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Abstract  Matlab & Simulink i s i s widely used as a 
defacto standard to design i ndustrial applications, video 
coding & decoding, and s ignal processing applica-tions. 
However, with the spectacular i ncrease i n the num-ber of 
the cores available i n hardware platforms over these l ast 
years, passing f rom Simulink to multi-core execution 
becomes more and more complex. I n this context, several 
researches are done to take benefit f rom the high degree of 
parallelism and to perform multi-core programming of 
Simulink applications.
In this paper, we present an automated method

for transforming hierarchical Simulink applications to
embedded parallel software implementation. Our method
consists of using IBSDF (Interfaced based Synchronous
Dataflow) as an intermediate representation to extract
parallelism. Moreover, our approach permits preserving
synchronous semantics and hierarchical behavior of the
Simulink model. The model-based approach makes it
possible to verify the key properties of the system at
compile-time, such as deadlock freeness and memory
boundedness. The method has been implemented as an
extension of the rapid prototyping tool named Preesm.
Experiments show that our proposal gives, as a transfor-
mation result, a schedulable IBSDF graph equivalent in
size to the Simulink model and allows better multi-core
implementation performance than Matlab&Simulink 
sequential execution.

Keywords Matlab & Simulink models, Hierarchy, 
parallelism, multi-core architecture, rapid prototyping, 
Code generation.

1 Introduction

In recent years, the number of cores available in hard-
ware platforms has increased dramatically, from tens of
cores to hundreds of heterogeneous processing elements.
Concurrently, the development in digital communications,
telecommunications, digital signal processing and cod-
ing/decoding videos becomes increasingly complex, thus
requiring more computational power. Then, there is a
need for modeling software applications with a high-level

and implementation independent model that can be trans-
lated efficiently into high performance implementation on
modern parallel architectures. These reasons motivate the
transition from imperative programming languages, which
are intrinsically sequential, to parallel models of compu-
tation. This transition offers two main advantages for
the software/hardware applications programming: paral-
lelism and performance improvement.

To take benefit of this approach and exploit the data
parallelism, SDF (Synchronous Dataflow)[14] models has
proven to be a well suited representation for program-
ming multi-core architectures. Indeed, thanks to its se-
mantics, the SDF MoC (model of computation) provides
a practical mean to decompose applications into coarse
grain computational entities: the actors. Mapping and
scheduling these actors on available processing elements
makes it possible to optimize diverse performance criteria
of the application, such as throughput, speedup and la-
tency. Moreover, each SDF actor is described by a host
program. In our work, host programs are written in C
language which will contribute to the generation of com-
patible C codes targeting multi-core architectures.

Currently, Simulink, a software package from Math-
works, is widely used as defacto standard to design, simu-
late and validate industrial applications in many domains,
such as digital communication, digital signal processing,
and image processing. However, Simulink models are dif-
ficult to be implemented into multi-core platforms. This
is due to the fact that passing from a Simulink appli-
cation to multi-core platform must preserve model se-
mantic and consistency, besides to the determinism in
data exchanged between different Simulink blocks. Ad-
ditionally, the implementation must meet parallel hard-
ware constraints and ensure that the behavior of the gen-
erated code is conformed to the Simulink model behav-
ior. Further, up to now, most references in this context
do not gain advantages from the hierarchical behavior of
Simulink model to extract parallelism and optimize code
generation. These references focus only on the transfor-
mation of atomic blocks and flattened systems.

The question left is how to overcome lacks cited above,
facilitate and perform multi-core programming of hierar-
chical Simulink applications. This question leads to an
idea of extending rapid prototyping tool with code genera-
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tion capabilities to support Simulink applications. In fact,
rapid prototyping tools allow to model hardware/software
applications and give early decisions that contribute to
improve and perform applications deployment into multi-
core platforms. We choose to extend an open source tool
called Preesm (the Parallel and Real-time Embedded Ex-
ecutives Scheduling Method)[21] thanks to its ability to
prototype efficient multi-core applications starting from
SDF representation. Therefore, we allow designers to go
from a Simulink model to an efficient hardware implemen-
tation. To concretize the idea above, we put forward an
efficient solution to automate Simulink models transfor-
mation and deployment over multi-core architecture.

In this paper, we propose a translation approach and
a rapid prototyping tool extension to support multi-core
programming of Simulink applications. The method con-
sists of automatically translating an application designed
with Simulink into an extended version of the SDF MoC
called IBSDF (Interfaced based Synchronous Dataflow)
[15] while keeping models hierarchical behavior. The
choice of IBSDF MoC as an intermediate representation
is based on the fact that it is a specific class of SDF MoC
characterized by a hierarchy mechanism. This mechanism
enables the description of the internal behavior of nodes
with SDF subgraphs and ensures deadlock freeness be-
tween levels thanks to interfaces mechanism. Moreover,
using IBSDF MoC allows us to benefit from recent re-
searches such as [16] which exploit hierarchical behavior
of IBSDF MoC to optimize code generation process and
enhance performance on multi-core architectures.

The aim of this work is to provide an effcient solu-
tion to automatize Simulink programs deployment over
multi-core architectures. The two main contributions of
this work are as follows:First, we translate hierarchical
Simulink models into IBSDF graphs in such way we pre-
serve hierarchy and synchronous semantics of both mod-
els. During the translation we respect deadlock-freeness
and consistency constraints in order to obtain a schedula-
ble IBSDF graph. Secondly, we implement our proposal
as a plugin extension into Preesm work-flow to generate
optimal C codes compatible for multi-cores platform.

