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ABSTRACT

We have developed a new model for analysing light curves of planetary transits when there are

starspots on the stellar disc. Because the parameter space contains a profusion of local minima

we developed a new optimization algorithm which combines the global minimization power

of a genetic algorithm and the Bayesian statistical analysis of the Markov chain. With these

tools we modelled three transit light curves of WASP-19. Two light curves were obtained on

consecutive nights and contain anomalies which we confirm as being due to the same spot.

Using these data we measure the star’s rotation period and velocity to be 11.76 ± 0.09 d and

3.88 ± 0.15 km s−1, respectively, at a latitude of 65◦. We find that the sky-projected angle

between the stellar spin axis and the planetary orbital axis is λ = 1.◦0 ± 1.◦2, indicating axial

alignment. Our results are consistent with and more precise than published spectroscopic

measurements of the Rossiter–McLaughlin effect.

Key words: stars: fundamental parameters – stars: individual: WASP-19 – planetary systems –

starspots.

1 IN T RO D U C T I O N

It was Silva (2003) who first put forward the idea of using planetary

transits to detect starspots, through an anomalous brightening when

the planet passes over the starspot during the transit of the host star.

As transit surveys such as WASP (Pollacco et al. 2006) and HAT

(Bakos et al. 2004) detect ever more transiting planets, the number

of known planets orbiting an active star will increase. Rabus et al.

(2009), Pont et al. (2007) and Winn et al. (2010b) have all shown

how a planet crossing a starspot during transit can create a small

increase in the received flux from the star. This occurs because the

spot is generally cooler than the surrounding photosphere, so less

light is lost when a planet is occulting the spot than when the planet

is in front of the unspotted parts of the photosphere. One of the

remaining problems is to model the effects of both the transit and

spot accurately and precisely.

Sanchis-Ojeda et al. (2011), Nutzman, Fabrycky & Fortney

(2011) and Désert et al. (2011) used photometric observations to

show that it is possible to calculate the obliquity of the system

when there are light curves of multiple transits affected by the same

spot(s). A large spin–orbit misalignment has been found in this

way for HAT-P-11 (Sanchis-Ojeda & Winn 2011). For a multiple

planetary system, starspots have also been used to test the align-

ment of the stellar spin axis against the orbital planes of the planets

(Sanchis-Ojeda et al. 2012). The obliquity of a planetary system

helps understand which mechanism was predominant in the dy-

namical evolution of the system (Winn et al. 2010a; Sanchis-Ojeda

⋆ E-mail: j.j.tregloan-reed@keele.ac.uk

et al. 2012). A low obliquity would follow from the idea that the

planet formed at a large distance from its host star and, through

tidal interactions with the protoplanetary disc, suffered orbital de-

cay. Larger obliquities are expected when orbital decay occurred

due to gravitational interactions from other bodies in the system

(Schlaufman 2010).

At present there are three main ways to measure the rotation

period of a star. The first is to use photometric rotational modula-

tion over many months or years (Hall 1972). The second method

uses radial velocity measurements to find the projected rotational

velocity, v sin I, which gives a lower limit on v and thus the rotation

period. The third method, presented by Silva-Válio (2008), is the

idea of measuring the rotation period of a star by using a transiting

planet crossing a starspot. This opens up the possibility of allowing

the rotation period of a star to be found from two sets of photometry

from a 2-m class ground-based telescope.

Once the rotation period of a star is known it is possible to

find the age of the star according to the gyrochronology rela-

tionship (e.g. Barnes 2007). It is also possible, when combined

with v sin I, to find I, the inclination of the stellar spin axis to-

wards the observer. To find the spin–orbit alignment of a system,

Fabrycky & Winn (2009) showed that we require three parame-

ters, orbital inclination i, the inclination of the stellar spin axis

towards the observer I and the sky-projected spin–orbit alignment

λ. The quantity λ can be found by using two different methods. The

first method is the Rossiter–McLaughlin effect (McLaughlin 1924;

Rossiter 1924), while the second method uses planetary transits

crossing over starspots (Désert et al. 2011; Nutzman et al. 2011;

