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TRANSITIVITY, TWO-SIDED LIMIT SHADOWING

PROPERTY AND DENSE ω-CHAOS

Piotr Oprocha

Abstract. We consider ω-chaos as defined by S. H. Li in 1993. We show
that c-dense ω-scrambled sets are present in every transitive system with
two-sided limit shadowing property (TSLmSP) and that every transitive
map on topological graph has a dense Mycielski ω-scrambled set. As a
preliminary step, we provide a characterization of dynamical properties
of maps with TSLmSP.

1. Introduction

In 1993, S. H. Li introduced in [15] the notion of ω-chaos for interval maps.
Since then, only a small progress was made in the topic. The authors of [29]
show that transitive map on the unit interval has a dense Mycielski ω-scrambled
set, and later Bobok presented in [5] how this result can be extended to produce
a map on the unit n-dimensional cube with ω-scrambled set. A few special
cases of construction of uncountable ω-scrambled sets for systems on Cantor
set are dealt in [13, 24] (see also [15] and [29]) and not much more beyond
these results is known. The main difficulty is that standard techniques working
for residual relations (an effective tool for most of definitions of chaos stated in
terms of pairs or tuples) cannot be employed here. This makes proving ω-chaos
in concrete cases a quite challenging problem.

In this paper we use two tools when proving ω-chaos. First of all, we extend
results of [29] to show that on topological graphs transitivity implies ω-chaos
(with dense Mycielski ω-scrambled set), provided that entropy is positive (or
equivalently, the map is not an irrational relation on the unit circle). Our
construction highly rely on the recent results from [10] (and of course, some
ideas from [29]).

Second tool, applicable in a more general case is two-sided limit shadowing
property (abbrev. TSLmSP). This property was probably first introduced by
Pilyugin in his book [25] and is a version of standard shadowing property (SP
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for short), where emphasis is put on asymptotic aspects of tracing. It can be
proved that all structurally stable diffeomorphisms exhibit TSLmSP, while the
class of diffeomorphisms with TSLmSP is larger (see Theorems 2 and 3 in [26]).
Sakai proved in [27] that C1-generic diffeomorphism has a combination of SP
and TSLmSP, called s-limit shadowing property, if and only if it satisfies Axiom
A and no-cycle condition (see [27] for more details). It was later proved in [17]
that for C1-generic diffeomorphism the above condition is actually equivalent
to TSLmSP (called weak shadowing property in [17]). Carvahlo characterized
in [6] the C1-interior of the set of diffeomorphisms with TSLmSP on closed
manifolds as exactly the set of transitive Anosov diffeomorphisms. In the case
of expansive homeomorphism, shadowing property and TSLmSP are mutually
equivalent properties [14]. However, it is not hard to verify (e.g. taking an
infinite Cartesian product) that TSLmSP can exist in systems which are not
expansive. It is also a consequence of results of [26] mentioned above. Beyond
the above mentioned results, not much more is known about TSLmSP. Recently,
an interesting connection between a modified version of TSLmSP (so-called
two-sided limit shadowing property with a gap) and various mixing properties
for homeomorphism has been addressed in [7].

This paper is organized as follows. The next section collects a few most
important facts and definitions. As we could see in previous paragraph, the
most work done on TSLmSP was devoted to special classes of diffeomorphisms.
In particular, no general properties of maps with TSLmSP were studied. To
fill this gap in the literature, first we prove in Section 3 a few theorems for
a better understanding of dynamics of maps with TSLmSP (e.g. a kind of
Smale and Bowen spectral decompositions). Next we prove that ω-chaos can
be a consequence of TSLmSP. In the last section of the paper we show that on
topological graphs transitivity (no shadowing assumption) is enough to induce
ω-chaos with dense Mycielski ω-scrambled set.

2. Preliminaries

Denote by N the set of positive integers, by Z the set of integers and N0 =
N∪{0}. A set Q ⊂ X is c-dense if for any nonempty open set U the set U∩Q is
uncountable. A point x ∈ A is isolated (in A) if there is an open neighborhood
U of x such that U∩A = {x}. A set is prefect if it is nonempty, closed and does
not have isolated points. If there is a basis of clopen (i.e., closed and open at
the same time) sets, then we say that X is zero dimensional. A set A is Cantor
if it is perfect and zero dimensional and Mycielski if it can be presented as a
countable union of Cantor sets.

A pair (X, f) is a dynamical system if it consists of a compact metric space
(X, d) and a continuous map f : X → X . We denote the (positive) orbit of
a point x ∈ X by Orb+(x, f) =

{

x, f(x), f2(x), . . .
}

and an ω-limit set of x

is defined by ω(x, f) =
⋂

∞

n=1 Orb+(fn(x), f). A set M is minimal if M =

Orb+(x, f) for every x ∈M .
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The following lemma is a special case of theorem proved by Mycielski in [19].
Result of [19] is a more powerful tool, however we do not need it here in such
generality.

Lemma 1. Let X be a compact perfect set. If R is a residual subset of X×X,

then there exists a dense Mycielski set M ⊂ X such that M ×M ⊂ R ∪∆.

2.1. Shadowing

Let δ > 0 be a positive constant. A sequence {yn}n∈Z ⊂ X is a δ-pseudo-
orbit of f if

d(f(yn), yn+1) ≤ δ for every n ∈ Z.