To achieve this, we perform, as first step, a mathemat-
ical study to demonstrate that hierarchical Simulink sys-
tems can be translated into schedulable IBSDF graphs.
To do t this, we define, first, multi-levels precedence, con-
cistency and deadlock-freeness constraints which must be
taken into account in the translation process. Then, we
differntiate three block communication cases: direct com-
munication, delayed communication and hybrid commu-
nication. Considering these three cases, we propose our
translation theorems. Each proposed theorem was fol-
lowed with a proof. For each communication case, we
illustrate the translation process with simple Simulink
models. The objective of the mathematical study is to
demonstrate that during the translation process, consis-
tency and deadlock freeness were conserved and the re-
sulting hierarchical graph is a schedulable graph. To the
best of our knowledge, our paper is the first that gives
a detailed study about conserving hierarchy during the
translation process of hierarchical Simulink models. All
previous works focus only on the synchronous behavior of
Simulink models and do not consider the internal hierar-
chical behavior which is very important to extrat paral-

lelism and allows better multi-core implementation per-
formance.
Our proposed translation process was implemented into

three main sub-tasks: Simulink parser, translator and IB-
SDF generator integrated in the extended Preesm work-
flow. To the best of our knowledge, this work is the first
that proposes a whole work-flow starting from Hierar-
chical Simulink models to parallel C code generation for
multi-cores architecture. Indeed, Previous works, such as
[1], [2] [3] and [4], focused only on the translation process
and did not integrate their results into code generation
tools to show the effictiveness of their approaches.
In this work, we consider only multi-rate and discrete-

time Simulink models with multiple sampling times
blocks. Blocks can be hierarchical or atomic. This means
that blocks with dynamic behavior, such as enabled-
subsystem and triggered-subsystem, and continuous-time
part of Simulink models are not considered in this work.
Throughout the translation to IBSDF, we ensure that the
resulted graph has the same Simulink model behavior and
the same size. This means that semantics of both models
were conserved during the execution of the whole extended
work-flow starting from Simulink model to multi-core de-
ployment.
The remainder of this paper is structured as follows: In

Section 2, we give a background of models of computation
used in the presented work. Section 3 gives a study of
deadlock freeness and consistency constraints and details
our solution to translate hierarchical Simulink models. In
section 4, we present Preesm tool support and the overall
extended workf-low. Experimental results which are based
on the state-of-art telecommunication application ”LTE
QPSK transmitter” are presented in Section 5. Finally,
the last section concludes the paper and underlines the
future work.

2 Background

2.1 Synchronous Data-flow and Interface-

Based Synchronous Data-flow

Synchronous data-flow SDF, introduced by Lee and
Messerschmitt [9, 10], are MoC providing high level de-
sign and implementation of embedded programs, which
are notably popular for specifying digital signal process-
ing applications.
An SDF graph G = (A,F, P ) consists of a set of actors

A interconnected by a set of FiFo F carrying data tokens
and a set of port P used as anchors for FiFo connection
such that:

• A = (a1, a2, a3, ...) is the set of actors that consume
and/or produce data tokens.

• F = (F1, F2, F3, ...) is the set of channels carrying
data streams.

• P = (inP, outP ) is the port set of an actor ai.

• inP (ai) = (inP1(ai), inP2(ai), inP3(ai), ...) is the set
of input ports of an actor ai.

• outP (ai) = (outP1(ai), outP2(ai), outP3(ai), ...) is
the set of output ports of an actor (ai).
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• IN(ai) = (in1(ai), in2(ai), in3(ai), , ...) is the set of
data consumed by the different ai input ports at each
firing.

• OUT (ai) = (out1(ai), out2(ai), out3(ai), ...) is the set
of data produced by the different ai output ports.

• d(ai, aj) is the amount of initial tokens on a FiFo F
connecting the actors ai and aj , we refer to it as
a delay. The delay allows to represent data depen-
dencies between successive graph iteration [23] and
perform analysis. A graph iteration is the minimal
fixed sequence of actor firings that can be repeated
indefinitely to execute the graph.

Further, to ease graph development and to allow opti-
mization for the scheduling process, SDF graph may sup-
port hierarchical behavior. An extended version of SDF
MoC, called IBSDF, adds to the SDF semantics a hier-
archy mechanism. This mechanism allows more expres-
siveness in SDF graph by enabling the specification of the
internal behavior of an actor with an encapsulated sub-
graph. This hierarchy mechanism offers more flexibility
to optimize application for the scheduling and generation
code process. IBSDF semantics, in addition to SDF se-
mantics, is based on interfaces mechanism allowing a hi-
erarchical graph design. Interfaces mechanism obeys the
“compositionality” principle. In fact, interfaces mecha-
nism was proven in [15] to be able to ensure that if a
graph is instantiated, its behavior might not be modified
by its parent graph. Further, its behavior might not also
introduce deadlock in its parent graph.
In addition to the SDF semantics, an IBSDF graph G =

(A,F, P,D, I) consists of a set of hierarchical actors HA
and a set of interfaces I separating the hierarchical levels
where:

• HA = (Ha1, Ha2, Ha3, ...) is the set of hierarchical
actors that consume and/or produce data tokens.

• I = (srcI, snkI) is the set of interfaces.

• srcI is the vertex transmitting to the subgraph the
amount of tokens received by its corresponding parent
actor.

• snkI is the vertex transmitting to the parent actor
the amount of tokens produced by its corresponding
subgraph.

• srcIdata is the amount of data available on its corre-
sponding source interface.

• snkIdata is the amount of data available on its corre-
sponding sink interface.

In the following sections, a hierarchical actor will refer
to an actor which encapsulates a hierarchy level, an actor
will refer to an atomic actor and a sub-graph will refer to
the graph embedded into a hierarchical actor. Figure 1
and Figure 2 illustrates SDF and IBSDF graphs, respec-
tively.

2.2 Description of Simulink

Simulink, developed by Math-works, is a wide-spread
commercial tool for embedded system simulation and

Figure 1. SDF graph representation.

Figure 2. IBSDF graph representattion.

model based design. Thanks to its graphical user inter-
face (GUI) and its rich library of blocks, Simulink users
are able to build, simulate and verify a variety of embed-
ded systems such as telecommunication, signal processing,
image and video processing application.