Sanchis-Ojeda & Winn 2011; Sanchis-Ojeda et al. 2011, 2012).
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After observing three light curves of WASP-19 with the aim of

obtaining accurate physical properties, we discovered that two of our

data sets contained a starspot anomaly. Starspots can affect the shape

of a transit (Silva-Válio 2010) and if not correctly modelled can lead

to biased measurements of the system parameters. To achieve our

original goal to obtain precise measurements of the system prop-

erties we decided to develop a new model capable of modelling

both the transit and starspots simultaneously. With a precise known

position of the spot at two close but distinct times we would then be

able to calculate the obliquity of the system and compare this to the

values obtained from measurement of the Rossiter–McLaughlin ef-

fect (Hellier et al. 2011; Albrecht et al. 2012) and check if WASP-19

follows the theory put forward by Winn et al. (2010a) that cool stars

will have low obliquity (see also Triaud 2011). This would also

allow us to measure the rotation period of the star and compare it

to the value found by photometric modulation (Hebb et al. 2010).

Section 2 describes the IDL
1 code PRISM and how it models both

the planetary transit and the star-spot. Section 3 describes the opti-

mization algorithm used to find the optimal solution together with

their associated uncertainties. Section 4 gives an overview of the

observations and the manner in which they were collected. Sec-

tion 5 shows the best-fitting results of the model for both the system

and starspots. Section 6 reviews previous work on WASP-19 and

compares the results of this work.

2 MODELLING TRANSITS AND STARSPOTS:

I N T RO D U C I N G P R I S M

When dealing with starspot anomalies in transit data a common

course of action is to model the transit first and then deal with

the starspot based on the residuals (e.g. Maciejewski et al. 2011;

Sanchis-Ojeda et al. 2011). This can unfortunately lead to unknown

uncertainties and biases in the measurements of the stellar and

planetary radii, inclination and limb darkening (LD) coefficients.

(e.g. Ballerini et al. 2012). This is because when a starspot is on

the visible part of the stellar disc it reduces the received flux by an

amount �Fspot. When the planet transits the star it blocks �Fplanet

of the stellar flux. The depth of the transit is the fractional amount

of flux blocked by the planet, which depends on the ratio of the

areas of the planet and star. Without a starspot and in the absence

of LD the equation for the ratio of the radii is

(

Rp

Rs

)2

=
�Fplanet

F
, (1)

where F is the total flux of the unspotted star and Rp and Rs are the

radii of the planet and star. If a starspot is placed on the stellar disc

and causes a decrease in stellar flux of �Fspot, the above equation

becomes

α

(

Rp

Rs

)2

=
�Fplanet

(

F − �Fspot

) , (2)

where α is the ratio of the transit depths in the spotted and unspotted

cases. Because �Fspot > 0 for a cool spot, the transit gets deeper

(α > 1). Neglecting this would result in an incorrect measurement

of the ratio of the radii, Rp/Rs.

To obtain accurate measurements of the system and spot param-

eters we created an IDL computer code to model both the planetary

1 The acronym IDL stands for Interactive Data Language and is a trade-

mark of Exelis Visual Information Solutions. For further details see

http://www.ittvis.com/ProductServices/IDL.aspx.

Figure 1. An output model of a transit coupled with a starspot using PRISM.

The transit chord is represented by the two horizontal black lines. The black

disc to the left is the planet. A dark starspot has been placed on the curved

stellar surface to show how PRISM projects an elliptical shape on to the stellar

disc for a circular spot.

transit and starspots on the stellar surface. PRISM
2 (Planetary Retro-

spective Integrated Star-spot Model) uses a pixelation approach to

create the modelled star on a two-dimensional array in Cartesian

coordinates (see Fig. 1). This makes it possible to model the transit,

LD and starspots on the stellar disc simultaneously. Silva (2003)

used a similar model to describe the starspots on HD 209458, but

with the drawback of having to use fixed system parameters from

previous results. PRISM is set to use the standard quadratic LD law

and uses the fractional stellar and planetary radii (the radii scaled

by the semimajor axis, rs, p = Rs, p/a). PRISM requires 10 parameters

to model the system:

(i) the ratio of the radii,
rp

rs
=

Rp

Rs
;

(ii) the sum of the fractional radii, rp + rs =
Rp+Rs

a
;

(iii) the linear LD coefficient, u1;

(iv) the quadratic LD coefficient, u2;

(v) the orbital inclination, i;

(vi) a reference transit mid-point, T0;

(vii) the longitude of the centre of the spot, θ (longitude is defined

to be zero degrees at the centre of the stellar disc);

(viii) the latitude of the centre of the spot, φ (latitude is defined

to be zero degrees at the north pole and 180◦ at the south pole);

(ix) the spot size, rspot, in degrees;

(x) the spot contrast, ρspot, which is the surface brightness of the

spot versus the immaculate photosphere.