Note that 0-pseudo-orbit of f is simply its genuine (full) orbit. A δ-pseudo-orbit
{yn} is two-sided limit δ-pseudo-orbit of f if it satisfies

(1) lim
|n|→∞

d(f(yn), yn+1) = 0.

If only condition (1) is satisfied (i.e., no particular δ > 0 is established), we will
say that {yn}n∈Z is a two-sided limit pseudo-orbit of f .

We say that f posses the shadowing property (SP for short) if for every ε > 0
there exists δ > 0 satisfying the following condition: given a δ-pseudo-orbit
{yn}n∈Z we can find a corresponding 0-pseudo-orbit {xn}n∈Z

which ε-traces
{yn}n∈Z, i.e.,

d(xn, yn) ≤ ε for every n ∈ Z.

If there is β > 0 such that for any two-sided limit β-pseudo-orbit {yn}n∈Z

we can find a 0-pseudo-orbit {xn}n∈Z
which traces {yn}n∈Z in the limit sense,

i.e.,

lim
|n|→∞

d(xn, yn) = 0,

then we say that f possess the two-sided limit shadowing property (abbrev.
TSLmSP).

Sometimes it is more convenient to work with finite pseudo-orbits when
speaking about SP. A finite sequence x0, . . . , xn is a (finite) δ-pseudo-orbit (or
a δ-chain from x0 to xn) if d(f(xi), xi+1) < δ for i = 0, . . . , n − 1. A point z
is ε-tracing a pseudo-orbit {xi}

n

i=0 if d(f i(z), xi) < ε for i = 0, . . . , n. When
X is compact and (X, f) is onto, it is not hard to verify that (X, f) has SP if
and only if for every ε > 0 there is δ > 0 such that every finite δ-pseudo-orbit
is ε-traced by a point in X .

Fix x, y ∈ X . If for every δ > 0 there are finite δ-pseudo-orbits from x to y
and from y to x, then we write x ∼ y. A point x is chain-recurrent if x ∼ x.
The set of all chain recurrent points is denoted CR(f). It is not hard to see
that ∼ is an equivalence relation on CR(f). If x ∈ CR(f), then [x]∼ is well
defined, and we call it a chain recurrent class (of x).
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Given a 0-pseudo-orbit {xn}n∈Z
we define

ω({xn}n∈Z
, f) =

∞
⋂

k=1

{xn : n > k} and α({xn}n∈Z
, f) =

∞
⋂

k=1

{x−n : n > k}.

Note that ω({xn}n∈Z
, f) = ω(xk, f) for every k ∈ Z.

2.2. Transitivity, equicontinuity and ω-chaos

A dynamical system (X, f) is equicontinuous if for every ǫ > 0, there is
δ > 0 with the property that d(x, y) < δ implies d(fn(x), fn(y)) < ǫ for every
x, y ∈ X and every n ∈ N. A point x ∈ X is equicontinuous if for every ǫ > 0,
there is δ > 0 with the property that d(x, y) < δ implies d(fn(x), fn(y)) < ǫ
for every y ∈ X and every n ∈ N. By compactness of X , a system (X, f) is
equicontinuous if and only if every point in X is equicontinuous.

A dynamical system (X, f) is sensitive if there exists δ > 0 such that for
any nonempty open subset U of X , we have diam(fn(U)) > δ for some n ∈ N.
A point x ∈ X is sensitive if it is not equicontinuous, that is, there exists
a δ > 0 such that for any neighborhood U of x there is n > 0 such that
diam(fn(U)) > δ. Clearly, if (X, f) is sensitive, then every x ∈ X is sensitive.

The following definition of ω-chaos was introduced by S. H. Li in [15].

Definition 2. A set S ⊂ X containing at least two points is called an ω-
scrambled set for f if, for any two x 6= y in S,

(1) ωf(x) \ ωf (y) is uncountable,
(2) ωf(x) ∩ ωf(y) 6= ∅ and
(3) ωf(x) \ Per(f) 6= ∅.

The map f is ω-chaotic if there is an uncountable ω-scrambled set. By an
ω-chaotic pair we mean any ω-scrambled set of cardinality 2.

In minimal set every point has dense orbit. It is not hard to verify that if
a minimal set M has an isolated point, then M is a single periodic orbit, and
if M does not have isolated points, then it is uncountable, as is every perfect
compact set.

Remark 3. In most of the known constructions it is possible to replace condi-
tions (2), (2) by the following stronger condition:

(1’) ωf(x) \ ωf(y) contains an infinite minimal set.

In this paper, when we prove ω-chaos, we construct ω-scrambled sets satisfying
this stronger condition.

2.3. Subshifts

We denote Σ+
2 = {0, 1}N endowed with the metric d(x, y) = 2−k when x 6= y,

where k = min {i : xi 6= yi}. The space (Σ+
2 , d) is compact and the shift map

σ : Σ+
2 → Σ+

2 , given by σ(x)i = xi+1 for all i ∈ N, is continuous. For x ∈ Σ+
2 we

usually write x = x1x2x3 · · · instead of x = (x1, x2, x3, . . .). We denote by 0∞
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the constant sequence 0∞ = 0000 · · · . By a shift or subshift we mean any closed
and σ-invariant subset of Σ+

2 . For 1 ≤ i ≤ j we denote x[i,j] = xixi+1 · · ·xj
and x[i,j) = x[i,j−1]. The set of words of length n in a subshift X is denoted

Bn(X) =
{

x[i,i+n) : x ∈ X, i ∈ N
}

.

