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Abstract Purpose: To assess the feasibility of predicting neuroblastoma outcome using highly parallel
quantitative real-time PCR data.
Experimental Design:We generated expression profiles of 63 neuroblastoma patients, 47 of
which were analyzed by both Affymetrix U95A microarrays and highly parallel real-time PCR on
microfluidic cards (MFC; Applied Biosystems). Top-ranked genes discriminating patients with
event-free survival or relapse according to high-level analysis of Affymetrix chip data, as well
as known neuroblastoma marker genes (MYCN and NTRK1/TrkA), were quantified simulta-
neously by real-time PCR. Analysis of PCR data was accomplished using high-level bioinfor-
matics methods including prediction analysis of microarray, significance analysis of microarray,
and Computerized Affected Sibling Pair Analyzer and Reporter.
Results: Internal validationof theMFCmethodproved it highly reproducible. CorrelationofMFC
and chip expression data varied markedly for some genes. Outcome prediction using prediction
analysis of microarray on real-time PCR data resulted in 80% accuracy, which is comparable to
results obtained using the Affymetrix platform. Real-time PCR data were useful for risk assess-
ment of relapsing neuroblastoma (P = 0.0006, log-rank test) when Computerized Affected
Sibling PairAnalyzer and Reporter analysis was applied.
Conclusions:These data suggest thatmultiplex real-time PCRmight be a promising approach to
reduce the complexity of information obtained from whole-genome array experiments. It could
provide a more convenient and less expensive tool for routine application in a clinical setting.

Neuroblastoma is a common childhood tumor derived from
the sympathetic nervous system. To avoid overtreatment of
spontaneously regressing tumors and undertreatment in
aggressive neuroblastomas, precise prediction of tumor behav-
ior and risk assessment of each individual patient at diagnosis is
a major goal of current neuroblastoma research. Similar to
analyses in other cancer entities, several genome-wide mRNA
expression profiling studies have identified reliable outcome
predictors for neuroblastoma, but with little or no overlap in
the decision-making genes (1–3). The comparability of micro-
array data remains a major concern in the interpretation of
expression analyses. Today, numerous options are available to
carry out whole-genome surveys of gene expression owing to a
variety of technical platforms and a still increasing number of

distributors. A comprehensive study of six microarray technol-
ogies recently addressed the overall consistency within each
platform, as well as the correlation among replicates within and
between technologies (4). The authors concluded that techno-
logical differences may influence the results of transcriptional
profiling given high-quality arrays and the appropriate nor-
malization, but that the primary factor determining variance is
biological rather than technological. This is reassuring for the
clinical usefulness of microarray data because bridging the gap
between bench-top microarray analysis and clinical diagnostics
is one of the major goals not only in current cancer research
but also in molecular medicine in general. However, translation
of expression profiling results into routine clinical diagnostics
requires a less complex alternative technology for reliable
outcome prediction. An essential first step is the implementa-
tion of standard operating procedures for target preparation,
the hybridization process, and readout formats, as well as
between-laboratory comparisons of microarray results (5, 6).
The validation of results on technically independent platforms
is one of the prerequisites for the transfer of results from
molecular biology into a clinical setting (7). The validation by
real-time PCR, which is currently the gold standard for
measuring gene expression, is considered to be the final proof
of array data. A successful approach to evaluate the results from
different array systems by means of real-time PCR has
previously been published (8). The authors compared data
from several expression studies to build a model consisting of
only six genes, the expression of which predicted the outcome
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of diffuse large B-cell lymphoma. Subsequently, it was
pointed out that these data must also be evaluated carefully
and that validity should be assessed using time-dependent
receiver operating characteristic curves instead of risk group
stratification (9). Because most gene classifiers identified to
date as reliable outcome predictors for different cancer entities
including neuroblastoma consist of >20 genes (1, 3, 10),
validation of every gene by conventional real-time PCR is
not suited to the clinical setting. Technologies appropriate
for clinical applications must not only fulfill the requirement
of high reproducibility but must also be convenient and
efficient in their handling. With the introduction of TaqMan
Low Density Arrays (Applied Biosystems, Foster City, CA),
researchers can simultaneously assay the RNA expression
levels of up to 384 genes on a single microfluidic card (MFC).
In principle, this technology allows the rapid validation of
differentially expressed genes in a genome-wide microarray
study. To assess the potential of these MFCs as an alternative
application for candidate gene analysis and diagnostics in a
routine clinical setting, we here analyzed a clinically well-
defined cohort of 63 primary neuroblastomas. Genes predic-
tive for recurrence of disease according to a recently published
microarray study (1), as well as established biological factors
including MYCN and NTRK1/TrkA , were selected for the
construction of a MFC (Table 1). Interassay reproducibility of
data obtained from eight MFCs representing the 63 patients
was subsequently evaluated by measuring one sample from
each of these cards on a 9th card (‘‘reference card’’). Normal-
ized real-time PCR values were also compared with expression
data from Affymetrix oligonucleotide arrays from a subgroup
of the same patients. Finally, the usefulness of MFC-derived
results for outcome prediction and individual risk assessment
of neuroblastoma patients was evaluated. Materials and Methods