To ensure sufficient numerical resolution, the diameter of the planet

is hard-coded to be 100 pixel, and the size of the star in pixels is

scaled according to the specified ratio of the radii. When modelling

a starspot, PRISM projects a circular spot on to the curved surface of a

2 Available from http://www.astro.keele.ac.uk/∼jtr.
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star. Because of this it is able to account for spots which are visible

on the edge of the star even if their centre is beyond the limb.

2.1 Sample light curves

When a spot anomaly is viewed during a transit the total flux re-

ceived increases for a dark spot. The total change in flux is based

on the surface area and contrast of the spot (Silva 2003). Therefore,

there is a degeneracy between these two parameters. Fig. 2 shows

example light curves for anomalies of approximately the same am-

plitude and due to a range of spot sizes and contrasts. It is possible

to discern three regimes from this diagram. First, when the spot

is of a similar size to the planet the shape of the spot-occultation

is an inverted ‘V’. This is due to the fact that the amount of time

the planet spends fully eclipsing the spot is very small compared

to the duration of the partial eclipse phases. Secondly, for a larger

spot, both the peak and base of the spot-transit increase, because the

planet reaches the spot earlier and spends more time fully eclipsing

the spot. Thirdly, for a smaller spot, the peak broadens due to the

planet fully eclipsing the spot for longer while the base shortens

due to the fact that the total duration is shorter. These three distinct

Figure 2. Five light curves showing how the shape of the spot anomaly

changes with the size of the spot relative to that of the planet. The spot

contrast was also modified for each light curve to maintain an approximately

constant spot anomaly amplitude. This amplitude gives a lower limit for the

size of the spot. The spot sizes are labelled on the left of the plot and the spot

contrasts on the right. The 8.◦5 spot (green solid line) is the representation of

when the spot is of equal size to the transiting planet. There is a degeneracy

between the spot radius and contrast, which can be broken when modelling

data of sufficiently high precision and cadence.

shapes allow the degeneracy between the spot radius and contrast

to be broken for data of sufficient precision and time sampling.

It is also apparent that the amplitude of the spot-transit gives a

lower limit on the size of the spot, below which the spot is too small

to give such an amplitude even if its contrast is zero. In Fig. 2 the

2.◦5 spot has a contrast of zero and is still unable to achieve the same

change in flux as the other spots.

3 O PTI MI ZATI ON A LGORI THMS:

I N T RO D U C I N G GEMC

Our first attempt at fitting real data with PRISM utilized a Monte

Carlo Markov Chain (MCMC) algorithm. This was introduced in

order to use Bayesian methods to find the best-fitting and associated

error bars. We found that the problem with this approach was that

the many local minima in the parameter space tended to trap our

MCMC chains, resulting in poor mixing and convergence. This

could be solved by using a large number of iterations, but such

an approach was ill-suited to PRISM due to the significant amount

of processing time required per iteration.3 We found that MCMC

chains required up to 106 iterations to converge properly, depending

on how often they got stuck in local minima, which equated to about

a week of calculation time.

Our solution to this problem was to implement a genetic algorithm

(GA). A GA mimics biological processes by spawning successive

generations of solutions based on breeding and mutation operators

from the previous generation. By performing these operations the

new solutions are generated based on the fitness of the parent solu-

tions, not a perturbation of their parameters. Because of this a GA

can be considered as a global optimizer where solutions can jump

large distances across the solution space. The efficiency of a GA at

finding the global solution is demonstrated by Charbonneau (1995)

but, as discussed by Rajpaul (2012), it does have some limitations.

These are primarily that GAs are ill-suited to Bayesian statistics,

and that they are good at finding where the global solution is but

poor at locating its exact position.

Our initial answer to the latter problem was to allow the GA to

find and constrain the global solution and then to use the MCMC

algorithm to perform the error analysis for this solution. This al-

lowed us to reduce the computation time from seven to five days.

Dissatisfied with the fact that two different optimization algorithms

had to be used, one to locate the global solution and the other to

obtain parameter uncertainties, we decided to develop a new opti-

mization algorithm, which combined the global optimization power

of the GA but was also able to perform Baysian statistics on the

solutions. We call this new algorithm GEMC
4 (Genetic Evolution

Markov Chain). GEMC is based on a Differential Evolution Markov

Chain (DE-MC) put forward by Ter Braak (2006).