3. TSLmSP and transitivity

We say that regularly closed sets D0, . . . , Dn−1 (i.e., Int Di = Di) form a
periodic decomposition of X if they cover X , Di ∩ Int Dj = ∅ for i 6= j, and
f(Di) = Di+1 for i = 0, . . . , n−1, where for technical reasons we put Dn = D0.

The proof of the following fact is standard. We present it for completeness.

Lemma 4. Let D0, . . . , Dn−1 form a periodic decomposition for a dynamical

system (X, f) and assume that (Di, f
n) is transitive for every i. If (X, f) has

SP, then Di ∩Dj = ∅ for i 6= j.

Proof. Suppose that there are i 6= j such that Di∩Dj 6= ∅. By the definition of

decomposition Di = Int Di, hence Int Di 6= ∅. Recall also that Int Di∩Dj = ∅.
Fix points z1 ∈ Int Di, z2 ∈ Int Dj and take ε > 0 such that B(z1, 2ε) ⊂

Int Di, B(z2, 2ε) ⊂ Int Dj. Let δ be provided to ε by SP.
Suppose that there is z ∈ Di ∩Dj . By transitivity of fn on Di and on Dj

there are finite δ-pseudo-orbits γ, ξ of length |γ| = sn, |ξ| = tn+1 for some s, t >
0, such that γ1 = z1, d(f(γsn), z) < β/2 and d(ξ1, z) < β/2, ξtn+1 = z2. If x is
a point which is ε-tracing the δ-pseudo-orbit ζ = γξ formed by concatenation
of γ with ξ, then d(x, z1) < ε and d(f (t+s)n, ζ(t+s)n+1) = d(f (t+s)n, ξtn+1) < ε.
This immediately implies that

f (s+t)n(x) ∈ f (s+t)n(Int Di) ∩ Int Dj ⊂ Di ∩ Int Dj = ∅.

This is a contradiction, which finishes the proof. �

Lemma 5. If (X, f) is a transitive dynamical system with TSLmSP, then

there is N > 0 such that if D0, . . . , Dn−1 is a periodic decomposition of X,

then n ≤ N .

Proof. Let β be provided by TSLmSP. Let U1, . . . , UN be a cover of X by open
sets of diameter smaller than β/3. If D0, . . . , Dn is a periodic decomposition,
and n ≥ N , then there are i 6= j and k such that Di∩Uk 6= ∅ and Dj ∩Uk 6= ∅.
We will repeat argument from the proof Lemma 4 to obtain that Int Di∩Dj 6= ∅
which will lead to a contradiction.

Take recurrent points z1 ∈ Int Di∩Uk and z2 ∈ Int Dj∩Uk. It is well known
that point recurrent for f is also recurrent for fn. Therefore, there are increas-
ing sequences ri, si such that d(fnri(z1), z1) < β2−i and d(fnsi(z2), z2) < β2−i.
Let γi =

{

z1, f(z1), . . . , f
nri−1(z1)

}

and ξi =
{

z2, f(z2), . . . , f
nsi−1(z2)

}

and
consider the sequence obtained as the following two-sided infinite concatenation

ζ =
1
⋃

n=−∞

{γn} ∪
∞
⋃

n=1

{ξn} = · · · γn · · · γ2γ1ξ1ξ2 · · · ξn · · · .
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Note that ζ is an limit β-pseudo orbit because

d(f(fnr1−1(z1)), z2) ≤ d(fnr1(z1), z1) + d(z1, z2) < β/2 + β/3 < β.

Let {xn}n∈Z
be a 0-pseudo-orbit provided to ζ by TSLmSP. Note that both sets

{l > 0 : ζ−nl = z1} and {t > 0 : ζnt = z2} are infinite. Hence there are l, t > 0
such that y = x−ln ∈ B(z1, ε) and xtn ∈ B(z2, ε) ⊂ Int Dj, which in turn
implies that

f (t+l)n(y) = xtn ∈ f (t+l)n(Di) ∩ Int Dj = ∅.

This is a contradiction, hence the proof is finished. �

Lemma 6. If (X, f) has TSLmSP, then there are finitely many chain recurrent

classes, that is CR(f) = [x1]∼ ∪ · · · ∪ [xn]∼ for some points x1, . . . , xn.

Proof. Assume that there are infinitely many chain-recurrent classes. Since
[x]∼ is closed for each x ∈ CR(f) there is a sequence of points {xi}

∞

i=1 such that
all [xi]∼ are distinct and are convergent in the Hausdorff metricHd induced by d
onto the space of all nonempty compact subsets of X . In particular {[xi]∼}

∞

i=1

is a Cauchy sequence in the Hausdorff metric. Let β > 0 be provided by
TSLmSP. There are distinct x, y ∈ {xi}

∞

i=1 with

dist([x]∼, [y]∼) ≤ Hd([x]∼, [y]∼) < β.