Patient cohort and RNA preparation from primary neuroblastomas.
RNA preparation from neuroblastomas was done as previously
described (1). Data collection, microarray data analysis, and the
majority of the patient cohort have been documented before (1).
Briefly, expression profiles from 68 neuroblastoma patients had been
obtained using Affymetrix U95A chips. Expression patterns character-
istic for biological and clinical features were obtained. Of these 68
samples, 47 were included in the present study, solely chosen on the
basis of availability of RNA from the same tumor sample. For
independent validation of the data, 16 additional patients with
neuroblastoma were included. Written informed consent was obtained
from patients or their parents. To avoid biasing the methods towards
event-free survival, no patient was included in the study showing event-
free survival, MYCN amplification or loss of 1p, and <2 years of follow-
up. Mean and median follow-up were 1,443 and 1,401 days,
respectively. Patient characteristics are listed in Table 2.

Construction of a neuroblastoma-specific MFC. A set of 39 genes
obtained by prediction analysis of microarray (PAM) data was shown to
be able to discriminate between neuroblastoma patients with recurrent
tumors and those with no evidence of disease following initial therapy
(1). For the setup of the MFC, we used the top-ranked genes of the PAM
classifier and we also included known factors contributing to
neuroblastoma biology (MYCN and NTRK1/TrkA), as well as four
reference genes (GAPDH, HPRT1, SDHA , and UBC), as previously
suggested (11). Genes and the corresponding assays on demand used
for the setup of the MFC are listed in Table 1.

Statistical analysis of real-time PCR data. Real-time PCR data were
preprocessed and stored in SDS 2.2 software (Applied Biosystems).
Results from each run were analyzed separately using a software-defined
baseline and a manual threshold between 0.1 and 0.5 to record the cycle

Table 1. Clinical characteristics of neuroblastoma
patients in this study

n (%)

Age (y)
<1 30 (47.6)
>1 33 (52.4)

International Neuroblastoma Staging System stage
I 21 (33.3)
II 13 (20.6)
III 7 (11.1)
IV 14 (22.2)
IVs 8 (12.7)

MYCN status
Normal 59 (93.5)
Amplified (>10 copies) 4 (6.5)

Status of chromosome 1p
No LOH 1p 46 (73.0)
LOH 1p 15 (23.8)
Undetermined 2 (3.2)

NOTE: International Neuroblastoma Staging System staging was
done by local pathologists and confirmed independently. MYCN
amplification and 1p loss of heterozygosity were determined in the
course of routine diagnostics by Southern blotting and fluores-
cence in situ hybridization, respectively.
Abbreviation: LOH, loss of heterozygosity.

