02], as well as redactable signatures and set-homomorphic
signatures [JMSW02], fall in this framework. A signature scheme that is homomorphic with respect
to the prefix operation is presented by Chari, Rabin and Rivest [CRR02].

The preliminary (i.e. conference proceedings) version of this paper [BN02] contained the results
pertaining to RSATS -1, and presented the new schemes FactTS -1 and FactTS -2. The current, full
version, besides including proofs omitted in the preliminary version, also adds the new schemes
DLTS -1M ,GapTS -1,GapTS -2.

We now mention some work on transitive signatures done subsequent to the appearance of the
conference version of our work [BN02]. First is the work of Hohenberger [Hoh03], who presents
a general framework for the design and analysis of transitive signature schemes, as well as some
results on the difficulty of constructing transitive signature schemes for directed graphs. Second
is the work of Shahandashti, Salmasizadeh and Mohajeri [SSM05]. These authors independently
discovered our GapTS -1 scheme. (The scheme in their paper is the same as GapTS -1 barring notation
and some minor implementation details.) They however claim to prove a stronger security result,
namely that the scheme is secure under the CDH assumption (and the security of an underlying
standard signature scheme), rather than under the stronger one-more CDH assumption that we
rely on. Unfortunately, we found their proof to be flawed, invalidating their result. We provide
details of the flaw in Appendix C. As a consequence, our result about GapTS -1 remains the best
known so far about the security of this scheme.

2 Definitions

Notation. We let ε denote the empty string and ‖ the concatenation operator on strings. We let

N = {1, 2, . . .} be the set of positive integers. The notation x
$← S denotes that x is selected ran-

domly from set S. If A is a possibly randomized algorithm then the notation x
$← A(a1, a2, . . . , an)

denotes that x is assigned the outcome of the experiment of running A on inputs a1, a2, . . . , an.

Graphs. All graphs in this paper are undirected. If G = (V,E) is a graph, its transitive closure is
the graph G̃ = (V, Ẽ) where {i, j} ∈ Ẽ iff there is a path from i to j in G. A graph G∗ = (V ∗, E∗)
is said to be transitively closed if for all nodes i, j, k ∈ V ∗ such that {i, j} ∈ E∗ and {j, k} ∈ E∗, it

8

(tpk , tsk)
$← TKG(1k)

S ← ∅ ; Legit ← true ; NotOK ← false

Run A with its oracles until it halts, replying to its oracle queries as follows:
If A makes TSign query i, j then

If i = j then Legit ← false

Else
Let σ be the output of the TSign oracle and let S ← S ∪ {({i, j}, σ)}
If TVf(tpk , i, j, σ) = 0 then NotOK ← true

If A makes Comp query i, j, k, σ1, σ2 then
If [({i, j}, σ1) 6∈ S or ({j, k}, σ2) 6∈ S or i, j, k are not all distinct] then

Legit ← false

Else
Let σ be the output of the Comp oracle and let S ← S ∪ {({i, k}, σ)}
Let τ ← TSign(tsk , i, k)
If [(σ 6= τ) or TVf(tpk , i, k, σ) = 0] then NotOK ← true

When A halts, output (Legit ∧ NotOK) and halt

Figure 3: Experiment used to define correctness of the transitive signature scheme TS = (TKG,
TSign,TVf,Comp).

also holds that {i, k} ∈ E∗; or in other words, edge {i, j} ∈ E∗ whenever there is a path from i to
j in G∗. Note that the transitive closure of any graph G is a transitively closed graph. Also note
that any transitively closed graph can be partitioned into connected components such that each
component is a complete graph.

Transitive signature schemes and their correctness. A transitive signature scheme TS =
(TKG,TSign,TVf,Comp) is specified by four polynomial-time algorithms, and the functionality is
as follows:

• The randomized key generation algorithm TKG takes input 1k, where k ∈ N is the security
parameter, and returns a pair (tpk , tsk) consisting of a public key and matching secret key.

• The signing algorithm TSign, which could be stateful or randomized (or both), takes input the
secret key tsk and nodes i, j ∈ N, and returns a value called an original signature of edge {i, j}
relative to tsk . If stateful, it maintains state which it updates upon each invocation.

• The deterministic verification algorithm TVf, given tpk , nodes i, j ∈ N, and a candidate signa-
ture σ, returns either 1 or 0. In the former case we say that σ is a valid signature of edge {i, j}
relative to tpk .

• The deterministic composition algorithm Comp takes tpk , nodes i, j, k ∈ N and values σ1, σ2 to
return either a value σ or a symbol ⊥ to indicate failure.

The above formulation makes the simplifying assumption that the nodes of the graph are positive
integers. In practice it is desirable to allow users to name nodes via whatever identifiers they
choose, but these names can always be encoded as integers, so we keep the formulation simple.

Naturally, it is required that if σ is an original signature of edge {i, j} relative to tsk then it is
a valid signature of {i, j} relative to tpk .

As discussed in Section 1.5, formulating a correctness requirement for the composition algo-
rithm is more delicate. Micali and Rivest [MR02] seem to suggest that composition is only required

9

to work when the given signatures were explicitly produced by the signer, while surely they meant
composition to work even if the given signatures were themselves obtained via composition. Fur-
thermore the indistinguishability requirement is not formalized in [MR02].

Definitions taking these issues into account are however provided in [JMSW02]. They ask that
whenever the composition algorithm is invoked on valid signatures (valid meaning accepted by
the verification algorithm relative to the signer’s public key) it returns the same signature as the
signer would produce. This captures indistinguishability in a strong way that guarantees privacy.
However, one implication of their definition is that whenever the composition algorithm is invoked
on valid signatures, it returns a valid signature, and this last property is not true of known node
certification based transitive signature schemes such as DLTS , RSATS -1, and also not true for our
new schemes. For all these schemes, it is possible to construct examples of valid signature inputs
that, when provided to the composition algorithm, result in the latter failing (returning ⊥ because
it cannot compose) or returning an invalid signature, as we illustrate in Appendix A. (Roughly,
this happens because composition of a signature σ1 of {i, j} with a signature σ2 of {j, k} in these
schemes requires that the public labels of node j as specified in σ1 and σ2 be the same. Validity of
the individual signatures cannot guarantee this.)

This is not a weakness in the schemes, because in practice composition is applied not to arbitrary
valid signatures but to ones that are legitimate, the latter being recursively defined: a signature is
legitimate if it is either obtained directly by the signer, or obtained by applying the composition
algorithm to legitimate signatures. What it points to is that we need to formulate a new correctness
definition for composition that captures this intuition and results in a notion met by the known
transitive signature schemes. Roughly, we would like a formulation that says that if the composition
algorithm is invoked on legitimate signatures, then it returns the same signature as the signer would
have produced. (While computational indistinguishability would be sufficient to guarantee privacy,
we continue to follow [JMSW02] here in capturing indistinguishability by the strong requirement
that composed signatures are identical to original ones, because all schemes seem to satisfy this
simpler definition anyway. We weaken their requirement though by asking that this be true not for
all valid signature inputs to the composition algorithm, but only for legitimate inputs.)

The formalization would be relatively simple (the informal description above would pretty much
be it) if the signing algorithm were stateless, but the natural formulation of numerous transitive
signature schemes seems to be in terms of a stateful signing algorithm. In this case, it is not clear
what it means that the output of the composition algorithm is the same as that of the signer,
since the latter’s output depends on its internal state which could be different at different times.
To obtain a formal definition of correctness that takes into account the statefulness of the signing
algorithm, we proceed as follows. We associate to any algorithm A (deterministic, halting, but not
computationally limited) and security parameter k ∈ N the experiment of Figure 3, which provides
A with oracles

TSign(tsk , ·, ·) and Comp(tpk , ·, ·, ·, ·, ·) ,
where tpk , tsk have been produced by running TKG on input 1k. In this experiment, the TSign

oracle maintains state, and updates this state each time it is invoked. It also tosses coins anew at
each invocation if it is randomized.

Definition 2.1 We say that the transitive signature scheme TS is correct if for every (computa-
tionally unbounded) algorithm A and every k, the output of the experiment of Figure 3 is true

with probability zero.

The experiment computes a boolean Legit which is set to false if A ever makes an “illegitimate”
query. It also computes a boolean NotOK which is set to true if a signature returned by the

10

composition algorithm differs from the original one. To win, A must stay legitimate (meaning
Legit = true) but violate correctness (meaning NotOK = true). The experiment returns true iff
A wins. The definition requires that this happen with probability zero.

Our definition asks that real and composed signatures be the same. This could be relaxed to ask
that they are, say, statistically indistinguishable. Such a definition is however more complicated,
and not needed in this paper since the schemes all meet our definition, so we have not pursued it.

Security of transitive signature schemes. We recall the notion of security of [MR02].
Associated to transitive signature scheme TS = (TKG,TSign,TVf,Comp), algorithm F (called a
tu-cma adversary) and security parameter k ∈ N parameter k ∈ N is an experiment, denoted

Exptu-cma
TS ,F (k) ,

that returns 1 if and only if F is successful in its attack on the scheme. The experiment begins by
running TKG on input 1k to get keys (tpk , tsk). It then runs F, providing this adversary with input
tpk and oracle access to the function TSign(tsk , ·, ·). The oracle is assumed to maintain state or
toss coins as needed. Let E be the set of all edges {i, j} such that F made oracle query i, j, and let
V be the set of all nodes involved in edges in E. Eventually, F will output i′, j′ ∈ N and a forgery
σ′. We say that F wins if σ′ is a valid signature of {i′, j′} relative to tpk but edge {i′, j′} is not in
the transitive closure of graph G = (V,E). The experiment returns 1 if F wins and 0 otherwise.
The advantage of F in its attack on TS is the function Advtu-cma

TS ,F (·) defined for k ∈ N by

Advtu-cma
TS ,F (k) = Pr

[
Exptu-cma

TS ,F (k) = 1
]
,

where the probability is taken over all the random choices made in the experiment. We say that
TS is transitively unforgeable under adaptive chosen-message attack if the function Advtu-cma

TS ,F (·) is
negligible for any adversary F whose running time is polynomial in the security parameter k.

Random oracle model. Some of our schemes will be defined in the random oracle model [BR93],
which means that the algorithms TSign,TVf,Comp all have oracle access to one or more functions
which in the correctness and security experiments are assumed to be drawn at random from ap-
propriate spaces. Formally, both the experiment of Figure 3 and Exptu-cma

TS ,F (k) are augmented to
choose a random function mapping {0, 1}∗ to an appropriate range, possibly depending on the
public key, and the adversary as well as the TSign,TVf,Comp algorithms then get oracle access to
this function. In Definition 2.1, the probability includes the choice of these functions, and so does
the Advtu-cma

TS ,F (k).

Standard signature schemes. Some of our schemes use an underlying standard digital signature
scheme SDS = (SKG,SSign,SVf), described as usual via its polynomial-time key generation, signing
and verification algorithms. We use the security definition of unforgeability under chosen-message
attack [GMR88], where the forger B is given adaptive oracle access to the signing algorithm, and
its advantage Advuf-cma

SDS ,B (k) in breaking SDS is defined as the probability that it outputs a valid
signature for a message that was not one of its previous oracle queries. The scheme SDS is said
to be unforgeable under adaptive chosen-message attack if Advuf-cma

SDS ,B (·) is negligible for every
polynomial-time forger B.