Therefore, without loss of generality (replacing x, y by other points in their
equivalence classes if necessary) we may assume that d(x, y) < β. But x, y ∈
CR(f), hence we can easily construct a two-sided limit β-pseudo-orbit ξ =
{ξi}i∈Z

such that {ξi}i≥0 ⊂ [y]∼, {ξi}i<0 ⊂ [x]∼ and both sets {i < 0 : ξi = x}
and {i > 0 : ξi = y} are infinite. Then as an immediate consequence of TSLmSP
we obtain that for every ε > 0 there is an ε-chain from x to y. Similarly, we can
construct two-sided limit β-pseudo-orbit γ = {γi}i∈Z

such that {γi}i<0 ⊂ [y]∼,
{ξi}i≥0 ⊂ [x]∼ and both sets {i > 0 : ξi = x} and {i < 0 : ξi = y} are infinite.
Consequently, for every ε > 0 there is an ε-chain from y to x. We have just
proved that x ∼ y which is a contradiction. �

Lemma 7. Suppose that Λ is a chain-recurrent class and that (Λ, f) has

TSLmSP. Then (Λ, f) is transitive.

Proof. Let β > 0 be provided by TSLmSP. Fix any x, y ∈ Λ. Repeating
arguments from the proof of Lemma 6 we can find a limit β-pseudo-orbit
{xn}n∈Z

such that both sets {i > 0 : ξi = y} and {i < 0 : ξi = x} are infinite.
Let {zn}n∈Z

be a 0-pseudo-orbit which is tracing {xn}n∈Z
in the limit sense.

Then for every N > 0 there are indexes i, j > N such that d(z−i, x) < 1/N
and d(zj , y) < 1/N . This immediately implies that for every ε > 0 and every
n ∈ Z there are ε-chains from x to zn and from zn to y. But Λ is chain re-
current class, hence x ∼ y and therefore x ∼ zn for every n ∈ Z, in particular
{zn}n∈Z

⊂ Λ. But if we take any open sets x ∈ U , y ∈ V , then there are n < m

such that zn ∈ U , zm ∈ V , proving that fm−n(U) ∩ V 6= ∅. Indeed (Λ, f) is
transitive. �
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Theorem 8. If (X, f) has TSLmSP, then f |CR(f) has shadowing and there

are closed invariant sets Λ1, . . . ,Λn such that CR(f) =
⋃n

i=1 Λi and f |Λi
is

transitive and has SP for each i = 1, . . . , n. Furthermore, for every i there is

m = m(i) and periodic decomposition D0, . . . , Dm−1 of Λi such that sets Dj

are disjoint and (Dj , f
m) is mixing for j = 0, 1, . . . ,m− 1.

Proof. Let β > 0 be provided by TSLmSP and let Λ1, . . . ,Λn be a parti-
tion of CR(f) into chain-recurrent classes provided by Lemma 6. Denote
ε = 1

2 min {mini6=j dist(Λi,Λj), β}. Clearly, if we take any two-sided limit
ε-pseudo-orbit contained completely in Λi and {xn}n∈Z

is a full orbit (i.e.,
0-pseudo-orbit) which traces it in the limit sense, then ω({xn}n∈Z

, f)∩Λi 6= ∅
and α({xn}n∈Z

, f) ∩ Λi 6= ∅. But then, since Λi is chain-recurrent class, we
clearly have that {xn}n∈Z

⊂ Λi. This shows that (Λi, f) has TSLmSP for each
i and therefore is transitive by Lemma 7. By results of [11] we obtain that
(Λi, f) has SP.

If (Λi, f) is totally transitive, then it must be mixing (e.g. see [12]). Oth-
erwise there exists a periodic decomposition of Λi (see [3]), and by Lemma 5
length of every such decomposition is bounded. But then, again by results of
[3], we obtain that there are sets D0, . . . , Dm−1 (m ≥ 1) forming periodic de-
composition of Λi and such that (Dj , f

m) is totally transitive. By Lemma 4 sets
Dj are disjoint, and hence it is clear that (Dj , f

m) has SP. Repeating previous
argument, we see that each (Dj , f

m) is mixing completing the proof. �

Corollary 9. If (X, f) is a minimal system with TSLmSP, then it is a periodic

orbit.

Proof. By results of [11] we obtain that (X, f) has SP. Then it is a consequence
of [18] that (X, f) is equicontinuous and by Theorem 8 there is a periodic
decomposition D0, . . . , Dn−1 of X such that (Di, f

n) is mixing for every i. But
the only possibility for equicontinuous system to be mixing is that Di is a
singleton. The proof is finished. �

4. TSLmSP and ω-scrambled sets

Lemma 10. Let (X, f) be a transitive dynamical system with TSLmSP. Let

M1,M2 be two minimal sets. There exists z and at most countable set Z such

that ωf(z) =M1 ∪M2 ∪ Z.

Proof. Fix any ε > 0 and let β > 0 be provided by TSLmSP. By transitiv-
ity, there exist points x, y ∈ X and integers n,m > 0 such that x, fm(y) ∈
B(M1, β/2) and y, f

n(x) ∈ B(M2, β/2). Since M1,M2 are minimal, there are

sequences ξ = {ξi}
0
i=−∞

⊂ M1, ζ = {ζi}
0
i=−∞

⊂ M2 and points p ∈ M1,
q ∈ M2 such that d(p, fm(y)) < β, d(q, fn(x)) < β, d(ξ0, x) < β, d(ζ0, y) < β
and f(ξi) = ξi+1, f(ζi) = ζi+1 for all i < 0.