Simulink modeling consists of creating a block network
connected by lines, representing signals. Blocks ports (in-
ports and outports) represent connection endpoints for
signals. There are two types of block parts, data ports,
which gives the dataflow of the Simulink model and con-
trol ports which produce conditional (enabled, triggered)
events for the execution of subsystems. In this work, we
consider only the data ports type.

Further, Simulink is a synchronous model with syn-
chronous language based on hierarchical behavior. In-
deed, Simulink enables users to group basic blocks in a
recursive manner to design more complex diagrams. We
refer to the composite diagram as subsystem and the non-
composite as atomic block. Each port on the subsystem
corresponds to an InPort-Block or an OutPort-Block. A
subsystem may contain blocks sampled at different rates;
we called as multi-rate subsystem. We distinct two clas-
sifications of subsystems: virtual subsystems and non-
virtual (functional) subsystems. A virtual subsystem is
helpful to graphically organize the Simulink model and in-
creases the design readability, but it does not influence the
internal behavior of the hierarchy. While the non-virtual
subsystem is provided to model functionalities and control
the internal hierarchy.

Simulink supports simulation for discrete (sampled
data) and continuous systems. For the discrete-time
blocks, the sample time is defined as the time between two
consecutive instants when a block executes. Networks can
include discrete-time blocks operating at different rates
(so-called multi-rate systems) where each block is associ-
ated with a different sample time period. Regarding to
the continuous time blocks, the sample time is obtained
by simulating ordinary differential equations.

We differentiate two simulation options: multi-tasking
which assign priority to each block and single-tasking
which does not assign priority to blocks and respect
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the simulation time execution semantics. Both multi-
tasking and single-tasking support different communica-
tion mechanisms: direct communication mechanism and
delayed communication mechanism. In direct communi-
cation mechanism, a block uses the data produced by the
block connected to its input at the same time step. Other-
wise, in the delayed communication, a block does not use
the data produced by the block connected to its input at
the same time step. A combination of both mechanisms,
so-called hybrid communication mechanism, is used when
the data is transferred from low priority block to high
priority block and block periods are different. Indeed,
when blocks composing multi-rate system are not exe-
cuted at the same time, direct data exchanging mecha-
nism is adopted because the lower priority block driving
the input is fired after the higher priority block. As well,
when blocks composing multi-rate system are executed
at the same time, delayed data exchanging mechanism is
adopted because the lower priority block driving the input
is fired after the higher priority block. These communi-
cation rules are applied for blocks from the same level of
hierarchy and for blocks from different level of hierarchy.
Then, additionally to the hierarchical behavior, relation
precedence exists between levels and obeys the same com-
munication rules.
Through the next sections we use the following termi-

nology:

• B = (b1, b2, b3, ...) is the set of atomic blocks or/and
atomic subsystems.

• S = (S1, S2, S3, ...) is the set of composed subsystems.

• InB = (inb1, inb2, inb3, ...) is the set of the input
ports of a composed subsystem Si.

• OutB = (outb1, outb2, outb3, ...) is the set of the out-
put ports of a composed subsytem Si.

• TSi
and Tbi denote the sample time period of a com-

posed subsystem Si and the sample time period of an
atomic block bi, respectively.

3 Translation principle

In this section, we present our transformation technique
of discrete-time Simulink model to its corresponding IB-
SDF representation. The main aim of this transforma-
tion methodology is to obtain a schedulable IBSDF where
structural properties of the Simulink model are preserved.
To reach this goal, the translation must be performed in
a way that ensures the consistency and the deadlock free-
ness of the obtained IBSDF. For this, we have to deter-
mine data tokens consumed/produced by each actor and
the delay available on each FiFo while respecting prece-
dence, consistency and deadlock freeness constraints. In
the following subsections we give an overview about these
constraints before detailing the translation process.

3.1 Deadlock freeness and consistency

constraints

We consider a hierarchical actor Ha1 encapsulating n
atomic actors a1, a2, ..., an where a1 is the consumer ac-
tor (consumes tokens produced by the hierarchical actor)

and an is the producer actor (produces tikens to the hi-
erarchical actor). We note srcI the source interface of
Ha1 that transfers tokens to its sub-graph and inP (a1)
is the target port of the first consumer sub-actor a1. We
also note snkI the sink interface of Ha1 which consumes
tokens produced by the last producer sub-actor an and
outP (an) is the source port of an as showed in figure 3.

Figure 3. IBSDF example with a hierarchical actor and n atomic

actors where a1 is the consumer actor and an is the producer actor.

As mentioned in section ??, IBSDF MoC introduces
interface elements to model the hierarchy behavior of an
SDF graph and insulate its level of hierarchy. This hierar-
chy semantic must obey some constraints, imposed by the
IBSDF model, in order to ensure deadlock freeness and
consistency at every level of graph hierarchy:

• Deadlock freeness constraints: during a subgraph it-
eration, source and sink interfaces must stay write-
locked and read-locked, respectively. Meaning that
the internal behavior is independent of any external
actor during an iteration. Further, if a consumer sub-
actor needs an amount of tokens greater than the
amount available in the source interface, this latest
will behave like a ring buffer. Regarding the sink in-
terface, if the producer sub-actor produces an amount
of tokens greater than required, it will behave like a
circular buffer. Hence, it will forward only the num-
ber of tokens produced during the subgraph execution
and required by the hierarchical actor.

• Consistency constraints: to ensure the consistency of
the internal SDF subgraph, the subgraph must con-
sume all the tokens made available by the source in-
terface during an iteration. Symmetrically, all tokens
required by the sink interface must be produced by
the sub-graph during an iteration.

Lemma 1 highlights the conditions required to ensure
deadlock freeness and consistency in every level of the
hierarchy.