3 Transitive Signatures based on RSA

The RSATS -1 scheme was noted in [MR02] as a simple alternative to DLTS which can be shown
to be transitively unforgeable under non-adaptive chosen-message attacks assuming RSA is one-
way. We do not know whether the same assumption suffices to prove it is transitively unforgeable

11

under adaptive chosen-message attacks, but here we will show that this is true under a stronger
assumption.

RSA generators and the assumption. A RSA key generator Krsa is a randomized, polynomial-
time algorithm that on input 1k outputs a tuple (N, e, d) where 2k−1 ≤ N < 2k, ed ≡ 1 mod ϕ(N)
and N is the product of two distinct, odd primes. We do not attempt to pin down exactly how
the generator operates, for example with regard to the distribution on the primes it chooses, or
the choice of encryption exponent. (The latter may be chosen to be a small number, like 3, for
efficiency, or a large number if desired.) All we ask is that the one-more RSA-inversion problem
associated to the generator be hard, as defined below. This makes our results more general.

We recall the notion of security under one more inversion [BNPS03]. An om-rsa adversary is
a randomized, polynomial-time algorithm A that gets input N, e and has access to two oracles.
The first is an RSA-inversion oracle Inv(·) that given Y ∈ Z

∗
N returns Y d mod N . The second is

a challenge oracle Chall() that, each time it is invoked (it takes no inputs), returns a random
challenge point from Z

∗
N . Adversary A wins the game if it succeeds in inverting all n points output

by the challenge oracle, using strictly less than n queries to the RSA-inversion oracle. More formally,
A is run in the following experiment:

Experiment Expom-rsa
Krsa,A (k):

(N, e, d)
$← Krsa(1

k) ; n← 0 ; m← 0

(w1, . . . , wn′)
$← AInv,Chall(N, e)

If n′ = n and m < n and ∀ i = 1 . . . n : we
i ≡Wi mod N

Then return 1 else return 0

Oracle Inv(Y):
m← m+ 1 ; Return Y d mod N

Oracle Chall() :

i← i+ 1 ; Wi
$← Z

∗
N

Return Wi .

The om-rsa advantage of A, denoted Advom-rsa
Krsa,A (k), is the probability that the above experiment

returns 1, taken over the coins of Krsa, the coins of A, and the coins used by the challenge oracle
across its invocations. We say that the one-more RSA-inversion problem associated to Krsa is hard
if the function Advom-rsa

Krsa,A (·) is negligible for all polynomial-time adversaries A.
Note that the standard one-wayness assumption on Krsa can be formulated as requiring that the

function Advom-rsa
Krsa,A (·) is negligible for all polynomial-time adversaries A that make one challenge

query and no inversion queries. Thus, hardness of the one-more RSA-inversion problem is an
extension of one-wayness.

The scheme. We associate to any RSA key generator Krsa and any standard digital signature
scheme SDS = (SKG,SSign,SVf) a transitive signature scheme RSATS -1 = (TKG,TSign,TVf,Comp)
defined as follows:

• TKG(1k) does the following

(1.1) Run SKG(1k) to generate a key pair (spk , ssk) for SDS

(1.2) Run Krsa(1
k) to get a triple (N, e, d)

(1.3) Output tpk = (N, e, spk) as the public key and tsk = (N, e, ssk) as the secret key.

Note that the exponent d is discarded and in particular not part of the secret key.

• The signing algorithm TSign maintains state (V, `, L,Σ) where V ⊆ N is the set of all queried
nodes, the function `: V → Z

∗
N assigns to each node i ∈ V a secret label `(i) ∈ Z

∗
N , while

the function L: V → Z
∗
N assigns to each node i ∈ V a public label L(i), and the function

Σ: V → {0, 1}∗ assigns to each node i a standard signature on i‖L(i) under ssk . When
invoked on inputs tsk , i, j, meaning when asked to produce a signature on edge {i, j}, it does
the following:

12

(2.1) If i > j then swap(i, j)

(2.2) If i 6∈ V then

(2.3) V ← V ∪ {i}
(2.4) `(i)

$← Z
∗
N ; L(i)← `(i)e mod N

(2.5) Σ(i)← SSign(ssk , i‖L(i))

(2.6) If j 6∈ V then

(2.7) V ← V ∪ {j}
(2.8) `(j)

$← Z
∗
N ; L(j)← `(j)e mod N

(2.9) Σ(j)← SSign(ssk , j‖L(j))

(2.10) δ ← `(i)`(j)−1 mod N

(2.11) Ci ← (i, L(i),Σ(i)) ; Cj ← (j, L(j),Σ(j))

(2.12) Return (Ci, Cj , δ) as the signature of {i, j}.
We refer to (i, L(i),Σ(i)) as a certificate of node i.

• TVf, on input tpk = (N, e, spk), nodes i, j and a candidate signature σ, proceeds as follows:

(3.1) If i > j then swap(i, j)

(3.2) Parse σ as (Ci, Cj , δ), parse Ci as (i, Li,Σi), parse Cj as (j, Lj ,Σj)

(3.3) If SVf(spk , i‖Li,Σi) = 0 or SVf(spk , j‖Lj ,Σj) = 0 then return 0

(3.4) If δe ≡ LiL
−1
j mod N then return 1 else return 0.

• The composition algorithm Comp takes tpk , nodes i, j, k and signatures σ1 and σ2, and computes
a composed signature for edge {i, k} as follows:

(4.1) If i > k then swap(i, k) ; swap(σ1, σ2)

(4.2) Parse σ1 as (C1, C2, δ1) ; Parse σ2 as (C3, C4, δ2)

(4.3) If i > j then swap(C1, C2) ; δ1 ← δ−1
1 mod N

(4.4) If j > k then swap(C3, C4) ; δ2 ← δ−1
2 mod N

(4.5) δ ← δ1δ2 mod N

Return (C1, C4, δ) as the signature for {i, k}.

Proposition 3.1 The RSATS -1 transitive signature scheme described above satisfies the correct-
ness requirement of Definition 2.1.

The proof is provided in Appendix A. We note that it was to ensure that this correctness require-
ment is met that we have been detailed regarding the specification of the composition algorithm
above.

Computational costs. As Figure 1 indicates, over and above costs associated to the standard
signature scheme, signing and verifying require RSA encryptions, whose cost dominates that of
quadratic-time operations such as multiplications and inverses mod N . The cost of the RSA
encryptions depends on the choice of encryption exponent made by the RSA key generator, and can
be small for a small exponent. Composition is efficient, involving only quadratic-time operations.

Security of RSATS-1. The following theorem says that as long as the RSA one-more-inversion
problem is hard for the associated generator, and as long as the standard signature scheme is secure,
the RSATS -1 transitive signature scheme is transitively unforgeable under adaptive chosen-message
attack.

Theorem 3.2 Let Krsa be an RSA key generator and let SDS = (SKG,SSign,SVf) be a standard
digital signature scheme. Let RSATS -1 be the transitive signature scheme associated to Krsa and

13

SDS as defined above. If the one-more RSA-inversion problem associated to Krsa is hard and SDS is
unforgeable under adaptive chosen-message attack, then RSATS -1 is transitively unforgeable under
adaptive chosen-message attack.

Proof of Theorem 3.2. Suppose we are given a polynomial-time adversary F for RSATS -1. We
construct a om-rsa adversary A, and a forger B attacking SDS , both polynomial-time, such that
for all k

Advtu-cma
RSATS-1,F(k) ≤ Advom-rsa

Krsa,A (k) + Advuf-cma
SDS ,B (k) . (1)

The assumptions, namely that the one-more RSA-inversion problem associated to Krsa is hard and
SDS is unforgeable under adaptive chosen-message attack, imply that the advantage functions on
the right-hand-side of Equation (1) are negligible. The equation then says that Advtu-cma

RSATS-1,F(·) is
also negligible, which completes the proof. It remains to describe A and B.

The om-rsa adversary A, as per the definitions above, gets inputsN, e and, has access to an inversion
oracle Inv(·) and a challenge oracle Chall. It wins if it outputs the inverses of all points returned
by Chall, using strictly less queries to the inversion oracle than it makes to the challenge oracle.
Let us now describe how it operates. It first generates a fresh key pair (spk , ssk) for SDS by running
SKG(1k). It then runs F on input tpk = (N, e, spk). The idea is that when answering F’s signature
queries, A uses target points generated by the challenge oracle as public labels. Running the TSign

algorithm in order to create signatures is not possible because A doesn’t know the corresponding
secret labels; instead, it sparingly uses the inversion oracle to compute edge labels, calling the oracle
only when the requested signature cannot be computed by composing previously signed edges. For
this purpose, A maintains state information (V,L,Σ,∆), where V , L and Σ are defined as in the
TSign algorithm, and ∆ : V × V → Z

∗
N is a function storing known edge labels. Now, in detail,

when asked for a signature on edge {i, j}, A proceeds as follows:

(5.1) If i > j then swap(i, j)
(5.2) If i 6∈ V then
(5.3) V ← V ∪ {i} ; L(i)← Chall()

(5.4) Σ(i)← SSign(ssk , i‖L(i))

(5.5) ∆(i, i)← 1
(5.6) If j 6∈ V then
(5.7) V ← V ∪ {j} ; L(j)← Chall()

(5.8) Σ(j)← SSign(ssk , j‖L(j))

(5.9) ∆(j, j)← 1
(5.10) If ∆(i, j) is not defined then
(5.11) ∆(i, j)← Inv(L(i) · L(j)−1 mod N)

(5.12) ∆(j, i)← ∆(i, j)−1 mod N
(5.13) For all v ∈ V \ {i, j} do
(5.14) If ∆(v, i) is defined then
(5.15) ∆(v, j)← ∆(v, i) ·∆(i, j) mod N
(5.16) ∆(j, v)← ∆(v, j)−1 mod N
(5.17) If ∆(v, j) is defined then
(5.18) ∆(v, i)← ∆(v, j) ·∆(j, i) mod N
(5.19) ∆(i, v)← ∆(v, i)−1 mod N
(5.20) δ ← ∆(i, j)
(5.21) Return ((i‖L(i),Σ(i)), (j‖L(j),Σ(j)), δ) to F.

14

At the end of its execution, F outputs a forgery σ′ = ((i′, Li′ ,Σi′), (j
′, Lj′ ,Σj′), δ

′) for edge {i′, j′}.
(During this analysis, we assume without loss of generality that i′ < j′. If this is not the case,
one can swap i′ and j′.) Let G = (V,E) be the graph defined by F’s signature queries, and let
G̃ = (V, Ẽ) be its transitive closure. If σ′ is not a valid forgery, meaning that TVf(tpk , i′, j′, σ′) = 0
or {i′, j′} ∈ Ẽ, then A aborts. Let E be the event that F’s forgery contains recycled node certificates,
i.e. Li′ = L(i′) and Lj′ = L(j′). In case E happens, A aborts. Else it computes solutions for all

challenges that it received from the challenge oracle, as follows. The transitively closed graph G̃ is
partitioned into c disjoint components Vk ⊂ V for k = 1 . . . c. Let Vk′ be the component containing
node i′. For all k = 1 . . . c, k 6= k′, algorithm A chooses a reference node rk ∈ Vk and computes the
secret labels of all nodes in Vk as

(5.22) `(rk)← Inv(L(rk))
(5.23) For all v ∈ Vk \ {rk} do
(5.24) `(v)← ∆(v, rk) · `(rk) mod N

while the secret labels of all nodes in component Vk′ are computed as

(5.25) `(i′)← δ′ · `(j′) mod N
(5.26) For all v ∈ Vk′ \ {i′} do
(5.27) `(v)← ∆(v, i′) · `(i′) mod N .