Note that the following two-sided sequences

φ = {φn}n∈Z
=

{

. . . , ξ−2, ξ−1, x, . . . , f
n−1(x), q, f(q), f2(q), . . .

}

,
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ψ = {ψn}n∈Z
=

{

. . . , ζ−2, ζ−1, y, . . . , f
m−1(y), p, f(p), f2(p), . . .

}

form two-sided limit pseudo-orbits. By TSLmSP there are 0-pseudo-orbits φ̂, ψ̂
(i.e., actual orbits) which are tracing φ and ψ, respectively, in the limit sense,

i.e., lim
|n|→∞

d(φn, φ̂n) = 0 and lim
|n|→∞

d(ψn, ψ̂n) = 0. Since α(
{

φ̂n

}

n∈Z

, f)

= α({φn}n∈Z
, f) =M1 and ω(

{

ψ̂n

}

n∈Z

, f) = ω({ψn}n∈Z
, f) =M1, there is a

decreasing sequence {ki}
∞

i=0 ⊂ (−∞, 0) and an increasing sequence
{

k̂i

}

∞

i=0
⊂

(0,∞) such that d(φ̂ki
, ψ̂

k̂i
) < 2−iβ and limi→∞ d(φ̂ki

,M1) = 0. Similarly,

there is a decreasing sequence
{

l̂i

}

∞

i=0
⊂ (−∞, 0) and an increasing sequence

{li}
∞

i=0 ⊂ (0,∞) such that d(φ̂li , ψ̂l̂i
) < 2−iβ and limi→∞ d(φ̂li ,M2) = 0.

Denote by γ the following two-sided sequence:

γ = {γn}n∈Z
=

{

ψ̂i

}k̂1−1

i=−∞

∪
∞
⋃

j=1

(

{

φ̂i

}lj−1

i=kj

∪
{

ψ̂i

}k̂j+1−1

i=l̂j

)

= {. . . , ψ̂
k̂1−3, ψ̂k̂1−2, ψ̂k̂1−1, φ̂k1

, . . . , φ̂l1−1, ψ̂l̂1
, . . . , ψ̂

k̂2−1, φ̂k2
,

. . . , φ̂l2−1, ψ̂l̂2
, . . . , ψ̂

k̂3−1, φ̂k3
, . . .}.

Observe that γ is a two-sided limit β-pseudo-orbit. Now, let {zn}n∈Z
be a

0-pseudo-orbit provided by TSLmSP to γ and denote z = z0. We claim that

ωf (z) =M1 ∪M2 ∪ ψ̂ ∪ φ̂.

First of all, let us observe that by the definition of sequences ki, li there are
increasing sequences ni,mi such that the following limits exist: limi→∞ γni

=
p ∈M1 and limi→∞ γmi

= q ∈M2. Therefore,M1∩ωf (z) 6= ∅ andM2∩ωf (z) 6=
∅ which gives M1 ∪M2 ⊂ ωf(z). Clearly, for any s ∈ Z we can find increasing

sequences ri, r̂i such that γri = φ̂s and γr̂i = ψ̂s and hence φ̂ ∪ ψ̂ ⊂ ωf (z).
Next, fix any increasing sequence si such that limi→∞ f si(z) exists. Without

loss of generality, going to a subsequence if necessary, we may assume that all

points γsi are elements of exactly one of the sequences φ̂ or ψ̂. Let us assume
that the first possibility takes place (the second case is symmetric), that is

there there exists a sequence ŝi such that γsi = φ̂ŝi for all i ∈ N. Assume
first, that the sequence ŝi is bounded. Then, going to a subsequence again, we
may assume that it is constant, say ŝi = s for all i, and then limi→∞ f si(z) =

limi→∞ φ̂ŝi = φ̂s. If ŝi is unbounded, then we may assume that it is monotone
and then limi→∞ f si(z) ∈M1 or limi→∞ f si(z) ∈M2, depending whether ŝi is
decreasing or increasing. The proof is completed. �

Lemma 11. Let (X, f) be a transitive dynamical system with TSLmSP and

let M1,M2, . . . ,Mn ⊂ X be minimal sets. There exist z and at most countable

set Z such that ωf (z) = Z ∪
⋃n

i=1Mi.
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Proof. Let β be provided by TSLmSP. We prove the statement of the lemma
by induction on n. The case n = 2 is solved by Lemma 10. Now suppose that
the lemma holds with some n = N ≥ 2. We are going to show that it also
holds with n = N + 1.

By Lemma 10 and our assumptions, there are points z1, z2 and countable
sets Z1, Z2 such that

ωf (z1) = Z1 ∪
N
⋃

i=1

Mi, ωf(z2) = Z2 ∪M1 ∪MN+1.

Note that M1 ⊂ ωf (z1) ∩ ωf (z2), which yields that there are increasing se-
quences ki, si such that

(1) d(fki(z1), f
ki+1(z1)) < 2−iβ and d(f si(z2), f

si+1(z2)) < 2−iβ,
(2) d(fki(z1), f

si(z2)) < 2−iβ and d(fki(z1),M1) < 2−iβ.