Table 2. List of genes included on the MFC and
used for parallel real-time PCR analyses

Gene Assay no. Function Affx-ID

MYCN Hs00232074_m1 GOI 2078_s_at
COX6C Hs00269977_m1 GOI 36165_at
LGALS1 Hs00169327_m1 GOI 33412_at
PTPRF Hs00160858_m1 GOI 36204_at
TKT Hs00169074_m1 GOI 38789_at
LDHA Hs00855332_g1 GOI 41485_at
PFN2 Hs00160050_m1 GOI 38840_s_at
PSMD10 Hs00829508_s1 GOI 37350_at
NEDD8 Hs00362398_m1 GOI 1695_at
NTRK1 Hs00176787_m1 GOI 32754_at
TCEB1 Hs00255010_m1 GOI 1399_at
CDC42 Hs00741586_mH GOI 39736_at
AHSA1 Hs00201602_m1 GOI 40979_at
NME2 Hs00267363_m1 GOI 1980_s_at
PSMB5 Hs00605652_m1 GOI 37666_at
DDX21 Hs00190952_m1 GOI 40490_at
CHD5 Hs00395930_m1 GOI 32093_at
NDUFAB1 Hs00192290_m1 GOI 35297_at
HSPCB Hs00607336_gH GOI 33984_at
GA17 Hs00272235_m1 GOI 35814_at
HPRT1 Hs99999909_m1 CONTROL
GAPDH 4342376 CONTROL
UBC Hs00824723_m1 CONTROL
SDHB Hs00268117_m1 CONTROL

NOTE: Assay no. depicts the internal ABI description for the real-
time assay. Function depicts whether the gene serves as a
CONTROL or is a gene of interest (GOI). Affx-ID defines the probe
set used for gene selection on the Affymetrix U95A chip.
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thresholds (C t). Data normalization was done with the geometric mean
of four reference genes using qBase (Hellemans et al.)1 and normalized
data were subsequently imported into R2 using the stats package.

High-level informatics for comparison of real-time PCR and Affymetrix

microarray data. Statistical calculations were done using R.2 The R
implementation of significance analysis of microarray (SAM; ref. 12)
was used with default parameters, for the two-class unpaired case, with t
statistic. Support Vector Machine (SVM) calculations were carried out
using the LIBSVM library (13), with the interface provided by R. A
sigmoidal kernel was used, with parameters c = 0.5, cos t = 1, e = 0.1.
The PAM (14) implementation in R was used with default values except
for the threshold, which was set to zero. Decision trees were constructed
using the implementation of recursive partitioning and regression trees
in R. Standard parameters were used for the classification tree, with the
minsplit parameter set to 5. Computerized Affected Sibling Pair
Analyzer and Reporter (CASPAR; ref. 15) was used to predict survival
times for the individual patient. In addition, an adaptation of CASPAR
for classification problems was used to distinguish relapsed from cured
patients. In essence, this adaptation uses a logistic regression model for
class assignments instead of the Cox model used by standard CASPAR
for survival analysis.

Results

Assessment of mRNA expression usingMFCs is reproducible. To
evaluate the potential of MFCs as a useful alternative
application for candidate gene analysis and prognosis
prediction in a routine clinical setting, we constructed a
neuroblastoma-specific MFC and reanalyzed neuroblastoma
samples previously studied by Affymetrix U95A microarrays.
Genes were selected for the setup of the neuroblastoma-
specific MFC based on the PAM analysis discriminating
between neuroblastoma patients with or without relapse of
disease (1). We also added known biological factors including
the MYCN oncogene and the neurotrophin receptor TrkA/
NTRK1, as well as genes from chromosome 1p, a region
frequently deleted in neuroblastoma. Additionally, four
reference genes were also included on the MFC (for a list of
genes and assays, see Table 1). Because multiplex real-time
PCR may yield varying results due to methodologic difficulties
including inconsistent amplification efficiency, we assessed
reproducibility of the MFCs as a first step of quality control
by evaluating one neuroblastoma sample from each card on
an independent card (reference card). A total of 63
neuroblastomas were analyzed using eight cards, and one
sample from each of these cards was randomly chosen for
analyses on the reference card. In summary, the mean yC t

between the two independent runs for the same sample was
0.4, which is equivalent to a 1.3-fold difference or 32.2%
difference assuming 100% amplification efficiency. The
median difference was 0.29- or 1.22-fold (i.e., half of the
sample gene pairs were within 21.9% difference). Analysis of
the complete cumulative difference distribution indicated that
75% of the sample gene pairs were within 1.47-fold, 90%
within 1.82-fold, and 95% within 2.15-fold (Fig. 1A). MFC
reproducibility between independent runs seemed to be
somewhat dependent on the target gene, in particular for
low-abundance transcripts. For instance, we observed consis-
tently higher yC t values for the NME2 gene, which is

expressed at low levels. On the whole, our data indicate a
high level of intercard reproducibility.