Lemma 3.1 Let us consider a hierarchical actor Ha with

source interface srcI, sink interface sinkI and encapsulat-

ing n atomic actors a1, a2, ..., an where a1 is the consumer

actor and an is the producer actor. The internal SDF of

the hierarchical actor Ha is consistent and deadlock free

if source and sink interfaces obey these conditions at each

iteration:

srcIdata =

{

v
x
in(a1) if srcIdata ≤ v · in(a1).

v
α
in(a1) otherwise.

(1)
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sinkIdata =

{ u
γ
out(an) if sinkIdata ≤ u · out(an).

u
β
out(an) otherwise.

(2)
Where:

• x ∈> 1 and α ∈ [0..1] are positive constants rep-

resenting duplication numbers of the rate of tokens

available in the source interface within two different

cases.

• γ > 1 and β ∈ [0..1] representing duplication numbers

of the rate of tokens available in the sink interface

within two different cases.

• v ∈ N∗ is the execution repetition number of a1.

• u ∈ N∗ is the execution repetition number of an.

Proof: Deadlock freeness constraints can be written as:
If srcIdata ≤ v · in(a1) then

v · in(a1) = x · srcIdata. (3)

If sinkIdata ≤ u · out(an) then

γ · sinkIdata = u · out(an). (4)

Consistency constraints can be written as:
If srcIdata > v · in(a1)then

α · srcIdata = v · in(a1). (5)

If sinkIdata > u · out(an) then

β · sinkIdata = u · out(an). (6)

Equations (3) and (5) give the source interface condi-
tions. Similarly, equations (4) and (6) give the sink inter-
face conditions. Figure 4 helps to illustrate Lemma 1 by
an example. In this case, in(Ha1) = 2 is the amount of

Figure 4. Example of IBSDF graph with a hierarchical actor Ha1
containing two atomic actors a1 and a2.

tokens produced to the source interface srcI, in(a1) = 1
and its execution repetition number v is equal to 6. We
have, consequently, srcIdata = 2 ≤ V ·in(a1) = 6. Accord-
ing to Lemma 13.1, the number of data tokens available
in the source interface must be duplicated x time. The
duplication number is determined by applying equation
(1). Then, x is equal to 3. Likewise, out(Ha1) = 1 is
the amount of data tokens required to be produced by
the sink interface sinkI. Although, out(an) = 3 and its
execution repetition number u is equal to 4. We have,
consequently, sinkIdata = 1 ≤ u · out(an) = 12. Based
in Lemma 1 3.1, the amount of tokens available in the
sink interface must be duplicated γ time in such way that
sinkIdata = u

γ
out(an). Then, we have γ equal to 12.

3.2 Precedence constraints

3.2.1 One-level precedence constraints

In [18], Marchetti gives a detailed study about couples
firings in SDF graphs, considering only flattened graphs
(no hierarchy). Based on the fact that a schedule is feasi-
ble if the number of tokens is positive in every FiFo of the
graph, author demonstrates the existence of precedence
constraint between two executions of connected actors.
Let us consider a couple of actors ai and aj linked by a
FiFo F , d(ai, aj) is the initial amount of tokens available
in F , [v] is the vth execution of ai, [u] is the u

th execution
of aj , out(ai) is the amount produced by ai and in(aj) is
the amount consumed by aj .

A precedence relationship exists between ai and aj if
firings obey the following two conditions:

• Condition (1): [u] can start after [v].

• Condition (2): [u − 1] can start before [v] while [u]
cannot.

Lemma 2 characterizes the precedence constraint be-
tween the vth execution of ai and uth execution of aj .

Lemma 3.2 A precedence constraint exists between the

vth execution of ai and uth execution of aj iff:

out(ai) > d(ai, aj) + out(ai) · v − in(aj) · u

≥ max(out(ai)− in(aj), 0).
(7)

Proof: A precedence relation is modeled between the
vth execution of ai and uth execution of aj if condition
(1) and condition (2) are fulfilled:
Condition (1) ⇐⇒ d(ai, aj) + out(ai) · v − in(aj) · u ≥ 0.
Condition (2) ⇐⇒ out(ai) > d(ai, aj)+out(ai) · (v−1)−
in(aj) · (u− 1) ≥ 0.

Combining these resulting inequalities, we obtain in-
equality (7).

3.2.2 Multi-levels precedence constraints

We consider a hierarchical actor Ha containing n
atomic actors a1, a2, . . . , an. We denote the actor a1 as the
consumer sub-actor which consumes the amount of tokens
in(a1) , the actor an as the sub-actor which produced the
amount of tokens out(an), srcI

data is the amount of data
available on the source interface linking the hierarchical
graph Ha and the consumer sub-actor a1 and d(Ha, a1)
is the initial amount of tokens in the FiFo linking the
source interface and the consumer sub-actor. We also de-
note snkIdata as the amount of data available on the sink
interface linking the hierarchical actor Ha and the pro-
ducer sub-actor d(an, Ha) as the initial amount of tokens
in the FiFo linking the sink interface and the producer
sub-actor.
Building on the precedence constraints between two fir-
ings of the same level and the hierarchy dependency, we
define the precedence constraints between an hierarchical
actor and its sub-graph.

A precedence relationship exists between an hierarchi-
cal actor and its sub-graph if firings obey the following
conditions:

• Condition (1): [w ·#v + v] can start after [w].
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• Condition (2): [w ·#v + v − 1] can start before [w].

• Condition (3): [w] can start after [w][w ·#v + v].

• Condition (4): [w − 1]can start before [w ·#u+ u].

Where:

• [w] is the wth execution of Ha.

• [v] is the vth execution of a1.

• #v is the execution number of a1 up to [v].

• [u] is the uth execution of an.

• #u is the execution number of an up to [u].

We can now determine initial amounts of tokens mod-
eling the precedence relation between firings of an hierar-
chical actor and its subgraph.