Let {ξi}
∞

i=0 ⊂ M1 be any sequence satisfying f(ξi) = ξi+1 for all i ≤ 0 and

d(ξ1, f
k1(z1)) < β. Now define a two-sided limit β-pseudo-orbit γ putting

γ = {γn}n∈Z
= {ξi}

0
i=−∞

∪
∞
⋃

j=1

(

{

f i(z1)
}kj+1−1

i=kj
∪
{

f i(z2)
}sj+1−1

i=sj

)

= {. . . , ξ−2, ξ−1, ξ0, f
k1(z1), . . . , f

k2−1(z1), f
s1(z2), . . . ,

f s2−1(z2), f
k2(z1), . . . , f

k3−1(z1), f
s2(z2), . . .}.

Clearly γ is a limit β-pseudo-orbit. Now let {zi}i∈Z
be a 0-pseudo-orbit which

traces γ in the limit sense, and put z = z0. Since {γj}
∞

j=0 contains infinite

forward segments of both orbits of z1 and z2 we immediately obtain that

Z1 ∪ Z2 ∪
N+1
⋃

i=1

Mi = ωf (z1) ∪ ωf(z2) ⊂ ωf(z).

But conversely, if we fix any increasing sequence ti, then, after passing to

a subsequence if necessary, there is a sequence t̂i such that γti = f t̂i(z1)

for all i ≥ 0 or γti = f t̂i(z2) for all i ≥ 0. But {γj}
∞

j=0 consists of blocks

fki(z1), . . . , f
ki+1−1(z1) separated by blocks f si(z2), . . . , f

si+1−1(z2) which im-
plies we may assume that t̂i is increasing, since si is increasing. But this implies
that

ωf (z) ⊂ ωf (z1) ∪ ωf (z2)

finishing the proof. �

Theorem 12. Let (X, f) be a transitive but not minimal dynamical system

with TSLmSP. Then there exists a c-dense ω-scrambled set Q ⊂ X.

Proof. It can be proved that transitive system with shadowing is either sensitive
or equicontinuous [20]. But it is easy to see that if we take a minimal system
M ⊂ X and (X, f) is equicontinuous, then X =M , hence (X, f) is sensitive.
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By results of [11] we know that transitive map with limit shadowing property
(a one-sided version of TSLmSP) has SP.

By Theorem 5.2 in [22], for every nonempty open set U there is m > 0, a
closed set Λ ⊂ U invariant for fm and a factor map π : (Λ, fm) → (Σ+

2 , σ).
Since Σ+

2 contains an uncountable family of disjoint minimal and infinite sets
(thus uncountable), there exist an uncountable set CU and pairwise disjoint

minimal sets M̂c ⊂ Λ, c ∈ CU for the dynamical system (Λ, fm). Note that for

each c the set Mc =
⋃

∞

i=0 f
i(M̂c) =

⋃m−1
i=0 f i(M̂c) is minimal and if for some

c, d ∈ CU and i ≥ 0 we have f i(M̂c) ∩ M̂d 6= ∅, then f i(M̂c) = M̂d. Therefore,

if we define c ≈ d when f i(M̂c) = M̂d or f i(M̂d) = M̂c for some i ≥ 0, then ≈
is an equivalence relation on CU with finite equivalence classes. This implies
that we may assume (selecting exactly one element of each class) that minimal
sets Mc are pairwise disjoint for every c ∈ CU . By the construction each set
Mc is uncountable.

Let us select a countable basis {Ui}
∞

i=1 of the topology on X and for each
Ui let us perform the above construction to obtain a family of minimal sets
Mc with c ∈ CUi

, where each CUi
is uncountable. We claim that there are

uncountable sets Di ⊂ CUi
such that Mc ∩ Md = ∅ provided that c ∈ Di,

d ∈ Dj and i 6= j.

First, for each i denote C
(1)
i = CUi

. Up to a bijection (not necessarily

continuous), we can identify C
(1)
1 with [0, 1]2. Put W = ∅. Now suppose that

for some r ∈ [0, 1] there is j > 1 such that the set of indexes c ∈ C
(1)
j such that

Mc 6=M(r,d) for all d ∈ [0, 1] is at most countable (i.e., all but countably many

minimal sets with indexes in C
(1)
j are in the fibre of C

(1)
1 at the level r). In

such a case we include r in W . We perform this operation for each j = 2, 3, . . ..
As a result of this (infinite) procedure we obtain at most countable set W such

that if we fix any s ∈ [0, 1] \W , then the set of c ∈ C
(1)
j such that Mc 6=M(s,d)

for all s ∈ [0, 1] is uncountable for each j > 1. Fix an index s ∈ [0, 1] \W and

denote D1 = {s} × [0, 1] ⊂ C
(1)
1 . Now, if we remove from each C

(1)
j indexes

defining set Mc for some c ∈ D1, and denote the result of this operation by

C
(2)
j , for each j > 1, then by our construction every set C

(2)
j is uncountable.

We can perform this construction inductively, using family
{

C
(n)
j

}

j≥n
for the

construction of Dn the same way as it was done with D1. This proves the
claim.