Expression analysis of neuroblastoma-specific genes by MFCs
and Affymetrix U95A microarrays. The MFC quantitative PCR
results were compared with those obtained by Affymetrix
U95A chips because there was considerable overlap of genes
included on the MFC and the previously described Affymetrix-
based PAM classifier discriminating patients with event-free
survival or early relapse. Following normalization of the real-
time PCR data, Pearson correlation coefficients between array
and PCR were calculated for each gene. Correlation coef-
ficients ranged from 0 (no correlation; COX6C) to 0.95 (high
correlation; MYCN), indicating that the Affymetrix array and
MFC quantitative PCR platform produced different results for
the expression of some genes of interest (Fig. 1B). Univariate
analysis of the individual genes was done to assess their
ability to distinguish between patients with or without relapse.
Application of t statistics to the results from the MFCs
revealed that expression of two genes, NEDD8 and PSMD10,
differed significantly between event-free survival and relapse
patients, confirming our previous results from Affymetrix
arrays (1). All but one of the remaining genes displayed the
same direction of regulation, as was predicted by PAM
analysis of the Affymetrix array results, but did not reach
statistical significance. SAM analysis of MFC quantitative PCR
data indicated that high CDC42, PTPRF, and NTRK1
expression was associated with event-free survival, whereas
high LDHA and PSMD10 expression correlated with relapse of
disease (Fig. 2A).

Fig. 1. A , cumulative yC t distribution of independent runs of real-time PCRusing
the MFC described.The graph indicates high reproducibility of the PCR reaction
because the median difference (dotted lines) was 0.4, which is equivalent to a
1.3-fold difference between two measurements of the same sample and the same
primer on two cards. B, correlation between Affymetrix array and real-time PCR
data given as Pearson correlation coefficients. Data were obtained for 47 tumors
analyzed on both platforms.The gene descriptions are those given inTable 1.

1http://medgen.ugent.be/qbase
2 http://www.r-project.org
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Prediction of clinical parameters and patient outcome by
supervised analysis of real-time PCR results. We next assessed
the correct assignment of the 63 patients (including 47 patient
samples from our previously published microarray study) to
their clinically defined groups using MFC quantitative PCR
data. In the aforementioned analysis of primary neuroblasto-
mas on the Affymetrix platform, a considerable percentage of
samples failed to pass the inclusion quality criteria for the
microarray study. Nevertheless, 16 of these samples had a RNA
quality sufficient for real-time PCR analysis as judged by
A260/A280 ratios and conventional PCR using reference genes
(data not shown). These samples were included for MFC
analysis as a test set, mimicking the clinical situation in which
not every tumor sample is qualitatively suitable for microarray
analysis. Training of the class prediction models was done using
the MFC quantitative PCR data from the 47 patients already
profiled using Affymetrix microarrays. Event-free survival of
neuroblastoma patients was predicted with 75% classification
accuracy (12 of 16) in the validation set using SVM and 81%
classification accuracy (13 of 16) using PAM. Interestingly, PAM
correctly predicted all relapses in this independent data set.
CASPAR analysis and decision trees resulted in 69% classifica-
tion accuracy (11 of 16). All analysis methods applied here
misclassified the same three patients. Interestingly, predictions