Lemma 3.3 A precedence relation between an hierarchi-

cal actor and its sub-graph if:

srcIdata > d(Ha, a1) + srcIdata · w − in(a1) · (w ·#v + v)

≥ max(srcIdata − in(a1), 0).
(8)

out(an) > d(an, Ha) + out(an) · (w ·#u+ u)− snkIdata · w

≥ max(out(an)− snkIdata, 0).
(9)

Proof: A precedence relation is modeled between the
wth execution of Ha and vth execution of a1 if condition
(1)and condition (2) presented in Defintion 1 are fulfilled:
Condition (1) ⇐⇒ d(Ha, a1)+ srcIdata ·w− in(a1) · (w ·

#v + v) ≥ 0.
Condition (2) ⇐⇒ srcIdata > d(Ha, a1)+srcIdata · (w−

1)− in(a1) · (w ·#v + v − 1) ≥ 0.
Then, when combining these two inequalities, we obtain

inequality (8).
A precedence relation is modeled between the wth execu-
tion of Ha and uth execution of an if condition (3)and
condition (4) presented in Defintion 1 are fulfilled:
Condition (3) ⇐⇒ d(an, Ha) + out(an) · (w ·#u+ u)−
snkIdata · w ≥ 0.
Condition (4) ⇐⇒ out(an) > d(an, Ha) + out(an) · (w ·

#u+ u− 1)− snkIdata · (w − 1) ≥ 0.
Then, when combining these two inequalities, we obtain

inequality (9).

3.3 Translation Process

3.3.1 One level blocks translation

To illustrate one level blocks translation, we consider a
Simulink system S containing three atomic Blocks Bi−1,
Bi and Bi+1.
Atomic subsystems and basic blocks (such sum blocks,

constant blocks,...) are translated into atomic actors in
the IBSDF graph. Each resulting atomic actor ai is named
with the corresponding name of the Simulink block Bi.
Simulink Blocks sample times TBi

are recuperated when
simulating the Simulink model.
Unit delays block is not taken into account during the

translation process. It is only used to mark the delayed

behavior of the communication between blocks. Fur-
ther, blocks belonging to one level can be atomic or com-
posed. During the translation of one level of an hierarchi-
cal Simulink model , composed blocks behave as atomic
blocks.
The input and output blocks connecting blocks of the

same level are respectively converted into input and out-
put ports transferring data in the IBSDF graph. We refer
to the rules proved in [1] to determine the amount of to-
kens available in these ports (consumed data rates and
produced data rates). We differentiate three communi-
cation cases; direct communication case, delayed commu-
nication and hybrid communication. In the three cases,
the consumed data available in the import of an actor ai,
in(ai), and the produced data available in ai out-port,
out(ai), are similarly determined:

• in(ai) =
TBi

g(Bi−1,Bi)
.

• out(ai) =
TBi

g(Bi+1,Bi)
.

Input and output blocks are also used to transfer signals
between levels of an hierarchical Simulink model. Input
and output blocks respectively correspond to source in-
terface srcI and sink interface sinkI in the IBSDF graph.
To translate rates available in these interfaces and en-
sure deadlock freeness and consistency between levels, we
based on theorems detailed and proved in the following
section.
Lines transferring signals in Simunlink model are con-

verted into FiFo channels connecting actors in the IBSDF
graph. Each resulting FiFo is characterized with an initial
amount of tokens obtained depending on the communica-
tion type:

• Direct communication : d(ai, ai+1) = out(ai)− 1.

• Delayed communication : d(ai, ai+1) = in(ai+1) +
out(ai)− 1.

• Hybrid communication : d(ai, ai+1) = out(ai).

3.3.2 Hierarchical subsystems translation

We consider S1 a composed subsystem with sample
time TS1

containing a set of atomic blocks B1, B2, · · · , Bn.
A sample time TBi

is associated to each block Bi. Two
subsystems S2 and S3 are connected to S1 with sample
times TS2

and TS3
.The block B1 is the sub-consumer

block and Bn is the sub-producer block as depicted in
figure 5. We note that virtual subsystems are not taken
into account during the translation process; they are only
used to group blocks.
We pose:

Figure 5. Multi-rate Simulink system in direct communication

case.

g(S1,B1) the greatest common divisor of TS1
and TB1

.
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g(S1,Bn) the greatest common divisor of TS1 and TBn
.

g(S1,S2) the greatest common divisor of TS1 and TS2 .
g(S3,S1) the greatest common divisor of TS3

and TS1
.

Modeling levels direct communication

To model levels direct communication, we have to model
source/sub-consumer actor communication and sink/sub-
producer actor communication.

Source interface/sub-consumer actor direct
communication: a direct communication between the
source interface and the consumer sub-block is defined
through the following hierarchical dependency conditions:

• [w·#v+v] fires at the same time or after the beginning
time of [w].

• [w ·#v+v−1] fires strictly before the beginning time
of [w].

• [w ·#v+ v] fires strictly before the beginning time of
[w+1].

Based on these conditions we deduce Lemma 4.

Lemma 3.4 Let S1 be a composed subsystem with sample

period TS1
containing a set of atomic blocks B1, B2, ..., Bn

firing in direct communication mode. B1 represents the

sub-consumer atomic block with sample period TB1
. A

hierarchical dependency exists between the wth execution

of S1 and vth execution of B1 if:

TS1
= b · TB1

. (10)

Where b is a coefficient superior or equal to 1.

Proof: Hierarchical dependency conditions are trans-
lated into the following in-equations:

TS1
· (w − 1) ≤ TB1

· (w ·#v + v − 1). (11)

TS1 · (w − 1)>TB1 · (w ·#v + v − 2). (12)

TS1 · w>TB1 · (w ·#v + v − 1). (13)

When we added inequality (12) and inequality (13) we
obtain:

2TS1
· w − TS1

>2TB1
· (w ·#v + v − 1)− TB1

.