GEMC begins by randomly generating parameters for N chains,

within the user-defined parameter space, and then simultaneously

evolves the chains for X generations. At each generation the chains

are evaluated for their fitness.5 The parameters of the fittest mem-

ber undergo a ±1 per cent perturbation and its fitness is then re-

evaluated. If the fitness has improved it is accepted but if the fitness

3 A single evaluation of a model appropriate for WASP-19, with 70 data

points, takes PRISM typically 0.7 s using a 2.7 GHz duel core desktop

computer.
4 Available from http://www.astro.keele.ac.uk/∼jtr.
5 A solution’s fitness was found by calculating the 1/χ2 value.
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has deteriorated it is accepted based on a Gaussian probability dis-

tribution:

P = exp

(

(

χ2
(n−1) − χ2

(n)

)

2

)

, (3)

where (n − 1) is the previous generational chain and n is the current

generational chain being evaluated. The next step is to then evolve

the other chains. This is accomplished in a similar way as a GA, in

that the chain parameters are modified by incorporating the param-

eters of another chain. But unlike a GA where a member is picked

by a weighted random number and then the digits of each parame-

ter are crossed over with the digits from a different member, GEMC

directly perturbs the parameters of each chain in a vector towards

the best-fitting chain. The size of this perturbation is between zero

and twice the distance to the best-fitting chain, allowing the chain

to not only move towards but also to overshoot the position of the

best-fitting chain.

An example would be a two-dimensional function f(x, y). The

difference between a given chain and the best-fitting chain in this

case is (�x, �y). This difference is then multiplied by a random

scalar γ for each parameter, where γ is in the interval [0,2], and

then added to the given chain’s parameters (x0, y0) to form the new

potential solution f (x1, y1):

x1 = x0 + γx�x, (4)

y1 = y0 + γy�y. (5)

When γ = 0 the parameter is not perturbed, γ = 1 the parameter

equals the current best-fitting value and when γ = 2 the parameter is

perturbed to the opposite position. This allows the potential solution

to travel large distances across the parameter space unimpeded by

local peaks. After the parameters have been perturbed the chain

is then re-evaluated and is selected using the same method as the

best-fitting chain.

GEMC runs in two stages. The first stage, called the ‘burn in’, is

used to find the optimal solution to the data using the above method.

After this the second stage starts in which each chain undertakes an

independent MCMC run. The starting points for each MCMC chain

lie close but not exactly at the optimal solution. In essence what we

have is the same outcome from running a GA to find the best-fitting

solution and to use this to tightly constrain the starting parameter

range of an MCMC run.

When GEMC was used in conjunction with PRISM to find the best-

fitting solution to the same data set as above, the computational time

reduced dramatically, from 5 d to 14 h using a large parameter range

(see Section 5). When the parameter range was set to the same as

used by the GA or the MCMC, GEMC was able to produce the best-

fitting solution and similar uncertainties in the fitted parameters as

the MCMC within 10 h.6

To demonstrate the power of GEMC at finding the optimal solution

of a rugged parameter space we chose to test it against the function

used to test the genetic algorithm PIKAIA by Charbonneau (1995):

f (x, y) = [16x(1 − x)y(1 − y) sin(nπx) sin(nπy)]2

x, y ∈ [0, 1], n = 1, 2, . . . . (6)

6
GEMC is able to produce similar parameter uncertainties as an MCMC

run with only 1000 iterations (taking 11 min to calculate), but for statistical

certainty the MCMC section of GEMC was allowed to run for 50 000 iterations

(9.3 h).

The optimal solution to this function lies at the centre [f(0.5, 0.5) =

1]. Charbonneau (1995) showed that it took PIKAIA with a population

of 100 solutions up to 20 generations to find the global maximum

peak but even after 100 generations it still had not found the global

maximum point, confirming the GA inability to find best solutions

with precision. While looking at Fig. 3 we can clearly see that

GEMC, using a population of only 40 solutions, has found the global

maximum peak within 10 generations and then went on to find

the global maximum point within 20 generations. We can also see

from Fig. 4 the power of GEMC. The global maximum peak was

actually found at the fifth generation and all solutions were very

close to the global maximum point by the twentieth generation.

This performance indicates that the required burn-in for GEMC is

extremely short and as such greatly reduces the computing time

required to find the global solution.