From the way A answers F’s signature queries, one can see that ∆(i, j) is defined for all nodes i, j
that belong to the same component, and hence that the values of ∆ needed in the computations
above are also defined. Algorithm A can now output the solutions for all its target points: for each
i ∈ V , the public label L(i) was obtained as a result of a query to Chall(), so the algorithm
outputs `(i) for all i ∈ V .

Now we need to check that A actually won the game. To do this we have to count the number of
inversion queries. For each component Vk, k 6= k′, algorithm A needed |Vk| − 1 inversion queries
to answer F’s signature queries (the number of edges in a minimal spanning tree of Vk) plus one
additional query at the end of the game to compute the secret label of rk, summing up to |Vk|
inversion queries for each component. The component Vk′ only needed |Vk′ | − 1 queries, because it
did not need the additional query. So in summary, A inverted |V | target points using

∑
k 6=k′ |Vk|+

(|Vk′ | − 1) = |V | − 1 inversion queries, and hence wins the game.

The description of the forger B is rather straightforward: when run on input spk , it generates RSA
parameters N, e, d using Krsa. It then runs F on input tpk = (N, e, spk), answering F’s signature
queries using the real TSign algorithm but consulting its own SSign(ssk , ·) oracle to create node
certificates. In the event E that F’s forgery recycles old node certificates, B gives up, but otherwise
(in the event E) at least one of the node certificates contains a signature on a new message, and
this can be used to output a forgery.

It is clear that A’s simulation of F’s environment is perfect. Accordingly we have

Advtu-cma
RSATS-1,F(k) = Pr

[
Exptu-cma

RSATS-1,F(k) = 1
]

= Pr
[
Exptu-cma

RSATS-1,F(k) = 1 ∧ E
]

+ Pr
[
Exptu-cma

RSATS-1,F(k) = 1 ∧ E
]

≤ Advom-rsa
Krsa,A (k) + Advuf-cma

SDS ,B (k) .

This yields Equation (1), as required.

15

4 New Schemes

We describe three new transitive signature schemes, all proven transitively unforgeable under adap-
tive chosen-message attack.

4.1 The FactTS-1 scheme

Our factoring-based transitive signature (FactTS -1) scheme stays within the node certification
paradigm but, by implementing label algebra via square roots modulo a composite, provides security
based on factoring while reducing some costs compared to DLTS and RSATS -1.

Factoring problem. A modulus generator Kfact is a randomized, polynomial-time algorithm that
on input 1k returns a triple (N, p, q) where p, q are distinct, odd primes, N = pq and 2k−1 ≤ N < 2k.
For any factoring adversary A and k ∈ N we let

Advfact
Kfact,A

(k) = Pr
[
r ∈ {p, q} : (N, p, q)

$← Kfact(1
k) ; r

$← A(N)
]
.

We say that factoring is hard relative to Kfact if the function Advfact
Kfact,A

(·) is negligible for every
polynomial-time algorithm A.

There are numerous possible modulus generators which differ in the structure of the primes
chosen or the distribution under which they are chosen. We do not restrict the type of generator,
but only assume that the associated factoring problem is hard.

The scheme. We associate to any modulus generator Kfact and any standard digital signature
scheme SDS = (SKG,SSign,SVf) a transitive signature scheme FactTS -1 = (TKG,TSign,TVf,Comp)
defined as follows:

• TKG(1k) proceeds as in RSATS -1 with the following changes:

(1.2) Run Kfact(1
k) to get a triple (N, p, q)

(1.3) Output tpk = (N, spk) as the public key and tsk = (N, ssk) as the secret key.

Note that the primes p, q are discarded and in particular are not part of the secret key.

• The signing algorithm TSign maintains state as in RSATS -1. On inputs tsk , i, j it proceeds as
the TSign algorithm of RSATS -1 except that rather than computing L(·) as `(·)e it computes
L(·) as `(·)2 in lines (2.4) and (2.8).

• TVf, on input tpk = (N, spk), nodes i, j and a candidate signature σ, proceeds exactly as the
TVf algorithm of the RSATS -1 scheme, except that δe is replaced with δ2 in line (3.4).

• The composition algorithm is identical to that of RSATS -1.

A proof by induction similar to the one in Appendix A can be used to show the FactTS -1 transitive
signature scheme described above satisfies the correctness requirement of Definition 2.1.

Computational costs. The cost for the signature algorithm is dominated by multiplications and
inversions modulo N , for both of which there exist algorithms quadratic in |N |, and the cost of
generating two standard signatures, which depends on the choice of underlying standard signature
scheme. It is not strictly necessary to test membership in Z

∗
N , because it is very unlikely that a

randomly generated value is not coprime with N . Verification takes a couple of multiplications
mod N and two standard signature verifications. The composition of two signatures involves one
multiplication and possibly an inversion in Z

∗
N . See Figure 1 for the cost summary.

Security. The following is the formal statement of our result about the security of FactTS -1.

16

Theorem 4.1 Let Kfact be a modulus generator and let SDS = (SKG,SSign,SVf) be a standard
digital signature scheme. Let FactTS -1 be the transitive signature scheme associated to them as
defined above. If the factoring problem associated to Kfact is hard and SDS is unforgeable under
adaptive chosen-message attack, then FactTS -1 is transitively unforgeable under adaptive chosen-
message attack.

Although RSATS -1 and FactTS -1 are very similar, the security of the latter is based on a weaker
assumption. Intuitively, the reason is that RSA induces a permutation on Z

∗
N , whereas squaring

maps 4 different elements of Z
∗
N to the same square and two different roots of the same square

reveal the factorization of the modulus.

Proof of Theorem 4.1. Suppose we are given a polynomial-time adversary F for FactTS -1. We
construct a factoring adversary A, and a forger B attacking SDS , both polynomial-time, such that
for all k

Advtu-cma
FactTS-1,F(k) ≤ 2 ·Advfact

Kfact,A
(k) + Advuf-cma

SDS ,B (k) . (2)

The assumptions made in the theorem conclude the proof. It remains to describe A and B.

The factoring algorithm A gets as input a modulus N generated by Kfact and begins by picking

keys for the standard signature scheme via (spk , ssk)
$← SKG(1k). It then lets tpk = (N, spk) be

a public key for the transitive signature scheme and starts running F on input tpk . To reply to
F’s sign-oracle queries, algorithm A simply runs the TSign procedure of the transitive signature
scheme, which it can because it possesses the secret key tsk = (N, ssk) corresponding to tpk . (We
use here the fact that signing does not require knowledge of the prime factors of N .) A maintains
the state information (V, `, L,Σ) of the TSign procedure. Once F is done querying its oracle, it will
output its forgery σ′ = ((i′, Li′ ,Σi′), (j

′, Lj′ ,Σj′), δ
′) for edge {i′, j′}. (We again assume without

loss of generality that i′ < j′.) Let G = (V,E) be the graph defined by F’s signature queries,
and let G̃ = (V, Ẽ) denote its transitive closure. Let E1 denote the event that σ′ is a certificate-
recycling forgery (i.e. Li′ = L(i′) and Lj′ = L(j′)), and let E2 be the event that δ′ ≡ ±δ where
δ ≡ `(i′)`(j′)−1 mod N . If σ′ is not a valid forgery, or in the event that E1 ∨E2, algorithm A gives
up. Otherwise, it computes and returns r = gcd(δ + δ′, N), which is a factor of N because δ and
δ′ are different square roots of L(i′)L(j′)−1 mod N . This completes the description of factoring
algorithm A.

With regard to the analysis, it is tempting to say that since `(i′) and `(j′) were chosen at random,
with probability 1/2 A now has two square roots δ and δ′ such that δ 6≡ ±δ′ mod N , enabling it to
factor N . This argument would be correct if the forger were only given L(i′) and L(j′), without
having any further information on exactly which root A knows. However, by signing edges involving
nodes i′ or j′, algorithm A might have given away some additional information about its choices
for `(i′) and `(j′). It is crucial to the security of the scheme that this information doesn’t help
the forger in creating a forgery with edge label δ′ ≡ ±δ, as this would annihilate A’s advantage in
factoring N . Fortunately, it turns out that the exact value of δ remains information-theoretically
hidden from the forger as long as {i′, j′} is not in the transitive closure of the signed edges. The
crucial fact, which we will justify later, is that

Pr
[
E2 |E1 ∧Exptu-cma

FactTS-1,F(k) = 1
]

=
1

2
. (3)

17

Given this, we have

Advfact
Kfact,A

(k) ≥ Pr
[
Exptu-cma

FactTS-1,F(k) = 1 ∧E1 ∧E2

]

= Pr
[
E2 | E1 ∧Exptu-cma

FactTS-1,F(k) = 1
]
· Pr

[
E1 ∧Exptu-cma

FactTS-1,F(k) = 1
]

=
1

2
· Pr

[
E1 ∧Exptu-cma

FactTS-1,F(k) = 1
]
.

The description of algorithm B breaking SDS is very similar to the description of algorithm B in
the proof of Theorem 3.2. Details are omitted. As in that proof we will have

Advuf-cma
SDS ,B (k) ≥ Pr

[
E1 ∧Exptu-cma

FactTS-1,F(k) = 1
]
.

Putting the above together we have

Advtu-cma
FactTS-1,F(k) = Pr

[
E1 ∧Exptu-cma

FactTS-1,F(k) = 1
]

+ Pr
[
E1 ∧Exptu-cma

FactTS-1,F(k) = 1
]

≤ 2 ·Advfact
Kfact,A

(k) + Advuf-cma
SDS ,B (k)

as desired. It remains to justify Equation (3).

Let G = (V,E) be the graph defined by the forger’s signature queries, and let G̃ = (V, Ẽ) be the
transitive closure of G. We represent A’s secret information by a random variable ` distributed
uniformly over Secrets , the set of all functions from V to Z

∗
N . The forger’s view consists of a

function L assigning a square modulo N to each node in V , and a function ∆ assigning an edge
label in Z

∗
N to each edge in Ẽ. (We ignore the standard digital signatures on the node certificates,

as they are irrelevant for this analysis.) However, not just any pair of functions 〈L,∆〉 can occur
as the forger’s view. We say that forger view 〈L,∆〉 is consistent with ` ∈ Secrets (and vice versa
that ` is consistent with 〈L,∆〉) if and only if

L(i) ≡ `(i)2 mod N for all i ∈ V (4)

∆(i, j) ≡ `(i)`(j)−1 mod N for all {i, j} ∈ Ẽ , i < j (5)

The set of all possible forger views Views can then be defined as the set of all pairs 〈L,∆〉 that
are consistent with some ` ∈ Secrets . The actual view of the forger is a random variable View

distributed over Views as induced by `. The following lemma states that for every 〈L,∆〉 ∈ Views
and for every {i′, j′} 6∈ Ẽ, any square root δ of L(i′)L(j′)−1 mod N is equally likely to be δ ≡
`(i′)`(j′)−1 mod N when given only View = 〈L,∆〉, and hence that no forger, on input only
View , can predict δ with higher probability of success than random guessing.

Lemma 4.2 For any 〈L,∆〉 ∈ Views, for any {i′, j′} 6∈ Ẽ and for any δ ∈ Z
∗
N with δ2 ≡

L(i′)L(j′)−1 mod N :

Pr [δ ≡ δ mod N |View = 〈L,∆〉] =
1

4
. (6)

Equation (3) follows easily from this. To complete the proof of Theorem 4.1 we prove the lemma.