of all methods used PTPRF expression and one of the
proteasome components (PSMB5, NEDD8 , or PSMD10) and
all but one method include NTRK1, CDC42, and LDHA as top-
ranked genes (Table 3), which is also supported by SAM
analysis (Fig. 2A). Because we included genes located on
chromosome 1p on the MFC, we also tested whether it was
possible to predict the 1p status of neuroblastoma patients
using SAM and PAM analyses of MFC quantitative PCR data.
Interestingly, we not only found a high correlation between 1p
loss and expression of genes in the MYCN amplicon, which is a
well-known phenomenon, but also a strong association of 1p
loss and expression of proteasomal components (PSMD10 and,
to a lesser extent, PSMB5 and NEDD8; Fig. 2B) using SAM
analysis. The expression of NTRK1 and 1p genes was
anticorrelated with 1p loss. PAM-based prediction of 1p status
using a leave-one-out approach resulted in 88% prediction
accuracy (Table 4). Taken together, these results show a high
accuracy of MFC-based predictions for clinical features of
neuroblastoma.

Individual risk prediction of relapsing neuroblastoma using
PAM and CASPAR. To assess the individual risk of neuroblas-
toma patients for suffering a relapse, PAM was applied to the
entire data set using leave-one-out cross-validation. This
analysis method trains the classifier on all but one patient
(i.e., n = 62), then uses this optimized classifier to predict the
outcome of the remaining patient. The prediction accuracy of
the PAM classifier was close to 80% (79.4%). Transforming
these results for PAM predictions ‘‘relapse/no relapse’’ into a
survival time analysis revealed that the class prediction was
highly effective and significant (P < 0.0001; Fig. 3).

CASPAR was applied to the MFC quantitative PCR data to
calculate cure or time to relapse for each patient individually
using leave-one-out cross-validation. The graphical representa-
tion of the receiver operating characteristics as a measure of
sensitivity and specificity of CASPAR predictions is summarized
in Fig. 4A [area under the curve (AUC) plot]. An AUC value of
1 implies perfect prediction in terms of sensitivity and specificity.
AUC values off0.7 for time points >3 years were obtained based
on the predictions by CASPAR using the data presented here.

Table 3. Genes involved in the decision process
for discriminating neuroblastoma patients with
either event-free survival or relapse

No. methods using
this gene

Genes associated with event-free survival
PTPRF 4
NTRK1 3
CDC42 3
NME2 1

Genes associated with relapse
LDHA 3
PSMD10 3
NEDD8 2
AHSA1 1
PSMB5 1

NOTE: Because SAM, PAM, CASPAR, and decision trees were used
for prediction analyses, number of methods using this gene sums
up how many methods selected it for decision making.

Fig. 2. A , SAM plot obtained for outcome prediction of neuroblastoma patients
based on real-time PCR data.The figure shows the observed versus the expected
score, indicating that CDC42, PTPRF, and NTRK1are elevated in patients with
event-free survival, whereas patients with relapse show significant (q value <1%)
up-regulation of PSMD10 and LDHA (gray circles). B, SAM plot obtained for
prediction of chromosome1p status of neuroblastoma patients based on real-time
PCR data. Observed versus expected scores, indicating that PSMD10 and MYCN
are elevated in patients with1p loss of heterozygosity, whereas patients with normal
1p status significantly (q-value <1%) show up-regulation of NTRK1, PTPRF, and
CDC42 (gray circles).
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This is comparable to the predictive power of other recently
published microarray studies (15–18). As most of the
neuroblastoma relapses occur within the first 3 years after
diagnosis, we analyzed the power of CASPAR predictions for
this time frame. For this purpose, patients were divided into
two groups based on the predictions from CASPAR analysis:
those patients with a predicted time to relapse of <3 years or
those with predicted event-free survival or time to relapse of
>3 years. The resulting Kaplan-Meier plot shows a highly
significant separation of patients with event-free survival or
relapse (Fig. 4B), which was confirmed by log-rank test (P =
0.0006). Thus, CASPAR-based analysis of MFC quantitative
PCR data is a useful tool for predicting the individual patient
risk of neuroblastoma relapse.