4 O B S E RVAT I O N S A N D DATA R E D U C T I O N

Three transits of WASP-19 were observed in 2010 February using

the 3.6 m New Technology Telescope (NTT) operated at ESO La

Silla, Chile. The instrument used was EFOSC2, operated in imaging

mode and with a Gunn r filter (ESO filter #786). In this setup the

CCD covers a field of view of (4.1arcmin)2 with a plate scale of

0.12 arcsec pixel−1. No binning or windowing was used, resulting in

a dead time between consecutive images of 83 s. The exposure time

duration were 60–90 s. The moon was bright and relatively close to

the target star. The pointing of the telescope was adjusted to allow

five good comparison stars to be observed simultaneously with

WASP-19 itself. We were able to keep the telescope autoguiding

through all observations. An observing log is given in Table 1.

These observations were experimental for two reasons. First, the

NTT is an alt-az telescope fitted with an image derotator. This

means that the path of light from each star through the telescope is

continually changing, raising the possibility of correlated noise due

to any optical imperfections. Secondly, the NTT is fitted with an

actively controlled thin primary mirror designed to provide the best

possible focus for normal observing strategies. Defocusing such

a telescope might lead to a point spread function (PSF) which is

variable in time, and thus correlated noise via flat-fielding errors.

In practice we found that, whilst careful attention had to be paid to

the amount of defocusing, the NTT is perfectly capable of producing

high-quality light curves whilst a long way out of focus due to

stable symmetric PSFs. Our observations used this approach and

are not plagued by correlated noise. This situation is similar to that

of Winn et al. (2009), who successfully observed WASP-4 using

the Magellan Baade telescope. In contrast, Gillon et al. (2009)

encountered serious problems in obtaining photometry of WASP-4

and WASP-5 with the ESO Very Large Telescope. This problem was

attributed to the need to turn off the active optics system in order to

achieve strong defocusing, and our results support the contention

that this is not a general problem with alt-az telescopes or active-

optics systems.

We reduced the data in an identical fashion to Southworth et al.

(2009a,b,c, 2010). In short, we performed aperture photometry us-

ing an IDL implementation of DAOPHOT (Stetson 1987), and adjusted

the aperture sizes to obtain the best results (see Table 1). A first-

order polynomial was then fitted to the outside-transit data whilst

simultaneously optimizing the weights of the comparison stars. The

resulting data have scatters ranging from 0.464 to 0.573 mmag per

point versus a transit fit using PRISM. The time-scale used is HJD/UTC.
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Transits and starspots of WASP-19 3675

Figure 3. For a comparison with Charbonneau (1995). GEMC results for N = 40 chains and for X = 100 generations. The global maximum peak and global

maximum point have been discovered by the 10th and 20th generations, respectively. By the 40th generation all 40 chains have found the global maximum

point.

5 DATA A NA LY SIS

We began by selecting a search space for each parameter. As dis-

cussed in Section 3, the ability of GEMC to find the global minima in

a short amount of computing time meant that we were able to search

a large area of parameter space to avoid the possibility of missing

the best solution. The parameter search range used in analysing the

WASP-19 data sets are given in Table 2.
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Figure 4. The evolution of the fittest chain (solid line) and the mean fitness

chain (dashed line) from each generation. The maximum peak was found in

five generations. The fitness is measured as 1 − f (x, y).

First, we modelled the three data sets of WASP-19 separately us-

ing PRISM, finding that the modelled parameters were within 1σ of

each other (Table 2). We then modelled all three data sets simulta-

neously. The ensuing parameters agreed with the individual results

found previously, but we were unable to get as good a fit to the data.

The reason for this seems to be the LD coefficients, which are in

comparatively poor agreement when the three light curves are fit-

ted individually. The scatter around the weighted mean is χ2
ν = 2.2

for the linear coefficient and 1.9 for the quadratic coefficient. This

situation could be caused by the influence of the starspot on the LD

coefficients. Ballerini et al. (2012) found that starspots can affect

LD coefficients by up to 30 per cent in the ultraviolet, with a weaker

effect expected at redder wavelengths. If we assume a 10 per cent

variation in the LD coefficients for our r-band data, the coefficients

move into 1σ agreement between the data sets.

Table 3. Combined system and spot parameters.