Proof of Lemma 4.2: Since the outcome of all random variables is uniquely determined by
the signer’s choice for `, we can reduce all probabilities on random variables to the probability
of making some particular choice for `. For example, if we define Cons(〈L,∆〉) ⊆ Secrets to be

18

the set of all ` ∈ Secrets consistent with 〈L,∆〉, then we can replace Pr[View = 〈L,∆〉] with
Pr[` ∈ Cons(〈L,∆〉)]. Using this fact and some basic probability theory, we can write

Pr [δ = δ |View = 〈L,∆〉]
= Pr [δ = δ ∧ View = 〈L,∆〉 |View = 〈L,∆〉]
= Pr [δ = δ ∧ ` ∈ Cons(〈L,∆〉) | ` ∈ Cons(〈L,∆〉)]

= Pr [` ∈ Cons(〈L,∆〉) | δ = δ ∧ ` ∈ Cons(〈L,∆〉)] · Pr [δ = δ ∧ ` ∈ Cons(〈L,∆〉)]
Pr [` ∈ Cons(〈L,∆〉)]

=
Pr [δ = δ ∧ ` ∈ Cons(〈L,∆〉)]

Pr [` ∈ Cons(〈L,∆〉)] . (7)

We want to find a numerical expression for the last two factors in Equation (7). Because ` is
uniformly distributed over Secrets , the probability that ` ∈ S ⊆ Secrets is simply the number of
elements in S divided by |Secrets | = ϕ(N)|V |.

We first try to find an expression for the number of elements in Cons(〈L,∆〉). For ` to be consistent
with forger view 〈L,∆〉, it has to satisfy the system of equations given by (4) and (5). Considering
only equations (4), there are four possibilities for `(i) left for every i ∈ V , namely the four square
roots of L(i). Equations (5) impose additional restrictions on `. Many of these are linearly depen-
dent, though. In order to count the actual number of possible solutions, we’d like to replace (5)
with an equivalent but linearly independent set of equations.

Let c be the number of disjoint components Vk ⊂ V in the transitively closed graph G̃ = (V, Ẽ).
If we define one node rk in each component Vk to be the reference node for that component, and
denote the reference node in the component of node i as R(i), then the equations in the system
given by

∆(i, R(i)) ≡ `(i)`(R(i))−1 mod N (8)

for all i ∈ V \ {rk | k = 1 . . . c} are clearly independent. At the same time, they also form a system
equivalent to (5), because every equation in (5) is either contained in (8), or can be written as the
quotient of two equations in (8). The equations in (8) imply that once ` is fixed for the c reference
nodes, ` is completely defined. Together with Equation (4), that leaves c entries of ` to be chosen
freely from four values, so

Pr [` ∈ Cons(〈L,∆〉)] =
4c

ϕ(N)|V |
(9)

To what amount does the addition of the requirement δ = δ restrict our choices for ` ? This comes
down to adding

`(i′)`(j′)
−1 ≡ δ mod N

to the systems given by (4) and (8), or equivalently, adding the equation

`(R(i′)) ≡ δ ·∆(i′, R(i′))−1 ·∆(j′, R(j′)) · `(R(j′)) mod N

which directly links `(R(i′)) to the choice for `(R(j′)). So now there are only c− 1 entries of ` left
to choose, giving

Pr [δ = δ ∧ ` ∈ Cons(〈L,∆〉)] =
4c−1

ϕ(N)|V |
(10)

Substituting the factors in Equation (7) with Equation (9) and Equation (10) yields Equation (6),
thereby proving the lemma.

19

4.2 The DLTS-1M scheme

Micali and Rivest’s DLTS scheme [MR02] uses two generators, which is important to their security
proof. The underlying ideas trace back to Okamoto’s two-generator-based identification scheme and
its proof of security (against impersonation under active attack). However, Schnorr’s identification
scheme [Sch90], which uses only a single generator, is simpler, more natural and has lower cost,
particularly in size of secret keys. We ask whether there is an analogous single-generator-based
transitive signature scheme. We answer this in the affirmative, presenting DLTS -1M , which is a
simpler and somewhat more natural single-generator based version of DLTS , offering some perfor-
mance improvements. However, while the proof of security of DLTS relied only on the standard
hardness of discrete logarithms assumption, the proof of security of DLTS -1M relies on the hardness
of the one-more discrete logarithm problem [BNPS03]. This is again analogous to the situation for
identification schemes. Okamoto proved his scheme secure under the standard hardness of discrete
logarithm assumption, while the proof of security of Schnorr’s scheme (which remained an open
problem for a while) is based on the hardness of the one-more discrete logarithm problem [BP02].
The DLTS -1M scheme is similar to RSATS -1.

DL generators and the assumption. A cyclic group generator Kcg is a randomized polynomial-
time algorithm that on input 1k outputs a tuple (〈G〉, g, q), where q is an odd prime with 2k−1 ≤
q < 2k, 〈G〉 is the description of a cyclic group G of order q, and g is a generator of G.

We recall the one-more discrete logarithm problem [BNPS03]. A om-dlog adversary is a ran-
domized, polynomial-time algorithm A that gets input 〈G〉, g, q and has access to two oracles. The
first is a discrete logarithm oracle DLog(·) that given Y ∈ G returns y ∈ Zq such that Y = gy.
The second is a challenge oracle that, each time it is invoked (it takes no inputs), returns a random
challenge point from G. We say that A wins the game if it succeeds in computing the discrete
logarithm of all n points output by the challenge oracle, using strictly less than n queries to the
DLog oracle. More formally, we define the following experiment:

Experiment Expom-dlog
Kcg,A (k):

(〈G〉, g, q) $← Kcg(1
k) ; n← 0 ; m← 0

(y1, . . . , yn′)
$← ADLog,Chall(〈G〉, g, q)

If n′ = n and m < n and ∀ i = 1 . . . n : gyi ≡ Yi

Then return 1 else return 0

Oracle Inv(Y):
m← m+ 1 ; Return y ∈ Zq s.t. gy ≡ Y

Oracle Chall() :

n← n+ 1 ; Yn
$← G

Return Yn .

The om-dlog advantage of A, denoted Advom-dlog
Kcg,A (k), is the probability that the above experiment

returns 1, taken over the coins of Kcg, the coins of A, and the coins used by the challenge oracle
across its invocations. We say that the one-more discrete-logarithm problem associated to Kcg is

hard if the function Advom-dlog
Kcg,A (·) is negligible for all polynomial-time adversaries A.

Note that the standard one-wayness assumption on Kcg can be formulated as requiring that

the function Advom-dlog
Kcg,A (·) is negligible for all polynomial-time adversaries A that make one chal-

lenge query and no discrete-logarithm queries. Thus, hardness of the one-more discrete-logarithm
problem is an extension of one-wayness.

We do not attempt to pin down exactly how the generator operates. In particular there are
many classes of groups (of prime order) which could be used. One example is that 2q+1 is a prime
and G is the subgroup of quadratic residues of Z

∗
2q+1. Another possibility is elliptic curve groups.

This makes our results more general.

The scheme. We associate to any cyclic group generator Kcg and any standard digital signature
scheme SDS = (SKG,SSign,SVf) a transitive signature scheme DLTS -1M = (TKG,TSign,TVf,
Comp) defined as follows:

20

• TKG(1k) proceeds as in RSATS -1 with the following changes:

(1.2) Run Kcg(1
k) to get a triple (〈G〉, g, q)

(1.3) Output tpk = (〈G〉, g, q, spk) as the public key and tsk = (〈G〉, g, q, ssk) as the secret key.

• The signing algorithm TSign maintains state (V, `, L,Σ) where V,Σ are as in RSATS -1, `: V →
Zq and L: V → G. When invoked on inputs tsk , i, j, it proceeds as the TSign algorithm of
RSATS -1 except for the following changes:

(2.4) `(i)
$← Zq ; L(i)← g`(i)

(2.8) `(j)
$← Zq ; L(j)← g`(j)

(2.10) δ ← `(i)− `(j) mod q

• TVf, on input tpk = (〈G〉, g, q, spk), nodes i, j and a candidate signature σ, proceeds as the
TVf algorithm of the RSATS -1 scheme, except for the following change:

(3.4) If gδ ≡ LiL
−1
j then return 1 else return 0.

• The composition algorithm Comp takes tpk , nodes i, j, k and signatures σ1 and σ2, and pro-
ceeds as the Comp algorithm of RSATS -1 except for the following changes. In line (4.3) the
computation of δ−1

1 is in G rather than being modulo N , and similarly for line (4.4). Also
line (4.6) is replaced with

(4.6) δ ← δ1 + δ2 mod q

This scheme offers some perfomance benefits compared to DLTS , as indicated in Figure 1, namely
a reduced signature size and composition time.

As the above indicates, this scheme is very similar to RSATS -1, replacing “xe mod N” (with
x ∈ Z

∗
N) by “gx” (with x ∈ Zq). Accordingly a proof similar to the one in Appendix A can be used

to show that DLTS -1M satisfies the correctness requirement of Definition 2.1, and the following
security result is established by a proof analogous to that of Theorem 3.2. Rather than repeating
the entire proof here, we only give a proof sketch and highlight the differences with the proof of
Theorem 3.2.

Theorem 4.3 Let Kcg be a cyclic group generator and let SDS = (SKG,SSign,SVf) be a standard
digital signature scheme. Let DLTS -1M be the transitive signature scheme associated to them
as defined above. If the one-more discrete logarithm problem associated to Kcg is hard and SDS
is unforgeable under adaptive chosen-message attack, then DLTS -1M is transitively unforgeable
under adaptive chosen-message attack.

Proof: Given a polynomial-time tu-cma adversary F attacking DLTS -1M , we construct polynomial-
time om-dlog and uf-cma adversaries A and B, respectively, such that

Advtu-cma
DLTS-1M ,F(k) ≤ Advom-dlog

Kcg,A (k) + Advuf-cma
SDS ,B (k) . (11)

Algorithm A, on inputs 〈G〉, g, q, generates a new key pair (spk , ssk)
$← SKG(1k) and runs algorithm

F on input tpk = (〈G〉, g, q, spk). Algorithm A then proceeds exactly as the om-rsa algorithm A in
the proof of Theorem 3.2, except that all calls to the Inv oracle are replaced with calls to the DLog

oracle, that A maintains a function ∆ : V ×V → Zq in its state information, that all multiplications
mod N are replaced with multiplications in G, and that the following changes are made to the code:

(5.5) ∆(i, i)← 0
(5.9) ∆(j, j)← 0
(5.11) ∆(i, j)← DLog(L(i) · L(j)−1 mod N)

21

(5.12) ∆(j, i)← −∆(i, j) mod q
(5.15) ∆(v, j)← ∆(v, i) + ∆(i, j) mod q
(5.16) ∆(j, v)← −∆(v, j) mod q
(5.18) ∆(v, i)← ∆(v, j) + ∆(j, i) mod q
(5.19) ∆(i, v)← −∆(v, i) mod q
(5.24) `(v)← ∆(v, rk) + `(rk) mod q
(5.25) `(i′)← δ′ + `(j′) mod q
(5.27) `(v)← ∆(v, i′) + `(i′) mod q .

From the analysis in the proof of Theorem 3.2, it follows that A is always successful in the event E
that F’s forgery contains recycled node certificates.

Algorithm B gets a public key spk as input, generates (〈G〉, g, q) $← Kcg(1
k) and runs the forger

F on input (〈G〉, g, q, spk). It simulates F’s environment exactly as algorithm B in the proof of
Theorem 3.2, and by the same reasoning it can be seen to succeed in the event E that F’s forgery
contains a new node certificate. Combining the results for algorithms A and B yields Equation (11).