Discussion

A major drawback for the clinical relevance of microarray
analysis is the difficulty to compare results obtained on
different platforms. Strategies to render these platforms
compatible are urgently needed, and some approaches have
already been described (4, 19–21). To date, attempts at
prediction of outcome in neuroblastoma have relied on single
expression profiling platforms, partly without addressing the
need for independent validation procedures with features
qualifying them for convenient use at the bedside (2, 3). As
an independent technology for validation of microarray data
derived from different platforms, quantitative real-time PCR
has turned out to be the method of choice to obtain reliable
information about gene expression. Approaches based on
quantitative real-time PCR have also been used for neuroblas-
toma biomarker discovery, sometimes in large cohorts
(22–26). All of these studies used single-tube assays lacking
efficient handling procedures. However, technologies appro-
priate for clinical applications not only have to fulfill the
requirement of high reproducibility and accuracy but must also
be feasible and efficient in the clinical setting. In contrast to
conventional real-time PCR analysis, this demand is met by the
introduction of MFCs or TaqMan Low Density Arrays (Applied
Biosystems). We therefore aimed to assess the value of MFCs as
a useful tool for the clinical application of outcome predictors
that were previously identified using microarray analyses. Thus,
we compared the clinical significance of previously obtained
results from a neuroblastoma microarray study to the signifi-
cance of results obtained on the same primary tumor samples
using the highly parallel quantitative real-time PCR format
available as MFCs. To assess the reproducibility of the platform,

we first analyzed intercard variability using a reference card
loaded with eight randomly chosen tumor samples from the
other MFCs used in this study. This approach confirmed that
all PCR reactions have comparable amplification efficiencies
and minimal interrun variability, resulting in equal C t value
recording and constant yC t’s between plates. We found a high
correlation of gene expression, suggesting a high intercard
reproducibility of quantitative PCR results, rendering this
application capable, in principle, of addressing clinical samples
in a reproducible manner. The consistency of results between
different batches of MFCs, laboratories, and quantitative PCR
machines must still be addressed in multisite studies because it
has been pointed out that only stringent quality controls ensure
reproducibility of microarray-based results between laborato-
ries (27). It is also striking that, at least for some genes, there
were considerable differences in correlation between gene
expression in real-time PCR and Affymetrix chip analyses. A
recent study pointed out that differences in microarray and real-
time PCR results using MFCs may occur if genes are expressed at
low levels or if the difference in gene expression between
samples is low (28). Platform-dependent differences (hybrid-
ization versus amplification) and insufficient specificity of the
array probes might also account for lack of correlation between
results obtained on the Affymetrix and MFC platforms.
Additionally, interrogation of different gene products resulting
from alternative splicing must be taken into consideration. The
latter might account for differences detected for TrkA/NTRK1
mRNA expression, displaying a low correlation coefficient
between real-time PCR and array analysis. Recent reports
indicate the existence of an alternative oncogenic splice variant,
TrkAIII, present in aggressive neuroblastomas (29). This may
explain why high TrkA expression is, in general, a hallmark of
benign tumors but was shown to be elevated in some relapsing
tumors by MFC quantitative PCR. Therefore, next-generation
gene-based outcome prediction should rather be focusing on
exon-specific expression rather than gene-specific expression.

Because some genes included on this first-generation MFC
proved to be uninformative for prediction of neuroblastoma
outcome, the gene list should also be revised. We previously

Table 4. Prediction of 1p status using PAM
analysis with leave-one-out cross-validation of
MFC qPCR data

TRUEGROUP PREDGROUP

Deletion No deletion

Deletion 5 2
No deletion 4 39

NOTE: Prediction accuracy was 88%, with 71% sensitivity and 90
% specificity.