Parameter Symbol Value

Radius ratio rp/rs 0.1428 ± 0.0006

Sum of fractional radii rs + rp 0.3301 ± 0.0019

Linear LD coefficient u1 0.427 ± 0.049

Quadratic LD coefficient u2 0.222 ± 0.008

Inclination (degree) i 78.94 ± 0.23

Spot angular radius (degree) rspot 15.13 ± 0.12

Spot contrast ρspot 0.771 ± 0.010

Stellar rotation period (d) Prot 11.76 ± 0.09

Projected spin orbit alignment (degree) λ 1.0 ± 1.2

5.1 Photometric results

As the combined fit to the three data sets has significantly larger

residuals than individual fits, we based our final results on the

individual fits to the data. The final photometric parameters for the

WASP-19 system are given in Table 3 and are weighted means plus

1σ uncertainties of the results from the three individual fits. Fig. 5

compares the light curves to the best-fitting models, including the

residuals.

The results from modelling the spot anomalies on the nights of

2010 February 24 and 2010 February 25 confirm that they are due

to the same spot rotating around the surface of the star, as the spot

sizes and contrasts are in good agreement. Fig. 6 is a representation

of the stellar disc, the spot and the transit chord for the two nights

of observations.

From the positions of the starspot at the time of the transits

on the nights of 2010 February 24 and 2010 February 25, it is

possible to calculate the rotational period of the star and the sky-

projected spin orbit alignment of the system using simple geome-

try. The spot has travelled 24.◦52 ± 0.◦28 in 1.015 ± 0.001 orbital

periods, giving a rotational period of Prot = 11.76 ± 0.09 d at a

latitude of 65◦. Combining this with the stellar radius found be-

low, we calculate the latitudinal rotational velocity of the star to

be v(65◦) = 3.88 ± 0.15 km s−1. The positions of the spot finally

Table 1. Log of the observations presented in this work. Nobs is the number of observations. ‘Moon illum.’ and ‘Moon dist.’ are the

fractional illumination of the Moon, and its distance from WASP-19 in degrees, at the mid-point of the transit.

Date Start time End time Nobs Exposure Filter Airmass Moon Moon Aperture Scatter

(UT) (UT) time (s) illum. dist. sizes (pixel) (mmag)

2010/02/24 06:18 09:34 68 90 Gunn r 1.14–2.30 0.742 85.5 42, 60, 100 0.573

2010/02/25 00:44 04:26 76 60–90 Gunn r 1.40–1.04 0.818 78.1 52, 70, 90 0.464

2010/02/28 04:01 07:41 74 90 Gunn r 1.04–1.42 0.996 53.0 44, 64, 88 0.499

Table 2. Derived photometric parameters from each light curve, plus the interval within which the best fit was searched for using GEMC.

Parameter Symbol Search interval 2010/02/24 2010/02/25 2010/02/28

Radius ratio rp/rs 0.05 to 0.30 0.1435 ± 0.0014 0.1417 ± 0.0013 0.1430 ± 0.0008

Sum of fractional radii rs + rp 0.10 to 0.50 0.3298 ± 0.0041 0.3300 ± 0.0025 0.3311 ± 0.0044

Linear LD coefficient u1 0.0 to 1.0 0.314 ± 0.095 0.501 ± 0.083 0.438 ± 0.077

Quadratic LD coefficient u2 0.0 to 1.0 0.192 ± 0.023 0.222 ± 0.019 0.226 ± 0.009

Inclination (degree) i 70.0 to 90.0 78.97 ± 0.39 78.92 ± 0.37 78.91 ± 0.44

Transit epoch (HJD/UTC) T0 ±0.5 in phase 245 5251.796 28 ± 0.000 14 245 5252.585 06 ± 0.000 10 245 5255.740 45 ± 0.000 12

Longitude of spot (degree) θ −90 to +90 −9.54 ± 0.15 14.98 ± 0.13

Latitude of Spot (degree) φ 0.0 to 90.0 64.93 ± 0.32 65.37 ± 0.21

Spot angular radius (degree) rspot 0.0 to 30.0 15.01 ± 0.21 15.18 ± 0.15

Spot contrast ρspot 0.0 to 1.0 0.777 ± 0.011 0.760 ± 0.017
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Transits and starspots of WASP-19 3677

Figure 5. Transit light curves and the best-fitting models. The residuals are

displayed at the base of the figure.

Figure 6. Representation of the stellar disc, starspot and transit chord for

the two data sets containing spot anomalies.

yield a sky-projected spin orbit alignment of λ = 1.◦0 ± 1.◦2 for

WASP-19.