4.3 The GapTS-1 scheme

Gap Diffie-Hellman groups and the assumption. A gap DH group specifier is a pair
(Kcg,Sddh) where Kcg is a cyclic group generator and Sddh is a polynomial-time algorithm called the
decision Diffie-Hellman (DDH) solver. To describe what it does, let us introduce some notation.
Let (〈Ĝ〉, g, q) be an output of Kcg(1

k). For X ∈ Ĝ we let dlog
Ĝ,g(X) be the discrete logarithm of

X to base g, namely the (unique) x ∈ Zq such that gx = X. For X,Y ∈ G we let

CDH
Ĝ,g(X,Y) = gdlog

Ĝ,g
(X)·dlog

Ĝ,g
(Y) .

Now, Sddh, given inputs 〈Ĝ〉, g, q,X, Y, Z, where X,Y,Z ∈ Ĝ, returns 1 if Z = CDH
Ĝ,g(X,Y) and

0 otherwise. Namely, it solves the DDH problem in Ĝ.
In analogy with the one-more RSA-inversion and one-more discrete logarithm problems intro-

duced by [BNPS03], Boldyreva [Bol03] defined the one-more CDH problem (called the chosen-target
CDH problem in her work). Let us recall it. A om-cdh adversary is a randomized, polynomial-time
algorithm A that gets input 〈Ĝ〉, g, q as well as an element X of Ĝ. A has access to two oracles.
The first is the oracle Cdh(·) that given Y ∈ Ĝ returns CDH

Ĝ,g(X,Y). The second is a challenge

oracle Chall() that, each time it is invoked (it takes no inputs), returns a random challenge point
from Ĝ. We say that A wins the game if it outputs the CDH solution with respect to X of all
n points output by the challenge oracle, using strictly less than n calls to its Cdh oracle. More
formally, A is run in the following experiment:

Experiment Expom-cdh
Kcg,A (k):

(〈Ĝ〉, g, q) $← Kcg(1
k) ; X

$← Ĝ ; n← 0 ; m← 0

(Z1, . . . , Zn′)
$← ACdh,Chall(〈Ĝ〉, g, q,X)

If n′ = n and m < n
and ∀ i = 1 . . . n : Zi ≡ CDH

Ĝ,g(X,Yi)

Then return 1 else return 0

Oracle Cdh(Y):
m← m+ 1 ; Return CDH

Ĝ,g(X,Y)

Oracle Chall() :

n← n+ 1 ; Yn
$← Ĝ ; Return Yn .

The om-cdh advantage of A, denoted Advom-cdh
Kcg,A (k), is the probability that the above experiment

returns 1, taken over the coins of Kcg, the random choice of X, the coins of A, and the coins used

22

by the challenge oracle across its invocations. We say that the one-more CDH problem associated
to Kcg is hard if the function Advom-cdh

Kcg,A (·) is negligible for all polynomial-time adversaries A.
Gap Diffie-Hellman groups were originally used by Boneh, Lynn and Shacham [BLS01] to con-

struct a signature scheme with very short signature length (≈ 160 bits), and later by Boldyreva
[Bol03] to construct threshold, blind and multi-signatures. The only currently known examples of
gap Diffie-Hellman groups are based on bilinear maps on elliptic curves. If ê : G × Ĝ → GT is a
non-degenerate bilinear map, and ψ : Ĝ→ G is a group isomorphism from Ĝ to G, then the DDH
instance (g,X, Y, Z) in Ĝ can be solved by testing whether ê(ψ(X), Y) = ê(ψ(Z), g). We refer
to [BLS01] for more details. Since we do not need pairings per se, but merely the more general
concept of gap Diffie-Hellman groups, we continue to use the latter notation throughout the rest
of this paper.

The scheme. We associate to any gap DH group specifier (Kcg,Sddh) and any standard digital
signature scheme SDS = (SKG,SSign,SVf) a transitive signature scheme GapTS -1 = (TKG,TSign,
TVf,Comp) defined as follows:

• TKG(1k) proceeds as in RSATS -1 with the following changes:

(1.2) Run Kcg(1
k) to get a triple (〈Ĝ〉, g, q). Then let x

$← Zq and X ← gx.

(1.3) Output tpk = (〈Ĝ〉, g, q,X, spk) as the public key and tsk = (〈Ĝ〉, g, q,X, ssk) as the secret key.

Note that x is discarded.

• The signing algorithm TSign maintains state (V, `, L,Σ) where V,Σ are as in RSATS -1 and
`, L: V → G. When invoked on inputs tsk , i, j, it proceeds as the TSign algorithm of RSATS -1
except for the following changes:

(2.4) yi
$← Zq ; `(i)← Xyi ; L(i)← gyi

(2.8) yj
$← Zq ; `(j)← Xyj ; L(j)← gyj

(2.10) δ ← `(i)`(j)−1

• TVf, on input tpk = (〈Ĝ〉, g, q, U, spk), nodes i, j and a candidate signature σ, proceeds as the
TVf algorithm of the RSATS -1 scheme, except for the following change:

(3.4) If Sddh(〈Ĝ〉, g, q,X,LiL
−1
j , δ) = 1 then return 1 else return 0.

That is, it checks that δ = CDH
Ĝ,g(X,LiL

−1
j).

• The composition algorithm Comp takes tpk , nodes i, j, k and signatures σ1 and σ2, and pro-
ceeds as the Comp algorithm of RSATS -1 except for the following changes. In line (4.3) the
computation of δ−1

1 is in Ĝ rather than being modulo N , and similarly for line (4.4). Also
line (4.5) is replaced with

(4.5) δ ← δ1δ2

As usual, this scheme can be shown to meet Definition 2.1. The security result is the following.

Theorem 4.4 Let (Kcg,Sddh) be a gap DH group specifier and let SDS = (SKG,SSign,SVf) be
a standard digital signature scheme. Let GapTS -1 be the transitive signature scheme associated
to them as defined above. If the one-more CDH problem associated to Kcg is hard and SDS is
unforgeable under adaptive chosen-message attack, then GapTS -1 is transitively unforgeable under
adaptive chosen-message attack.

Proof: Given a polynomial-time tu-cma adversary F attacking GapTS -1, we construct a polynomial-
time om-cdh adversary A and a uf-cma adversary B such that

Advtu-cma
GapTS-1,F(k) ≤ Advom-cdh

Kcg,A (k) + Advuf-cma
SDS ,B (k) . (12)

23

Algorithm A gets input 〈Ĝ〉, g, q,X and has access to a CDH oracle Cdh
Ĝ,g(X, ·) and a challenge

oracle Chall. Its task is to compute CDH
Ĝ,g(X,Yi) for all target points Yi returned by the

challenge oracle using a number of CDH queries that is strictly smaller than the number of target
points solved. To this end, algorithm A runs the forger F on input tpk = (〈Ĝ〉, g, q,X, spk), where
(spk , ssk) is generated via SKG(1k). It then proceeds exactly as the om-rsa adversary A in the proof
of Theorem 3.2, except that whenever the om-rsa adversary calls Inv(·), the om-cdh adversary calls
its Cdh

Ĝ,g(X, ·) oracle, that operations modulo N become operations in Ĝ, and that the function

∆ maps to Ĝ instead of Z
∗
N . From the same analysis as shown in the proof of Theorem 3.2, one can

see that A is always successful in the event E that F uses recycled node certificates in its forgery.

The uf-cma adversary B gets a public key spk as input, generates (〈Ĝ〉, g, q) $← Kcg(1
k) and com-

putes X ← gx for a randomly chosen x
$← Zq. It then runs F on input tpk = (〈Ĝ〉, g, q,X, spk) and

proceeds exactly as algorithm B in the proof of Theorem 3.2. By the same analysis, B is always
successful in the event E that F’s forgery contains a new node certificate, and Equation (12) follows.

5 Eliminating Node Certificates via Hashing

The above schemes use the node certification paradigm, and the standard signatures involved are
a significant factor in the cost of the scheme. Here we show how, for some of the above schemes,
one can eliminate node certificates by specifying the public label of a node i as the output of a
hash function applied to i. No explicit certification is attached to this value. Rather, we will be
able to show that the edge label provides an “implicit authentication” of the associated node label
that suffices to be able to prove that the scheme is transitively unforgeable under adaptive chosen-
message attack, in a model where the hash function is a random oracle. Let us now illustrate this
by presenting the schemes.

5.1 The RSATS-2 scheme

We associate to any RSA key generator Krsa a transitive signature scheme RSATS -2 = (TKG,TSign,
TVf,Comp) defined as follows:

• TKG(1k) does the following

(1.1) Run Krsa(1
k) to get a triple (N, e, d)

(1.2) Output tpk = (N, e) as the public key and tsk = (N, d) as the secret key.

Now the following algorithms all have oracle access to a random function HN : N→ Z
∗
N .

• The (stateless) signing algorithm TSign, when invoked on inputs tsk , i, j, meaning when asked
to produce a signature on edge {i, j}, does the following:

(2.1) If i > j then swap(i, j)

(2.2) δ ← [HN (i)HN (j)−1]d mod N

(2.3) Return δ as the signature of {i, j}.
• TVf, on input tpk = (N, e), nodes i, j and a candidate signature δ, proceeds as follows:

(3.1) If i > j then swap(i, j)

(3.2) If δe ≡ HN (i)HN (j)−1 mod N then return 1 else return 0.

• The composition algorithm Comp takes tpk , nodes i, j, k and signatures δ1 and δ2, and computes
a composed signature for edge {i, k} as follows:

24

(4.1) If i > k then swap(i, k) ; swap(δ1, δ2)

(4.2) If i > j then δ1 ← δ−1
1 mod N

(4.3) If j > k then δ2 ← δ−1
2 mod N

(4.4) δ ← δ1δ2 mod N

(4.5) Return δ as the signature for {i, k}.
As illustrated by Figure 1, this brings some significant performance gains over RSATS -1, particularly
with regard to signature size. Regarding security, in Exptu-cma

RSATS-2,F(k), we consider HN : N→ Z
∗
N to

be chosen at random after the public and secret keys (defining N) have been chosen. The TSign,
TVf, and Comp algorithms, as well as the adversary, then get oracle access to HN . In this random
oracle model, we have the following.

Theorem 5.1 Let Krsa be an RSA key generator and let RSATS -2 be the transitive signature
scheme associated to Krsa as defined above. If the one-more RSA-inversion problem associated to
Krsa is hard, then RSATS -2 is transitively unforgeable under adaptive chosen-message attack in the
random oracle model.

Proof of Theorem 5.1. Suppose we are given a polynomial-time tu-cma adversary F for
RSATS -2. We construct a polynomial-time om-rsa adversary A such that for all k ∈ N

Advtu-cma
RSATS-2,F(k) ≤ Advom-rsa

Krsa,A (k) . (13)

The theorem follows from the assumption that the one-more RSA-inversion problem associated to
Krsa is hard. It remains to describe A.

The om-rsa adversary A gets inputs N, e and has access to an inversion oracle Inv(·) and a challenge
oracle Chall. It lets tpk = (N, e) and runs F on input tpk . It will itself provide answers, both to
F’s queries to its random oracle H and to F’s signature queries.