We multiply inequality (11) by −1 and add it with the
resulted inequality. We obtain:

TS1
> TB1

w ·#v + v − 2

w
.

Since w·#v+v−2
w

> 1, it exists a coefficient b ≥ 1 such that:

TS1 = b · TB1 .

To ensure deadlock freeness between the
hierarchical actor and the sub-consumer actor in direct
communication case, we refer to Theorem 1:

Theorem 3.5 To ensure deadlock freeness between an hi-

erarchical actor and its sub-consmer actor, IBSDF intro-

duces the source interface concept such that:

srcIdata =

{

v
x
in(a1) if srcIdata ≤ v · in(a1).

v
α
in(a1) otherwise.

where srcIdata =
TS1

g(S1,S2)
; in(a1) =

TB1

g(S1,B1)
; x =

g(S1,S2)

g(S1,B1)
·
TB1

TS1
· v ≥ 1 and α =

g(S1,S2)

g(S1,B1)
·
TB1

TS1
v < 1.

Proof: We multiply equality (10) of Lemma 4 by
v

g(S1,B1)·g(S1,S2)
.

Weobtain : v
g(S1,B1)

·
TS1

g(S1,S2)
= v

g(S1,S2)
·

TB1

g(S1,B1)
·
TS1

TB1
.

Equality (1) of Lemma 1 is obtained by replacing,

in the resulting equation,
TS1

g(S1,S2)
by srcIdata,

TB1

g(S1,B1)

by in(a1), x and α by
g(S1,S2)

g(S1,B1)
·

TB1

TS1
· v. Where x and

α represent duplication numbers of the rate of tokens
available in the source interface within two different cases.
Hence, the source interface srcI and the sub-consumer
actor a1 obey the deadlock freeness and consistency
condition already proved in Lemma 1.

Based on the precedence constraints between two levels
we determine the initial token amount in the FiFo con-
necting the hierarchical actor and the sub-consumer ac-
tor.

Theorem 3.6 In the direct communication case, the ini-

tial amount of tokens d(Ha, a1) of FiFo connecting the

hierarchical actor and the sub-consumer actor is given by

in(a1)− 1.

Proof: Inequality (11) is equivalent to:

TS1 · w − TB1 · (w ·#v + v) ≤ TS1 − TB1 .

Inequality (12) is equivalent to:

TS1
· w − TB1

· (w ·#v + v)>TS1
− 2TB1

.

Inequality (13) is equivalent to:

TS1 · w − TB1 · (w · v + v) > −TB1 .

We combine the three inequalities, add TB1
and sub-

tract g(S1,B1) from the middle, which results in:

TS1
≥ TS1

· w − TB1
· (w ·#v + v) + TB1

− g(S1,B1) >

max(TS1
− TB1

, 0).
(14)

We pose Y = g(S1,B1) · g(S1,S2). When dividing (14) by Y ,
we obtain:

TS1

Y
≥

TS1

Y
w −

TB1

Y
· (w ·#v + v) +

TB1

Y
−

1

g(S1,S2)

> max(
TS1

Y
−

TB1

Y
, 0).

We multiply the resulting equation by g(S1,S2) we obtain:

Z · srcIdata ≥ Z · srcIdata · w − in(a1) · (w ·#v + v)

+ in(a1)− 1 > max(Z · srcIdata − in(a1), 0).

Where:

• srcIdata and in(a1) are deduced from Theorem 1.

• Z =
g(S1,S2)

g(S1,B1)
.

Since Z · srcI and srcI are both strictly superior than
0, then, even if we replace Z · srcIdata by srcIdata this
inequality remains true. Hence, referring to inequality (8)
, we obtain a precedence relation between an hierarchical
actor and its sub-consumer actor when replacing in(a1)−1
by d(Ha, a1).
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Sink interface/sub-producer actor direct com-
munication: a direct communication between the sub-
producer actor and the sink interface is defined through
the following hierarchical dependency conditions:

• [w] fires at the same time or after the beginning time
of [w ·#u+ u].

• [w− 1] fires strictly before the beginning time of [w ·

#u+ u].

• [w] fires strictly before the beginning time of [w ·#u+
u+ 1].

Based on these conditions we deduce the Lemma 5.

Lemma 3.7 Let S1 be a composed subsystem with sample

period TS1
containing a set of atomic blocks B1, B2, ..., Bn

firing in direct communication mode. Bn represents the

sub-producer atomic block with sample period TBn
. A hi-

erarchical dependency exists between the wth execution of

S1 and uth execution of Bn if:

TS1
= c · TBn

. (15)

Where c is in [0..1[

Proof: Hierarchical dependency conditions are trans-
lated into the following in-equations:

TBn
· (w ·#u+ u− 1) ≤ TS1

· (w − 1). (16)

TBn
· (w ·#u+ u− 1) > TS1 · (w − 2). (17)

TBn
· (w ·#v + v) > TS1

· (w − 1). (18)

When combining inequalities (16), (17) and (18) we
obtain:

min(
w − 1

w ·#u+ u− 1
,

w − 2

w ·#u+ u
) · TS1

< TBn

≤
w − 1

w ·#u+ u− 1
· TS1

.

Since 0 ≤ w − 1 < w · #u + u − 1, it exists a coefficient
c ∈ [0..1[ such that:

TS1
= c · TBn

.

To ensure deadlock freeness
between the hierarchical actor and the sub-producer actor
in direct communication case, we refer to Theorem 3.