We have collected the available times of mid-transit for WASP-19

from the literature (Hebb et al. 2010; Anderson et al. 2011; Dragomir

et al. 2011; Albrecht et al. 2012). All timings were converted to the

HJD/TDB time-scale and used to obtain a new orbital ephemeris:

T0 = HJD/TDB 2454 775.337 54(18) + 0.788 839 42(33) × E,

where E represents the cycle count with respect to the reference

epoch and the bracketed quantities represent the uncertainty in the

final digit of the preceding number. Fig. 7 and Table 4 show the

residuals of these times against the ephemeris. We find no evidence

for transit timing variations in the system.

5.2 Physical properties of the WASP-19 system

Now we have measured the photometric properties of WASP-19,

we can proceed to the determination of its physical characteristics.

We undertook this analysis following the method of Southworth

(2009), which uses the parameters measured from the light curves

and spectra, plus tabulated predictions of theoretical models. We

adopted the values of i, rp/rs and rs + rp from Table 3, and the stellar

properties of effective temperature Teff = 5440 ± 60 K (Maxted,

Koen & Smalley 2011), velocity amplitude Ks = 257 ± 3 m s 1

(Hellier et al. 2011) and metal abundance [Fe/H] = 0.02 ± 0.09

(Hellier et al. 2011).

An initial value of the velocity amplitude of the planet, Kp, was

used to calculate the physical properties of the system using standard

formulae and the physical constants listed by Southworth (2011).

The mass and [Fe/H] of the star were then used to obtain the ex-

pected Teff and radius, by interpolation within a set of tabulated

predictions from stellar theoretical models. Kp was iteratively re-

fined until the best agreement was found between the observed and

expected Teff, and the measured rs and expected Rs/a. This was

performed for ages ranging from the zero-age to the terminal-age

main sequence, in steps of 0.01 Gyr. The overall best fit was found,

yielding estimates of the system parameters and the evolutionary

age of the star.

This procedure was performed separately using five different sets

of stellar theoretical models (see Southworth 2010), and the spread

of values for each output parameter was used to assign a systematic

error. Statistical errors were propagated using a perturbation algo-

rithm. An alternative set of physical properties was calculated using

a calibration of stellar properties based on well-studied eclipsing bi-

nary star systems (Enoch et al. 2010), with calibration coefficients

from Southworth (2011).

The final results of this process are in reasonable agreement

with themselves and with published results for WASP-19. The final

physical properties are given in Table 5 and incorporate separate sta-

tistical and systematic error bars for those parameters which depend

on the theoretical models. The final statistical error bar for each pa-

rameter is the largest of the individual ones from the solutions using

each of the five different stellar models. The systematic error bar is

the largest difference between the mean and the individual values of

the parameter from the five solutions. One point to note is that the

inferred age of the star is rather large, particularly given its rotation

period and activity level. The age is governed primarily by the input

Teff and [Fe/H], so a check of these spectroscopic parameters would

be useful.

6 SU M M A RY A N D D I S C U S S I O N

We have introduced the PRISM code to model a planetary transit over

a spotted star, and the optimization algorithm GEMC for finding the

global best fit and associated uncertainties. While GEMC still requires

significant computing time to calculate parameter uncertainties via

Markov chains, the speed at which it can find the optimal solution

is a large improvement over the long burn-in currently required by

an MCMC routine.

We have applied PRISM and GEMC to three transit light curves

of the WASP-19 planetary system. Two of the light curves are of

consecutive transits and show anomalies due to the occultation of a
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Figure 7. Residuals of the available times of mid-transit versus the orbital ephemeris found in this work. The three timings from this work are the cluster of

three points around cycle number 600.

Table 4. Times of minimum light of WASP-19 and their residuals

versus the ephemeris derived in this work.

Time of minimum Cycle Residual Reference

(HJD/TDB − 2400 000) no. (HJD)

54 775.337 57 ± 0.000 20 0.0 0.000 04 1

55 168.968 39 ± 0.000 11 499.0 −0.000 01 2

55 183.167 48 ± 0.000 07 517.0 −0.000 03 3

55 251.796 57 ± 0.000 14 604.0 0.000 03 4

55 252.585 44 ± 0.000 10 605.0 0.000 05 4

55 255.740 77 ± 0.000 12 609.0 0.000 03 4

55 580.742 38 ± 0.000 58 1021.0 −0.000 20 5

References: (1) Hebb et al. (2010); (2) Albrecht et al. (2012); (3)

Anderson et al. (2011); (4) this work; (5) Dragomir et al. (2011).