Adversary A maintains a table that represents HN . When a query HN (i) is made by F, adversary
A does the following:

If i 6∈ V then HN (i)
$← Chall() ; ∆(i, i)← 1 ; V ← V ∪ {i}

Return HN (i) to F

A answers F’s signature queries similar to the way the om-rsa adversary from the proof of Theorem 3.2
did, but letting HN (i) play the role of L(i). More specifically, lines (5.4) and (5.8) are removed,
and lines (5.1–13) are modified as follows:

(5.3) V ← V ∪ {i} ; HN (i)
$← Chall()

(5.7) V ← V ∪ {j} ; HN (j)
$← Chall()

(5.11) ∆(i, j)← Inv(HN (i) ·HN (j)−1 mod N)
(5.21) Return δ to F.

At the end of its execution, F outputs a forgery δ′ for edge {i′, j′}. We can assume without loss
of generality that F queried the hash oracle on i′ and j′ (and hence that i′, j′ ∈ V), because if it
didn’t, then A can query the hash oracle itself after F outputs its forgery. Algorithm A proceeds
exactly as the om-rsa adversary in the proof of Theorem 3.2, treating the elements of V that
were not involved in signature queries (but were queried to the random oracle only) as singleton
components. Following the same reasoning, A can be seen to be successful whenever F is, and
Equation (13) follows. (Note that there is no need for a uf-cma adversary B since the scheme does
not rely on an underlying standard signature scheme.)

25

5.2 The FactTS-2 scheme

To eliminate node certificates from the FactTS -1 scheme, it is natural to want to let L(i) = HN (i),
where HN is some public hash function. The question is, what is the range of this hash function? It
would depend on N , the modulus in the signer’s public key, which is why we have the subscript of
N . However, unlike in RSATS -2, it would not suffice for this range to be Z

∗
N , because L(i) needs to

be a quadratic residue in Z
∗
N . So HN would have to have range the set QRN of quadratic residues

modulo N . This is not a problem in the abstract random oracle model, where one can simply
mandate that HN be chosen with domain N and range QRN , but the resulting scheme would
be difficult to instantiate. In practice, one would like to build HN out of a cryptographic hash
function like SHA-1 that has range {0, 1}160. Given N , there are standard techniques that yield a
hash function with range Z

∗
N [BR93]. This is possible because membership in Z

∗
N is decidable in

polynomial time given N , and also Z
∗
N is a “dense” subset of {0, 1}k where k is the bit-length of

N . However, there is no known way to build a function, computable in polynomial time given the
input and N alone, that has range QRN , because membership in the latter is not (known to be)
decidable in polynomial time given N alone.

We could consider setting L(i) = HN (i)2 mod N where HN has range Z
∗
N , but this reveals a

square root of L(i) which makes the scheme insecure. Instead, we let the signer choose N to be a
Blum-Williams integer [Blu82, Wil80] (i.e. N = pq with p and q primes such that p ≡ q ≡ 3 mod 4).
Then it is well-known that −1 is a non-square modulo both p and q, and hence is a non-square
modulo N with Jacobi symbol +1. As a consequence, for every element x ∈ Z

∗
N [+1] (the elements

of Z
∗
N with Jacobi symbol +1), either x or −x is a square modulo N . Now we will use as `(i) a

random square root of either HN (i) or −HN (i), whichever is a square, where HN is a hash function
with range Z

∗
N [+1]. Since the Jacobi symbol can be computed in polynomial time given N , such a

hash function can be easily built starting from a cryptographic hash function.

The FactTS-2 scheme. A modulus generator KBW (as defined in Section 4.1), is said to be
a Blum-Williams modulus generator if the primes p, q satisfy p ≡ q ≡ 3 mod 4. We associate
to any given Blum-Williams modulus generator KBW a transitive signature scheme FactTS -2 =
(TKG,TSign,TVf,Comp) defined as follows:

• TKG, on input 1k, runs KBW(1k) to obtain (N, p, q) and outputs tpk = N as the public key
and tsk = (N, p, q) as the matching secret key. All the following algorithms are now assumed
to have oracle access to a function HN : N

∗ → Z
∗
N [+1].

• TSign maintains state (V, `) where V ⊆ N is the set of all queried nodes and the function
`: V → Z

∗
N assigns to each node i ∈ V a secret label `(i) ∈ Z

∗
N . When invoked on inputs

tsk , i, j, meaning when asked to produce a signature on edge {i, j}, it does the following:

If i > j then swap(i, j)

If i 6∈ V then V ← V ∪ {i} ; `(i)
$←

√
±HN (i) mod N

If j 6∈ V then V ← V ∪ {j} ; `(j)
$←

√
±HN (j) mod N

δ ← `(i)`(j)−1 mod N

where the notation x
$← √±y mod N means that x is chosen at random from the four square

roots of y or −y mod N , whichever is a square modulo N . (These roots can be efficiently
computed using the prime factors p and q.) Return δ as the signature on {i, j}.

• TVf, on input tpk = N , nodes i, j and a signature δ, first swaps i and j if i > j. It returns 1 if
HN (i) ·HN (j)−1 ≡ ±δ2 mod N and returns 0 otherwise.

• The composition algorithm Comp is identical to that of RSATS -2.

26

A proof by induction can be used to show the following.

Proposition 5.2 The FactTS -2 transitive signature scheme described above satisfies the correct-
ness requirement of Definition 2.1.

Computational costs. Since half of the elements in Z
∗
N have Jacobi symbol +1, a hash function

evaluation requires the computation of two Jacobi symbols on average, which takes time quadratic
in |N |. Computing square roots, however, is cubic in |N |, so this will dominate the cost of generating
signatures. Verification and composition of signatures involve multiplications, inverses and Jacobi
symbols mod N , all of which are operations quadratic in |N |.
Security. We prove breaking the FactTS -2 scheme equivalent to factoring in the random oracle
model. This means that in the experiment Exptu-cma

FactTS-2,F(k) used to define the advantage of an
adversary F, the function HN is assumed to be chosen at random from the space of all functions
mapping {0, 1}∗ to Z

∗
N [+1]. The result is stated as a theorem below.

Theorem 5.3 Let KBW be a Blum-Williams modulus generator. Let FactTS -2 be the transitive
signature scheme as defined above. If the factoring problem associated to KBW is hard, then
FactTS -2 is transitively unforgeable under adaptive chosen-message attack in the random oracle
model.

Proof: Suppose we have a polynomial-time tu-cma forger F for FactTS -2. We will give a factoring
algorithm A that uses F as a subroutine to factor composite numbers generated by KBW. On input
Blum-Williams integer N , A runs F on input N , answering its random oracle queries for node i as

If i 6∈ V then

`(i)
$← Z

∗
N ; s(i)

$← {−1,+1}; V ← V ∪ {i}
Return s(i) · `(i)2 mod N to F

Half of the elements in Z
∗
N [+1] are squares with Legendre symbols +1 modulo both p and q, while

the other half are non-squares with Legendre symbols−1 modulo both p and q. For a Blum-Williams
integer N , −1 belongs to the latter subset, and every non-square in Z

∗
N [+1] can be written as the

product of −1 times a square mod N . Consequently, the output of the above algorithm follows the
same distribution as a truly random function from N to Z

∗
N [+1], as required.

A answers F’s signature queries as follows:

If i 6∈ V then

`(i)
$← Z

∗
N ; s(i)

$← {−1,+1}; V ← V ∪ {i}
If j 6∈ V then

`(j)
$← Z

∗
N ; s(j)

$← {−1,+1}; V ← V ∪ {j}
If i < j then return `(i) · `(j)−1 mod N
else return `(j) · `(i)−1 mod N .

Let F’s forgery be (i′, j′, δ′). Again, we assume without loss of generality that F queried the random
oracle on i′ and j′ before halting. Let E be the set of edges for which F queried a signature
and let G̃ = (V, Ẽ) be the transitive closure of the graph G = (V,E). If F’s output is not a
successful forgery, meaning that either TVf(N, i′, j′, δ′) 6= 1 or {i′, j′} ∈ Ẽ, A aborts. If i′ < j′ let

27

δ ← `(i′) ·`(j′)−1 mod N , otherwise let δ ← `(j′) ·`(i′)−1 mod N . If δ ≡ ±δ′ mod N , then A aborts,
otherwise it outputs gcd(δ + δ′, N).

By arguments analogous to those in the proof of Theorem 4.1, A is successful whenever it doesn’t
abort. The advantage of the forger F is bounded by

Advtu-cma
FactTS-2,F(k) ≤ 2 ·Advfact

KBW,A(k) (14)

by a similar information-theoretic reasoning as presented in the proof of Theorem 4.1.

5.3 The GapTS-2 scheme

The discrete logarithm-based DLTS and DLTS -1M schemes are not amenable to a hash-based
improvement because the discrete exponentiation function is not trapdoor. For the GapTS -1 scheme
on the other hand, one can view x = dlog

Ĝ,g(X) as trapdoor information allowing to compute secret

labels from public labels, giving rise to the stateless and very compact (in terms of signature size)
GapTS -2 scheme described below.

• The key generation algorithm TKG(1k) calls Kcg(1
k) to generate the description 〈Ĝ〉 of a cyclic

group Ĝ, a generator g and its order q. It chooses x
$← Zq and computes X ← gx. It outputs

the public key tpk = (〈Ĝ〉, g, q,X) and the corresponding secret key tsk = (〈Ĝ〉, g, q, x). All
algorithms have oracle access to a random function H

Ĝ
: N→ Ĝ.

• The (stateless) signing algorithm TSign, on input nodes i, j and secret key tsk = (〈Ĝ〉, g, q, x),
proceeds exactly as the TSign algorithm of RSATS -2 but replacing line (2.2) by

(2.2) δ ←
[
H

Ĝ
(i) ·H

Ĝ
(j)−1

]x

• TVf, on input tpk = (〈Ĝ〉, g, q), nodes i, j and candidate signature δ, first swaps i and j if
i > j. It outputs 1 if Sddh(〈Ĝ〉, g, q,X,HĜ

(i) ·H
Ĝ
(j)−1, δ) = 1, or returns 0 otherwise.

• The Comp algorithm is the same as that of RSATS -2, except that the operations in lines (4.2),
(4.3) and (4.4) are performed in Ĝ, rather than modulo N .

Note that just like the short signature scheme of [BLS01], an edge signature under GapTS -2

contains only a single element of Ĝ, which can be represented in roughly 160 bits when using
elliptic curves to achieve the same security as a 1024-bit RSA modulus.

Proposition 5.4 The GapTS -2 transitive signature scheme described above is correct according
to Definition 2.1.

Theorem 5.5 Let Kcg be a gap Diffie-Hellman group generator and let H
Ĝ

: N→ Ĝ be a random
oracle. The associated GapTS -2 transitive signature scheme described above is transitively unforge-
able under adaptive chosen-message attack under the one-more gap Diffie-Hellman assumption
associated to Kcg.

Proof: Suppose there exists a polynomial-time tu-cma forger F that breaks the GapTS -2 scheme.
We construct a om-cdh adversary A that uses F as subroutine such that for all k ∈ N

Advtu-cma
GapTS-2,F(k) ≤ Advom-cdh

Krsa,A (k) . (15)

28

The theorem then follows from the one-more gap Diffie-Hellman assumption. Algorithm A takes
input 〈Ĝ〉, g, q,X and has access to a CDH oracle Cdh

Ĝ,g(X, ·) and a challenge oracle Chall. It

runs the forger F on input tpk = (〈Ĝ〉, g, q,X) and proceeds exactly as the om-rsa adversary in the
proof of Theorem 5.1, replacing multiplications mod N and Inv(·) queries with multiplications in
Ĝ and Cdh

Ĝ,g(X, ·) queries, respectively, and maintaining a function ∆ : V × V → Ĝ as part of its
state information. The same analysis shows that algorithm A is successful whenever the forger F

is, yielding Equation (15).