Theorem 3.8 To ensure deadlock freeness between an hi-

erarchical actor and its sub-producer actor, IBSDF intro-

duces the sink interface concept such that:

sinkIdata =







u
γ
out(an) if sinkIdata ≤

u · out(an).
u
β
out(an) otherwise.

where snkIdata =
TS1

gcd(TS1
,TS3

) ; out(an) =
TBn

gcd(TS1
,TBn ) ;

γ =
g(S1,S3)

g(S1,Bn)
·
TBn

TS1
v ≥ 1 and β =

g(S1,S3)

g(S1,Bn)
·
TBn

TS1
v < 1.

Proof: We multiply equality (15)of Lemma 5 by
v

g(S1,Bn)·g(S1,S3)
.

We obtain:

v

g(S1,Bn)
·

TS1

g(S1,S3)
=

v

g(S1,S3)
·

TBn

g(S1,Bn)
·
TS1

TBn

.

Equality (2) of Lemma 1 is obtained by replacing, in

the resulting equation,
TS1

g(S1,S3)
by sinkIdata,

TBn

g(S1,Bn)
by

out(an), γ and β by
g(S1,S3)

g(S1,Bn)
·
TBn

TS1
· v. Where γ and β rep-

resent duplication numbers of the rate of tokens available
in the sink interface within two different cases. Hence, the
sink interface sinkI and the sub-producer actor an obey
the deadlock freeness and consistency condition already
proved in Lemma 1. Based on the precedence con-
straints between two levels we determine the initial token
amount in the FiFo connecting the hierarchical actor and
the sub-producer actor.

Theorem 3.9 In the direct communication case, the ini-

tial amount of tokens d(an, Ha) of FiFo connecting the

hierarchical actor and the sub-producer actor is given by

snkIdata − 1.

Proof: Inequality (16) is equivalent to:

TBn
· (w ·#u+ u)− TS1

· w ≤ TBn
− TS1

.

Inequality (17) is equivalent to:

TBn
· (w ·#u+ u)− TS1

· w > TBn
− 2TS1

.

Inequality (18) is equivalent to:

TBn
· (w ·#u+ u)− TS1

· w > −TS1
.

We combine the three inequalities, add TS1
and we sub-

tract g(S1,S3) from the middle. This yields to:

TBn
≥ TBn

· (w ·#u+ u)− TS1
· w + TS1

− g(S1,S3)

> max(TBn
− TS1

, 0).
(19)

We pose Y ′ = g(S1,Bn) · g(S1,S3). When dividing (19)
by Y ′, we obtain:

TBn

Y ′
≥

TBn

Y ′
(w ·#u+ u)−

TS1

Y ′
w +

TS1

Y ′
−

1

g(S1,Bn)

> max(
TBn

Y ′
−

TS1

Y ′
, 0).

The multiplication of the obtained equation by g(S1,Bn)

yields to:

Z ′
· out(an) ≥ Z ′

· out(an) · (w ·#u+ u)− sinkIdata · w

+sinkIdata − 1 > max(Z ′ · sinkIdata − out(an), 0).

Where:

• sinkIdata and out(an) are deduced from Theorem 3.

• Z ′ =
g(S1,Bn)

g(S1,S3)
.

Since Z ′.out(an) and out(an) are both strictly superior
than 0, then, even if we replace Z ′.out(an) by out(an),
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this inequality remains true. Hence, referring to inequal-
ity (9) , we obtain a precedence relation between an hier-
archical actor and its sub-consumer actor when replacing
snkIdata − 1 by d(an, Ha).
To transform a composed Simulink subsystem S1, with

direct communication between levels, into a deadlock free
and consistent hierarchical actor, we rely on the two fol-
lowing Corollary 1 and Corollary 2.

Corollary 3.9.1 To model direct communication between

two levels of the hierarchy and ensure deadlock freeness

and consistency, IBSDF introduces the source and sink

interfaces concept such that:

srcIdata =

{

v
x
in(a1) if srcIdata ≤ v · in(a1).

v
α
in(a1) otherwise.

where srcIdata =
TS1

gcd(TS1
,TS2

) ; in(a1) =
TB1

gcd(TS1
,TB1

) ;

x =
g(S1,S2)

g(S1,B1)
·
TB1

TS1
· v ≥ 1 and α =

g(S1,S2)

g(S1,B1)
·
TB1

TS1
v < 1.

sinkIdata =

{ u
γ
out(an) if sinkIdata ≤ u · out(an).

u
β
out(an) otherwise.

where snkIdata =
TS1

gcd(TS1
,TS3

) ; out(an) =
TBn

gcd(TS1
,TBn ) ;

γ =
g(S1,S3)

g(S1,Bn)
·
TBn

TS1
v ≥ 1 and β =

g(S1,S3)

g(S1,Bn)
·
TBn

TS1
v < 1.

Corollary 3.9.2 In the direct communication case, the

initial amount of tokens d(Ha, a1) of FiFo connecting the

hierarchical actor and the sub-consumer actor is given by

in(a1) − 1 and the initial amount of tokens d(an, Ha)
of FiFo connecting the hierarchical actor and the sub-

producer actor is given by snkIdata − 1.

To illustrate Simulink to IBSDF transformation in
the direct communication case, we consider a multi-rate
Simulink system S shown in figure 6 containing five blocks
S1, S2, S3, B1 and B2. S1, S2 and S3 are the blocks of the
top level with sample times TS1 = 100ms, TS2 = 50ms
and TS3 = 80ms, respectively. S1 is composed subsys-
tem containing two atomic blocks B1 and B2 with sample
times TB1

= 20ms and TS3
= 30ms, respectively. ( S2

and S3 can be atomic or composed blocks, in this exam-
ple S2 and S3 are composed subsystems but we only focus
on S1 transformation to illustrate our results.)

Subsystems S1, S2 and S3 are transformed into hier-
archical actors Ha1, Ha2 and Ha3, respectively. Atomic
blocks B1 and B2 are transformed into atomic actors a1
and a2, respectively. Communications between S1 and
S2, Communications between S1 and S3, Communications
between B1 and B2 are obtained according to the rule
of modeling one-level direct communication mentioned in
section 3.3.1. We obtain as results:

• in(Ha1) = srcIdata =
TS1

g(S1,S2)
= 100

gcd(100,50) = 2.