Table 5. Physical properties of the WASP-19 system.

Parameter Value

Stellar mass ( M⊙) 0.904 ± 0.040 ± 0.021

Stellar radius ( R⊙) 1.004 ± 0.016 ± 0.008

Stellar surface gravity (CGS) 4.391 ± 0.008 ± 0.003

Stellar density ( ρ⊙) 0.893 ± 0.015

Planet mass ( MJup) 1.114 ± 0.036 ± 0.017

Planet radius ( RJup) 1.395 ± 0.023 ± 0.011

Planet surface gravity ( m s−2) 14.19 ± 0.26

Planet density ( ρJup) 0.384 ± 0.011 ± 0.003

Equilibrium temperature 2067 ± 23

Safronov number 0.028 52 ± 0.000 57 ± 0.000 23

Semimajor axis (au) 0.016 16 ± 0.000 24 ± 0.000 13

Age (Gyr) 11.5 +2.7
−2.3

+0.7
−1.5

starspot by the planet. The measured latitudes and longitudes of the

spot during the two transits were used to calculate the rotation period

of the star and the sky-projected obliquity of the system. Our model

assumes that the spot anomaly can be represented by a circular spot

of uniform brightness. It is quite likely that the ‘spot’ is in fact a

group of smaller spots with lower contrasts, but investigation of

this puts extreme demands on data quality and quantity which are

practically impossible to satisfy for ground-based observations.

We find a rotation period of Prot = 11.76 ± 0.09 d at a lati-

tude of 65◦, whereas Hebb et al. (2010) found a Prot of 10.5 ±

0.2 d from rotational modulation of the star’s brightness over sev-

eral years. The latter value comes from the spot activity over the

whole visible surface of the star, whereas our value is for a specific

latitude. The difference between these two numbers may there-

fore indicate differential rotation. Anderson et al. (2011) used the

measured Ca H&K line activity index, log R′
HK, to infer Prot =

12.3 ± 1.5 d using the activity–rotation calibration by Mamajek &

Hillenbrand (2008), which is in good agreement with the values

measured by ourselves and by Hebb et al. (2010).

We find a rotational velocity of v(65◦) = 3.88 ± 0.15 km s−1 for

WASP-19 A, which in the absence of differential rotation would

yield an equatorial rotation velocity of v(90◦) = 4.30 ± 0.15 km s−1.

Hellier et al. (2011) reported a spectroscopic measurement for vsin I

of 5.0 ± 0.3 km s−1 and assumed this value represented the equa-

torial velocity. They included it as a prior when modelling the

Rossiter–McLaughlin effect, finding a final value of vsin I = 4.6 ±

0.3 km s−1. This last measurement is appropriate for the latitude at

which the planet transits, and may differ from ours due to the effect

of starspots on radial velocity measurements taken during transit.

We find a sky-projected obliquity of λ = 1.◦0 ± 1.◦2 for WASP-19,

which is in agreement with but more precise than published values

based on observations of the Rossiter–McLaughlin effect (4.◦6 ±

5.◦2, Hellier et al. 2011; 15◦ ± 11◦, Albrecht et al. 2012). λ gives the

lower boundary of the true spin–orbit angle, ψ . As stated by Fab-

rycky & Winn (2009), finding a small value for λ can be interpreted

in different ways. The spot method could allow us to determine ψ ,

rather than just λ, given light curves of three or more transits all

showing anomalies due to the same spot. But with only two light

curves it is difficult to be sure that ψ lies close to λ. We calculated a

minimum rotation period of WASP-19 of 5.5 d, for the extreme case

that the orbital axis was aligned with the line of sight. This result

disagrees with previous measurements (Hebb et al. 2010; Anderson

et al. 2011). Whilst we are unable to determine the true value of ψ

with the data in hand, we find no evidence for a spin–orbit misalign-

ment in the WASP-19 system. With a low obliquity and cool host

star, WASP-19 follows the idea put forward by Winn et al. (2010a)

that planetary systems with cool stars will have a low obliquity. It

also lends weight to the idea that WASP-19 b formed at a much

greater distance from host star and suffered orbital decay through

tidal interactions with the protoplanetary disc.
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