6 From Stateful to Stateless Schemes

The signing algorithms of many transitive signature schemes are stateful. (For example this is true
for the RSATS -1 scheme, where it is important for composition that the signer associates a single
public label to node i.) Statefulness can also be important for security in that it associates to
a public label a single secret label `(i). (The FactTS -1 and FactTS -2 schemes for example would
otherwise soon give away two different square roots of L(i), allowing an attacker to factor the
modulus.) The DLTS , DLTS -1M and GapTS -1 schemes also have stateful signing algorithms.

In case one would like a stateless scheme, we note here a simple transformation that can be used
to make the signer stateless, while preserving security and incurring a low computational overhead.
The transform does not apply to all stateful transitive signature schemes, but to a large class that
includes the stateful schemes of this paper.

The class of schemes we consider is those where the state consists of a function St with domain
the set V of all nodes that were an input to some execution of the signing algorithm so far. (The
set V starts out empty.) We assume there are polynomial time, deterministic, stateless algorithms
TSignN,TSignE such that the algorithm TSign, given inputs tsk , i, j, coins ω, and the current state
St, does the following. First it splits ω into two halves, ω = ωi‖ωj. Then it proceeds as follows:

If i 6∈ V then V ← V ∪ {i} ; St(i)← TSignN(tsk , i, ωi)
If j 6∈ V then V ← V ∪ {j} ; St(j)← TSignN(tsk , j, ωj)
σ ← TSignE(tsk , i, j,St(i),St(j))
Return σ

We modify this scheme to be stateless as follows. Augment the signer’s secret key to also include
a key K specifying an instance FK from a pseudorandom function (PRF) family F [GGM86]. The
new signing algorithm is both deterministic and stateless. Given inputs (tsk ,K), i, j, it proceeds
as follows:

ωi ← FK(i) ; ωj ← FK(j)
Sti ← TSignN(tsk , i, ωi)
Stj ← TSignN(tsk , j, ωj)
σ ← TSignE(tsk , i, j,Sti,Stj)
Return σ

In practice one can implement the pseudorandom function family via a block cipher. (Direct
application of the block cipher may not be enough since the number of bits output by the block
cipher may be too small, but there are many ways to turn a block cipher, assumed to be a PRF
family, into a PRF family providing outputs of some larger desired length.) Since operation of a
block cipher is significantly cheaper than the number-theoretic operations already being used in
the transitive signature schemes, the stateless scheme will have a cost close to that of the original
stateful one.

29

We note that, interestingly, the RSATS -2 and GapTS -2 schemes are naturally stateless, as the
public label associated to node i is defined by the output of a random oracle H(i), and the secret
label is the unique “inverse” of this value.

References

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In
C. Boyd, editor, Advances in Cryptology – ASIACRYPT 2001, volume 2248 of Lecture
Notes in Computer Science, pages 514–532. Springer-Verlag, 2001. (Cited on page 6,
23, 28.)

[Blu82] Manuel Blum. Coin flipping by telephone. In A. Gersho, editor, Advances in Cryptology:
A Report on CRYPTO 81, University of California, Santa Barbara, Department of ECE
Report No 82-04, pages 11–15, 1982. (Cited on page 26.)

[BN02] Mihir Bellare and Gregory Neven. Transitive signatures based on factoring and RSA.
In Y. Zheng, editor, Advances in Cryptology – ASIACRYPT 2002, volume 2501 of
Lecture Notes in Computer Science, pages 397–414. Springer-Verlag, 2002. (Cited on
page 8.)

[BNPS03] Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko. The
one-more-RSA-inversion problems and the security of Chaum’s blind signature scheme.
Journal of Cryptology, 16(3):185–215, 2003. (Cited on page 5, 12, 20, 22.)

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based
on the gap-Diffie-Hellman-group signature scheme. In Y. Desmedt, editor, Advances in
Cryptology – Public-Key Cryptography 2003, volume 2567 of Lecture Notes in Computer
Science, pages 31–46. Springer-Verlag, 2003. (Cited on page 6, 22, 23.)

[BP02] Mihir Bellare and Adriana Palacio. GQ and Schnorr identification schemes: Proofs of
security against impersonation under active and concurrent attack. In M. Yung, editor,
Advances in Cryptology – CRYPTO 2002, volume 2442 of Lecture Notes in Computer
Science, pages 162–177. Springer-Verlag, August 2002. (Cited on page 5, 6, 20.)

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In ACM, editor, Proceedings of the 1st Conference on
Computer and Communications Security, pages 62–73. ACM Press, November 1993.
(Cited on page 7, 11, 26.)

[Cha83] David Chaum. Blind signatures for untraceable payments. In D. Chaum, R. Rivest,
and A. Sherman, editors, Advances in Cryptology: Proceedings of CRYPTO ’82, pages
199–203. Plenum Press, 1983. (Cited on page 5.)

[Cor00] Jean-Sbastien Coron. On the exact security of full domain hash. In M. Bellare, editor,
Advances in Cryptology – CRYPTO 2000, volume 1880 of Lecture Notes in Computer
Science, pages 229–235. Springer-Verlag, 2000. (Cited on page 35.)

[CRR02] Suresh Chari, Tal Rabin, and Ronald Rivest. An efficient sig-
nature scheme for route aggregation. Manuscript, available from
http://theory.lcs.mit.edu/~rivest/publications.html, 2002. (Cited on
page 8.)

30

http://theory.lcs.mit.edu/~rivest/publications.html

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. Journal of the ACM, 33(4):792–807, October 1986. (Cited on page 29.)

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308,
April 1988. (Cited on page 11.)

[GQ89] Louis C. Guillou and Jean-Jacques Quisquater. A “paradoxical” identity-based sig-
nature scheme resulting from zero-knowledge. In S. Goldwasser, editor, Advances in
Cryptology – CRYPTO 1988, volume 403 of Lecture Notes in Computer Science, pages
216–231. Springer-Verlag, August 1989. (Cited on page 5.)

[Hoh03] Susan Hohenberger. The cryptographic impact of groups with infeasible in-
version. Master’s thesis, Massachusetts Institute of Technology, available from
http://theory.lcs.mit.edu/~cis/cis-theses.html, 2003. (Cited on page 8.)

[JMSW02] Robert Johnson, David Molnar, Dawn Xiaodong Song, and David Wagner. Homomor-
phic signature schemes. In B. Preneel, editor, Topics in Cryptology – CT-RSA 2002,
volume 2271 of Lecture Notes in Computer Science, pages 244–262. Springer-Verlag,
2002. (Cited on page 7, 8, 10, 32.)

[MR02] Silvio Micali and Ronald Rivest. Transitive signature schemes. In B. Preneel, editor,
Topics in Cryptology – CT-RSA 2002, volume 2271 of Lecture Notes in Computer
Science, pages 236–243. Springer-Verlag, 2002. (Cited on page 1, 3, 4, 5, 7, 9, 10, 11,
20, 32.)

[Oka93] Tatsuaki Okamoto. Provably secure and practical identification schemes and corre-
sponding signature schemes. In E. Brickell, editor, Advances in Cryptology – CRYPTO
1992, volume 740 of Lecture Notes in Computer Science, pages 31–53. Springer-Verlag,
August 1993. (Cited on page 6.)

[Riv00] Ronald Rivest. Two signature schemes. Slides from talk
given at Cambridge University, October 17, 2000. Available from
http://theory.lcs.mit.edu/~rivest/publications.html, 2000. (Cited on
page 8.)

[SBZ02] Ron Steinfeld, Laurence Bull, and Yuliang Zheng. Content extraction signatures. In
Kwangjo Kim, editor, Information Security and Cryptology - ICISC 2001, volume 2288
of Lecture Notes in Computer Science, pages 285–304. Springer-Verlag, 2002. (Cited on
page 8.)

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for smartcards. In G. Bras-
sard, editor, Advances in Cryptology – CRYPTO 1989, volume 435 of Lecture Notes
in Computer Science, pages 239–252. Springer-Verlag, August 1990. (Cited on page 6,
20.)

[SSM05] Siamak Fayyaz Shahandashti, Mahmoud Salmasizadeh, and Javad Mohajeri. A provably
secure short transitive signature scheme from bilinear group pairs. In C. Blundo and
S. Cimato, editors, Security in Communication Networks: 4th International Conference,
SCN 2004, volume 3352 of Lecture Notes in Computer Science, pages 60–76. Springer-
Verlag, 2005. (Cited on page 2, 8, 34, 35.)

31

http://theory.lcs.mit.edu/~cis/cis-theses.html
http://theory.lcs.mit.edu/~rivest/publications.html

[Wil80] Hugh C. Williams. A modification of the RSA public-key encryption procedure. IEEE
Transactions on Information Theory, 26(6):726–729, 1980. (Cited on page 26.)

A Definitional Issues in Composition of Signatures

It is natural to consider the following alternative definition of correctness for composition. Say that
a transitive signature scheme TS = (TKG,TSign,TVf,Comp) is strongly-correct if for every k, and
every (tpk , tsk) that might be returned by TKG(1k), we have:

If σ1 is a valid signature of edge {i, j} relative to tpk , meaning TVf(tpk , i, j, σ1) = 1
And σ2 is a valid signature of edge {j, k} relative to tpk , meaning TVf(tpk , j, k, σ2) = 1
And σ = Comp(tpk , i, j, k, σ1, σ2)
Then: σ is a valid signature of edge {i, k} relative to tpk , meaning TVf(tpk , i, k, σ) = 1

The purpose of this section is to point out that the DLTS scheme does not meet this definition.
Similar examples can be used to see that none of our schemes meet this definition either. Note that
the definition of [JMSW02] implies strong-correctness as we have formulated it above (it requires
more) and thus neither the DLTS scheme nor our schemes meet their definition.

We note that the “bad” inputs of our example can only be created by an adversary capable of
forging standard signatures. However, we feel that composition is a “correctness” rather than a
security requirement and should not rely on computational restrictions on adversaries.

The rest of this section assumes that the reader is familiar with the DLTS scheme [MR02] that
we sketched in Section 4.2. We present a counter-example to show that this scheme does not meet
the above strong-correctness requirement. The signer’s public key tpk in the DLTS scheme contains
two random generators g1, g2 of an underlying group G of prime order q, as well as a public key spk
for the underlying standard signature scheme. Suppose i, j, k are distinct nodes such that i < j < k.
Suppose σ1 = (Ci, Cj , δ11, δ12) is a valid signature of {i, j} relative to tpk , meaning

• Ci = (i, Li,Σi)

• Cj = (j, Lj ,Σj)

• LiL
−1
j ≡ gδ11

1 gδ12
2

• Σi a valid signature of i‖Li relative to spk

• Σj a valid signature of j‖Lj relative to spk .

Also suppose σ2 = (C ′
j, Ck, δ21, δ22) is a valid signature of {j, k} relative to tpk , meaning

• C ′
j = (j, L′

j ,Σ
′
j)

• Ck = (k, Lk,Σk)

• L′
jL

−1
k = gδ21

1 gδ22
2

• Σ′
j a valid signature of j‖L′

j relative to spk

• Σk a valid signature of k‖Lk relative to spk .

On inputs tpk , i, j, k, σ1, σ2, the composition algorithm of the DLTS scheme is defined to return
(Ci, Ck, δ31, δ32) where

δ31 = δ11 + δ21 mod q δ32 = δ12 + δ22 mod q .