Finally, we may pick a minimal set M and guarantee that it is disjoint with
all Mc, c ∈ D =

⋃

i>0Di (e.g. we can remove one set from D1). Now, for each
c ∈ D we use Lemma 10 to construct a point zc such thatMc∪M ⊂ ωf (zc) and
ωf (zc) \Mc ∪M is at most countable (and in particular zc 6= zd). This implies
that Md ∩ ωf(zc) = ∅ for each c 6= d since Md is uncountable and disjoint with
Mc and M . We may also assume (replacing zc by its forward iterate) that
zc ∈ Ui for each c ∈ Di because Ui ∩Mc 6= ∅ for every c ∈ Di.
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Denote Q = {zc : c ∈
⋃

∞

i=1Di}. Then Q is c-dense simply by the definition.
But now, if we fix any distinct x, y ∈ Q, then there are distinct c, d such that
ωf (x) =M ∪Mc ∪Z1 and ωf (y) =M ∪Md ∪Z2, where Z1 and Z2 are at most
countable. In particular Md ∩ ωf (x) = ∅ and Mc ∩ ωf(y) = ∅. This shows that
x, y form an ω-scrambled pair completing the proof. �

It seems that there is no chance to expect that the set of all ω-scrambled pairs
is Gδ in X×X . So in practice there is no chance to use standard arguments of
construction of Mycielski set. From that point of view the following question
can be of interest.

Question 1. Is it possible to construct set Q in Theorem 12 in such a way
that it is Borel?

By standard argument (e.g. see [28]), a positive answer to the above question
immediately implies that there is a dense Mycielski ω-scrambled set in the
system.

5. Topological graphs and ω-chaos

The aim of this section is to extend the results of [29] (proved for interval
maps) onto the class of maps on topological graphs. While the results are more
general, the proof is somehow shorter (which does not mean elementary).

The following fact completes [29, Proposition 1]. Among other things it
allows to transfer Cantor ω-scrambled set from higher iterate fm to f . Note
that ω(x, f) =

⋃n−1
i=0 ω(f

i(x), fn) =
⋃n−1

i=0 f
i(ω(x, fn)) and then (under certain

conditions) in an ω-scrambled set S for fm, there are at most m points p, q ∈ S
such that ω(p, f)\ω(q, f) is at most countable and we can define an equivalence
relation in S × S with uncountably many equivalence classes (see the proof of
Theorem 3.5 in [15]). This relation, however, is not necessarily Borel, hence
we cannot ensure that we can pick elements of these classes in such a way that
a perfect set is obtained. Therefore we need to perform a little more delicate
construction, to remove this difficulty. For this purpose, we are going to adjust
the argument in the proof of [29, Proposition 1].

Theorem 13. Let (X, f) be a dynamical system and let Λ and m > 0 be

such that (Λ, fm) is conjugated with (Σ+
2 , σ). Then there exists a Cantor set

CsubsetΛ which is ω-scrambled for f .

Proof. First, we will perform a construction from [29, Proposition 1] to show
that there exists a perfect set SsubsetΣ+

2 which is ω-scrambled for σ and sat-
isfies the following conditions:

(1) 0∞ ∈ ω(x, σ) for every x ∈ S.
(2) ω(x, σ) =Mx∪Vx∪Ux∪{0∞} where Vx, Ux are at most countable sets

and Mx is a minimal set (and all these sets depend on x; are pairwise
disjoint).
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(3) for every ε > 0 there is δ > 0 such that if d(x, y) < δ, x, y ∈ S, then
Hd(Mx,My) < ε, where Hd is the Hausdorff metric induced by d.

Denote by A ⊂ Σ+
2 the set containing all sequences with infinitely many

occurrences of symbols zero and one, that is a ∈ A provided that both sets
{i : ai = 0} and {i : ai = 1} are infinite. Note that Σ+

2 \A is at most countable,

and hence A is a Borel set. Then there is a Cantor set Â ⊂ A ⊂ Σ+
2 (see [28]).

Denote by N a partition of N by the following sets Nn = 2n−1(1 + 2N0), e.g.
N1 = {1, 3, 5, . . .}, N2 = {2, 6, 10, . . .}, etc. Using the partition N , we define a
map Φ: Σ+

2 → Σ+
2 putting Φ(x)i = xn where n is the unique index such that

i ∈ Nn. Roughly speaking, Φ(x) has the following structure

Φ(x) = x1x2x1x3x1x2x1x4x1x2x1x3x1x2x1x5x1 · · · .

Clearly Φ is continuous and one-to-one, hence the set D = Φ(Â) is a Cantor set.
For every β ∈ D denote Dβ = ω(β, σ). It follow directly by the construction
that Dβ is a minimal set and β ∈ Dβ. Note that if x ∈ Dβ , then xn = β1
for all n ∈ N1 or all n ∈ N1 + 1 and if xn = β1 for all n ∈ N1, then we can
find i, j ∈ N1 + 1 such that xi 6= xj (or i, j ∈ N1 in the second possible case).
We can repeat this observation for N2, N3, etc. showing that Dβ 6= Dα when
β 6= α.

Note that if for some k > 0 we define Φk(x)i = xn where n is the unique
index such that i ∈ Nn and n ≤ k and Φk(x) = ∗ otherwise, where ∗ is
an additional symbol other than 0, 1, then Φk(x)[i,i+k] contains at most one
occurrence of ∗. Furthermore, observe that if we fix any i and put 0 or 1 in
place of ∗ in the word w = Φk(x)[i,i+k], then w can be located somewhere in
Φ(x). This implies that if x[1,k] = y[1,k], then Bk+1(DΦ(x)) = Bk+1(DΦ(y)) and

hence Hd(DΦ(x), DΦ(y)) ≤ 2−k.
Let β = Φ(x) and define

Ψ(x) = β10β1β200β1β2β3000β1 · · ·β[1,n]0
n · · · .