Fig. 3. Kaplan-Meier analyses for patients stratified by real-time PCR ^ based
predictions. PAM analysis was done on 63 neuroblastoma patients by
leave-one-out cross-validation predicting either event-free survival or relapse.
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reported accuracies of 80% and 85% in predicting early
recurrence of neuroblastoma using SVM and PAM to analyze
Affymetrix array data, respectively (1). Whereas SVM did slightly
worse on the real-time PCR data, prediction accuracy obtained
on MFC quantitative PCR data using PAM analysis was
comparable to that on Affymetrix data. Generally, classification
of neuroblastoma patients by high-level analysis according to
their disease status as event-free survival or relapse worked with
comparable efficiencies of 80% to 85% using either MFC
quantitative PCR or Affymetrix array data. Interestingly, the
same three patients were misclassified by the predictors
generated from analysis of either Affymetrix array or MFC data.
This might indicate that rather therapy-related than biology-
based reasons account for the outcome of these particular
patients. Alternatively, there might be more than one biological

signature for relapsing neuroblastoma, which is not addressed
by the gene set investigated in the present study. Because genes
from the frequently deleted chromosomal region, 1p36, were
also included in our analysis, we attempted to predict the
chromosome 1p status (normal 1p or loss of 1p) based on gene
expression. This was feasible in principle, as Wang et al. (30)
have shown reduced expression of multiple genes on chromo-
some 1p in cases of neuroblastoma with 1p loss of heterozy-
gosity. Although our MFC was not designed for the purpose of
detecting 1p aberrations, prediction accuracy of 1p status
(normal versus loss) was 88% by PAM analysis. We could
further confirm the strong association between MYCN expres-
sion and 1p loss described earlier (31). Interestingly, over-
expression of proteasome components was highly correlated
with 1p loss of heterozygosity as well. Therefore, it is tempting
to speculate that patients with 1p loss might especially profit
from specific therapies involving proteasomal inhibitors such
as Velcade. Finally, loss of 1p was also inversely correlated to
NTRK1 expression. This relationship is intuitively comprehen-
sible but has never been reported before, although the
association between NTRK1 expression and favorable outcome,
as well as the anticorrelation with MYCN amplification, has
previously been documented (31, 32). These results show that
expression of neuroblastoma-specific genes also reflects the
genomics of neuroblastoma, at least in terms of 1p status.

Interestingly, none of the methods applied here uses MYCN
expression for decision-making when clinical outcome is
addressed. This further corroborates the notion that MYCN
expression is not necessarily as informative as MYCN amplifi-
cation (33). Additionally, it has been pointed out recently that
high-level MYCN expression is associated with favorable
outcome in neuroblastoma lacking MYCN amplification (34).
Thus, determining MYCN expression levels cannot substitute
for MYCN status analyses by fluorescence in situ hybridization
or other methods.

To predict the individual risk of suffering a neuroblastoma
relapse, we did PAM- and CASPAR-based analyses on the
neuroblastoma MFC data. Kaplan-Meier analysis using the
decisions of the respective methods revealed a highly significant
discrimination of patient outcome predicted both by PAM
(Fig. 3A) and CASPAR (Fig. 4B). Moreover, a powerful
discrimination between patients with event-free survival or
relapse was possible not only in the cohort but also in a time-
dependent manner with AUC values >0.7 for t > 5 years after
diagnosis (Fig. 4A and B), emphasizing the accuracy of the
combination of real-time PCR and CASPAR analyses. Applica-
tion of either microarray- or real-time PCR–based methods to
clinical decision-making requires easy-to-perform and reliable
patient-specific predictions. At present, molecular diagnostics
based on gene expression profiling is entering the clinical
setting in many prospective studies. However, the advantage of
highly parallel real-time PCR methods such as MFCs over
conventional microarrays is their efficiency and the ease of
implementation in decentralized institutions.

Fig. 4. A , graphical representation of the receiver operator characteristics of
CASPAR-based predictions for the individual risk of relapsing neuroblastoma based
on real-time PCR data. Shownhere is theAUC as a function of time derived from
receiver operating characteristic analyses. If all predictions were correct, theAUC
value was1.TheAUC value is >0.7 for t > 3 yrs, which is in line with other advanced
outcome prediction studies using microarray data. B, Kaplan-Meier analysis of
patients stratified by CASPAR decisions. Patients either predicted to have an early
relapse within 3 yrs of diagnosis (short time to relapse) are compared with patients
with prediction of event-free survival or a late relapse (no relapse or relapse >3 yrs).
This allows for a significant discrimination between event-free survival and relapse
patients (P = 0.0006, log-rank test).
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