32

Now, using the above, we have

gδ31
1 gδ32

2 = gδ11+δ21
1 gδ12+δ22

2

= gδ11
1 gδ12

2 · gδ21
1 gδ22

2

= LiL
−1
j · L′

jL
−1
k .

For the verification algorithm to accept, the above should equal LiL
−1
k , meaning the verification

algorithm would only accept (Ci, Ck, δ31, δ32) as a valid signature of {i, k} relative to tpk if Lj = L′
j .

However, the validity of the given signatures σ1, σ2 does not imply that Lj = L′
j. Accordingly, we

have an example of valid signatures yielding, via composition, an invalid signature. This shows
that the DLTS scheme is not strongly-correct.

Note that creating the valid signatures σ1, σ2, even given oracle access to the signer, would
require forging relative to the standard scheme, so in practice we do not expect the composition al-
gorithm to receive these inputs. However, it is inconvenient for formulate a correctness requirement
that hinges on security.

The DLTS scheme is, however, correct as per Definition 2.1. Even though an algorithm A in
the experiment of Figure 3 is not computationally restricted and could create σ1, σ2 as above and
invoke the composition algorithm, examination of the experiment shows that the flag Legit would
be set to false, and thus A would not win, so our definition is not violated.

B Correctness Proof for RSATS-1

Claim B.1 If (`, L,Σ, V) is the internal state of the TSign algorithm in RSATS -1, then at any time
during the experiment in Figure 3, the following invariant holds true:

Legit = false ∨ ∀ ({i, j}, σ) ∈ S :

i 6= j ∧ σ =

{
(Ci, Cj , δij) if i < j
(Cj, Ci, δji) if j < i

(16)

where Ci = (i, L(i),Σ(i)), Cj = (j, L(j),Σ(j)), δij = `(i)`(j)−1 mod N and δji = `(j)`(i)−1 mod N .

Proof: We will prove the claim by induction on the number of TSign oracle queries q. In the initial
state, S = ∅ and the claim is trivial. Suppose that the claim is true after q − 1 oracle queries. We
will prove that it still holds after the qth oracle query.

If Legit = false before the qth query, then it will still be false after the qth query, directly proving
the claim. We now concentrate on the case that Legit = true.

If the qth query is a TSign query i, j with i = j, Legit is set to false, again easily proving the
claim. Otherwise, a new element ({i, j}, σ) is added to S, where σ is the output of TSign(tsk , i, j).
All elements of S that satisfied Equation (16) in the previous state of TSign, will still do so in
the new state, because TSign only adds new entries to `, L and Σ, but never changes existing
entries. Therefor, it suffices to show that the newly added element ({i, j}, σ) satisfies Equation (16).
This can be seen from the description of the TSign algorithm. If i < j, it outputs a signature
σ = ((i, L(i),Σ(i)), (j, L(j),Σ(j)), δ) with δ = `(i)`(j)−1 mod N , as required. If j < i, TSign first
swaps the values of i and j in line (2.1), such that the output of the algorithm is actually σ =
((j, L(j),Σ(j)), (i, L(i),Σ(i)), δ) with δ = `(j)`(i)−1 mod N , again as required by Equation (16).

33

If the qth query is a Comp query i, j, k, σ1, σ2, we prove the claim as follows. If ({i, j}, σ1) 6∈ S
or ({j, k}, σ2) 6∈ S or i, j, k are not all distinct, then Legit is set to false and the claim holds
true. Otherwise, the composition algorithm is run to create σ = Comp(tpk , i, j, k, σ1, σ2), and the
element ({i, k}, σ) is added to S. As the internal state of the TSign algorithm is not affected
by the composition algorithm, all elements that previously satisfied Equation (16) will still do
so. We only have to check that the newly added element also satisfies Equation (16). If i > k
then i and k are swapped in line (4.1), as are the signatures σ1 and σ2. At this point we have
signatures σ1 and σ2 for edges {i, j} and {j, k} satisfying equation Equation (16) with i < k. Let
σ1 = (C1, C2, δ1), and let σ2 = (C3, C4, δ2). Line (4.3) of the Comp algorithm swaps C1 and C2

and inverts δ1 if i > j, ensuring that after this step C1 = (i, L(i),Σ(i)), C2 = (j, L(j),Σ(j)) and
δ1 ≡ `(i)`(j)−1 mod N . The same is done with C3, C4 and δ2 if j > k in line (4.4), ensuring
that C3 = (j, L(j),Σ(j)), C4 = (k, L(k),Σ(k)) and δ2 ≡ `(j)`(k)−1 mod N . The signature that is
finally returned is (C1, C4, δ), which indeed satisfies Equation (16) since i < k and δ is computed
as δ1δ2 ≡ `(i)`(j)−1 · `(j)`(k)−1 ≡ `(i)`(k)−1 mod N .

A corollary of the previous claim is that at any time during the experiment, TVf(tpk , i, j, σ) = 1
for all ({i, j}, σ) ∈ S. From the description of the TSign algorithm, we can see that L(i) ≡
`(i)e mod N and Σ(i) is a valid standard signature under spk for i‖L(i). Given these facts and
Equation (16), we can go through the description of TVf and check that it always returns 1.

Claim B.2 The variable NotOK in the experiment in Figure 3 can never become true.

Proof: By the corollary above, the verification of a signature in S always succeeds, so the only
way left for NotOK to become true during the experiment is when σ 6= τ in a Comp query. The
output of the signature algorithm for nodes i, k is τ = ((i, L(i),Σ(i)), (k, L(k),Σ(k)), `(i)`(k)−1)
when i < k, and is τ = ((k, L(k),Σ(k)), (i, L(i),Σ(i)), `(k)`(i)−1) if k < i. We now prove that
this is identical to the output of the composition algorithm when applied to nodes i, j, k and
signatures σ1, σ2 such that ({i, j}, σ1), ({j, k}, σ2) ∈ S. In the proof of Claim B.1, we already
argued that the variables C1 and C4 by the end of the Comp algorithm are always assigned
values (i, L(i),Σ(i)) and (k, L(k),Σ(k)), respectively, and that δ ≡ `(i)`(k)−1 mod N . The val-
ues for i and k, however, might have been swapped in the first line of the Comp algorithm,
so the returned signature is actually σ = ((i, L(i),Σ(i)), (k, L(k),Σ(k)), `(i)`(k)−1) if i < k and
σ = ((k, L(k),Σ(k)), (i, L(i),Σ(i)), `(k)`(i)−1) if k < i, exactly like τ .

Since the experiment outputs (Legit ∧ NotOK) at the end of its execution, the previous theorem
implies that it returns false for every adversary A, thereby proving the correctness of RSATS -1.

C Flaw in Proof of [SSM05]

Recently, Shahandashti et al. [SSM05] published a transitive signature scheme based on bilinear
maps that (barring notation and some minor implementation details) is the same as our GapTS -1
scheme. They however claim to prove a stronger security result, namely that the scheme is secure
under the CDH assumption (and the security of an underlying standard signature scheme), rather
than under the stronger one-more CDH assumption under which we prove it secure. However, we
show here that their proof is flawed, invalidating their result.

To point out the error in the proof of [SSM05], we briefly sketch the proof here, adapting their
notation to be consistent with ours. Given an adversary A breaking the tu-cma-security of GapTS -1,

they construct a CDH algorithm B as follows. On input a CDH instance (Ĝ, g, q,X, Y), algorithm

34

B generates a fresh key pair (spk , ssk) for the underlying standard signature scheme, and runs A

on input tpk = (Ĝ, g, q,X, spk). (Shahandashti et al. actually use grX instead of X for a randomly
chosen r ∈ Zq, but this is irrelevant to the proof since X is already uniformly distributed over Ĝ.)
The proof employs a technique due to Coron [Cor00] to answer A’s TSign queries: when a node

i is queried for the first time, B chooses bi
$← Zq and flips a biased coin ci that turns out heads

(ci = 0) with probability p0 and turns out tails (ci = 1) with probability 1− p0. If ci = 0 (in which
case node i is referred to as a Y -node), it sets the public label L(i)← Y · gbi ; if ci = 1 (node i is a
non-Y -node), it sets L(i)← gbi . If A asks for a signature on edge {i, j} such that ci = cj (meaning
i and j are both Y -nodes or both non-Y -nodes), B computes the edge label as Xbi−bj . If ci 6= cj ,
then B gives up. Eventually, A outputs its forgery on an edge {i′, j′} with edge label Z. If ci′ = 0
and cj′ = 1, then B outputs Z · gbj−bi as its CDH solution; if ci′ = 1 and cj′ = 0, then B outputs
Z−1 · gbi−bj ; if ci′ = cj′ , then B gives up. It is clear that B’s output is equal to CDH

Ĝ,g(X,Y) if it
doesn’t give up.

The critical point of the proof is the probability that B doesn’t give up during the game. Let q
be the number of A’s TSign queries. Shahandashti et al. argue [SSM05, p. 74] that in each query,
the nodes involved are of the same type (i.e. both Y -nodes or both non-Y -nodes) with probability
p2
0 +(1−p0)

2, and that the nodes i′, j′ involved in the forgery are of different types with probability
2p0(1−p0), yielding a success probability for B of β(q, p0) = 2p0(1−p0)[p

2
0 + (1− p0)

2]
q

times that
of A. By maximizing this function over p0 ∈ [0, 1], one obtains

max
p0∈[0,1]

(β(q, po)) =

(
1− 1

q+1

)q+1

q
= O(1/q) ,

losing only a factor linear in q in the reduction.
The above reasoning, however, implicitly assumes that the probability that two nodes are of

the same type is independent of previously signed edges. This is not the case, as multiple edges
may be incident to one node.

While this already shows that the analysis of the advantage of adversary B is wrong, and
is enough to invalidate the proof, one might ask a further question, namely that perhaps their
construction (of B) actually works, and a different analysis would show this. This turns out not
to be true, meaning that the reduction itself is flawed. We demonstrate this by constructing a
polynomial-time adversary A such that the success probability of adversary B is exponentially
small, regardless of A’s success probability. Consider an adversary A that, right before outputting
its forgery on edge {i′, j′}, first performs additional TSign queries to organize the graph as two
disjoint cliques of about equal size, creating new nodes if necessary. Let q′ be the total number
of nodes in the graph. (Without loss of generality, we can assume that q′ = O(q).) For B to
succeed, the clique of node i′ has to consist entirely of Y -nodes, while the clique of node j′ only
contains non-Y -nodes, or vice versa. Since each node is chosen to be a Y -node with probability p0,
independently of other nodes, this happens with probability

2 · pq′/2
0 · (1− p0)

q′/2 = 2[p0(1− p0)]
q′/2 ≤ 2−q′+1 ,

which is exponentially small in the security parameter k if q (and hence q′) is polynomial in k.

35

	Introduction
	Background
	Transitive signatures based on RSA
	New transitive signature schemes
	Eliminating node certificates via hashing
	Definitional contributions
	Related work, and versions of this paper

	Definitions
	Transitive Signatures based on RSA
	New Schemes
	The FactTS-1 scheme
	The DLTS-1M scheme
	The GapTS-1 scheme

	Eliminating Node Certificates via Hashing
	The RSATS-2 scheme
	The FactTS-2 scheme
	The GapTS-2 scheme

	From Stateful to Stateless Schemes
	References
	Definitional Issues in Composition of Signatures
	Correctness Proof for RSATS-1
	Flaw in Proof of SSM05