Denote Ux =
{

β[1,n)0
∞ : n ≥ 1

}

and Vx = {0nβ : n ≥ 1}. Then Ux, Vx are
countable sets and ω(Ψ(x), σ) = {0∞} ∪ Ux ∪ Vx ∪MΦ(x), e.g. by Lemma 2.2

in [15]. Combining all the previous remarks together and putting S = Φ(Â)
we obtain that conditions (1)–(3) are satisfied.

Since (Λ, fm) is conjugated with (Σ+
2 , σ), without loss of generality we

may assume that S ⊂ Λ. For every x ∈ X denote Kx =
⋃

∞

i=0 f
i(Mx) =

⋃m−1
i=0 f i(Mx). Denote by R the set of pairs in S × S that are ω-scrambled.
This implies that for every x ∈ S there are at mostm other points z ∈ S such

that Kx = Ky. Clearly, for each x ∈ S the set Kx is minimal and ω(x, f)\Kx is
at most countable. By (3), for every ε > 0 there is δ such that if Kx ∩Ky = ∅,
then Kp ∩ Kq = ∅ provided that p ∈ B(x, δ) ∩ S and q ∈ B(y, δ) ∩ S. This
proves that R is an open set. But if we fix any distinct x, y ∈ S and any open
neighborhood U of x, then U ∩S is infinite, and so there is z ∈ U ∩S such that
Kz ∩Ky = ∅. This proves that the pair (z, y) is ω-scrambled and therefore R
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is a residual subset of S × S. By Lemma 1 there is a Cantor set C ⊂ S such
that C × C ⊂ R ∪∆. The proof is completed. �

The following fact was proved in [21] for interval maps, however the proof is
the same in the context of graph maps. The only difference is that at first we
have to use [16] to find a horseshoe for an iterate of map with positive entropy.

Lemma 14. Let (G, f) be a dynamical system with positive topological entropy

acting on a topological graph G. Then there exist n > 0, an fn-invariant closed

set Λ and a homeomorphism π : Λ → Σ+
2 such that π ◦ (fn|Λ) = σ ◦ π.

Lemma 15. Let G be a topological graph and let (G, f) be a topologically mixing

dynamical system. Then there exists a dense ω-chaotic Mycielski set.

Proof. It is well known that (G, f) has positive topological entropy (see [8]
for proof of this fact in much wider context). Let Λ and n be provided by
Lemma 14. By Theorem 13 there is an ω-scrambled Cantor set C for (G, f).

By Theorem 4.6 in [10] there is a finite set I(f) such that for every nonempty
open set U and every ε > 0 there is n > 0 such that fn(U) ⊃ G \ B(I(f), ε).
Since I(f) is finite, without loss of generality we may assume that C ∩I(f) = ∅
and hence there is γ > 0 such that C ∩ B(I(f), γ) = ∅. Therefore, for every
nonempty open set U there is n > 0 such that C ⊂ fn(U).

Since C is homeomorphic with C × C, there exist a sequence of pairwise
disjoint Cantor sets C1, C2, . . . ⊂ C. If V is an open set and n > 0 is such that
Ci ⊂ fn(V ), then A = f−n(Ci)∩V is compact, and hence by [28, Remark 4.3.6]
there is a Cantor set Di ⊂ V such that fn is injective on Di and f

n(Di) ⊂ Ci.
Fix any base U1, U2, . . . of the topology ofX and open sets Vi such that Vi ⊂ Ui.
For every i there is n such that Ci ⊂ C ⊂ fn(Vi) ⊂ fn(Vi) and as a result there
is also a Cantor set Di such that fn(Di) ⊂ Ci and if we fix distinct x, y ∈ Di,
then fn(x), fn(y) ∈ Ci are also distinct. Clearly for every x ∈ X and n > 0 we
have ω(x, f) = ω(fn(x), f), thus M =

⋃

∞

i=1Di is a Mycielski ω-scrambled set.

But ∅ 6= M ∩ Vi ⊂ M ∩ Ui which proves that M is also dense, completing the
proof. �

Theorem 16. Let G be a topological graph. If (G, f) is transitive dynamical

system other than irrational rotation, then there exists a dense Mycielski ω-
chaotic set for f .

Proof. The only examples of transitive graph homeomorphisms are the irra-
tional rotations of the circle, hence we may assume that (G, f) is not in-
vertible. By periodic decomposition theorem (see [3] or [1]) there are graphs
G0, . . . , Gs−1 ⊂ G with disjoint interiors, such that f(Gi) = Gi+1(mod s) and
f s|Gi

is totally transitive (hence mixing, see [2, 4] or [9] for a proof).
By Lemma 15 there is a dense Mycielski set M ⊂ G0 for f s|G0

. Graphs Gi

have disjoint interiors, hence without loss of generality we may assume that
M ∩Gi = ∅ for each i 6= 0. Since M is a dense Mycielski set, it is easy to find
disjoint dense Mycielski setsM0, . . . ,Ms−1 ⊂M . Additionally eachMi is dense
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and f i(G0) = Gi, hence the set f i(Mi) is dense in Gi. But Mi is scrambled
set, thus f |Mi

is one-to-one. This proves that f i(Mi) is Mycielski set and so

also S =
⋃s−1

i=0 f
i(Mi) is a dense Mycielski set. The proof is complete. �
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