• out(Ha1) = snkIdata =
TS1

g(S1,S3)
= 100

gcd(100,80) = 5.

• out(a1) =
TB1

g(B1,B2)
= 20

gcd(20,30) = 2.

• in(a2) =
TB2

g(B1,B2)
= 30

gcd(20,30) = 3.

• d(a1, a2) = out(a1)− 1 = 2.

Figure 6. Multi-rate Simulink system in direct communication

case.

Figure 7. Resulting IBSDF in direct communication case.

Communication between S1 and B1 and Communica-
tion between S1 and B2 are both direct multi-levels com-
munications. To model these communications and ensure
deadlock freeness and consistency during the transforma-
tion process , we apply Corollary 1. Note that the execu-
tion repetition numbers v and u are obtained basing on
the “Compute Repetition Algorithm”.

• in(a1) =
TB1

g(S1,B1)
= 20

gcd(20,100) = 1.

Since v = 3, srcIdata ≤ v · in(a1) then x is equal to
g(s1,S2)

g(s1,B1)
.
TB1

TS1
· v = 50

20 ·
20
100 · 3 = 3

2 ≥ 1.

• out(a2) =
TB2

g(S1,B2)
= 30

gcd(30,100) = 3.

Since u = 2, snkIdata = 2 ≤ u · out(a2) =2 ×3 then

γ is equal to
g(s1,S3)

g(s1,B2)
·
TB2

TS1
· u = 20

10 ·
30
100 · 2 = 6

5 ≥ 1.

Delays between levels are obtained according to Corollary
2:

• d(Ha1, a1) = in(a1)− 1 = 0.

• d(Ha1, a2) = snkIdata − 1 = 1.

Figure 7 illustrates the resulting IBSDF graph.

Modeling levels delayed communication

To model levels delayed communication, we have to
model source/sub-consumer actor delayed communication
and sink/sub-producer actor delayed communication.

Source/sub-consumer actor delayed communica-
tion: a delayed communication between the source in-
terface and the sub-consumer actor is defined through the
following hierarchical dependency conditions:

• [w · #v + v] fires at the same time or after the end
time of [w].

• [w · #v + v − 1] fires strictly before the end time of
[w].

• [w ·#v+v] fires strictly before the end time of [w+1].

Based on these conditions we deduce the Lemma 6.
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Lemma 3.10 Let S1 be a composed subsystem with

sample period TS1 containing a set of atomic blocks

B1, B2, ..., Bn firing in delayed communication mode. B1

represents the sub-consumer atomic block with sample pe-

riod TB1
. A hierarchical dependency exists between the

wth execution of S1 and vth execution of B1 if:

TS1
= b · TB1

. (20)

Where b is a coefficient superior or equal to 1.

Proof: Hierarchical dependency conditions are trans-
lated into the following in-equations:

TS1
· w ≤ TB1

· (w ·#v + v − 1). (21)

TS1 · w > TB1 · (w ·#v + v − 2). (22)

TS1
· (w + 1) > TB1

· (w ·#v + v − 1). (23)

Combining the three inequalities (21), (22) and (23) we
obtain:

min(
(w ·#v + v − 2)

x
,
(w ·#v + v − 1)

w + 1
) · TB1

< TS1

≤
w ·#v + v − 1

w
· TB1

. Since w · #v + v − 1 ≥ w, it exists a coefficient b ≥ 1
such that:

TS1
= b · TB1

.

To ensure deadlock freeness between the
hierarchical actor and the sub-consumer actor in direct
communication case, we refer to Theorem 5.

Theorem 3.11 To ensure deadlock freeness between an

hierarchical actor and its sub-consumer actor, IBSDF

MoC introduces the source interface concept such that:

srcIdata =

{

v
x
in(a1) if srcIdata ≤ v · in(a1).

v
α
in(a1) otherwise.

where srcIdata =
TS1

g(S1,S2)
; in(a1) =

TB1

g(S1,B1)
; x =

g(S1,S2)

g(S1,B1)
·

TB1

TS1
v ≥ 1 and α =

g(S1,S2)

g(S1,B1)
·
TB1

TS1
v < 1.

Proof: We multiply equality (20) of Lemma 6 by
v

g(S1,B1)·g(S1,S2)
.

We obtain:

v

g(S1,B1)
·

TS1

g(S1,S2)
=

v

g(S1,S2)
·

TB1

g(S1,B1)
·
TS1

TB1

.

Equality (1) of Lemma 1 is obtained by replacing, in the

resulting equation,
TS1

g(S1,S2)
by srcIdata,

TB1

g(S1,B1)
by in(a1),

x and α by
g(S1,S2)

g(S1,B1)
·
TB1

TS1
· v. Where x and α represent

duplication numbers of the rate of tokens available in the
source interface within two different cases. Hence, the
source interface srcI and the sub-consumer actor a1 obey
the deadlock freeness and consistency condition already
proved in Lemma 1.
Based on the precedence constraints between two levels we
determine the initial token amount in the FiFo connecting
the hierarchical actor and the sub-consumer actor.

Theorem 3.12 In the delayed communication case, the

initial amount of tokens d(Ha, a1) of FiFo connecting the

hierarchical actor and the sub-consumer actor is given by

in(a1) + srcIdata − 1.

Proof: Inequality (21) is equivalent to:

TS1
· w − TB1

· (w ·#v + v) ≤ −TB1
.

Inequality (22) is equivalent to:

TS1 · w − TB1 · (w ·#v + v) > −2TB1 .

Inequality (23) is equivalent to:

TS1
· w − TB1

· (w ·#v + v) > −TS1
· w − TB1

.

We combine the three inequalities, add TB1 + TS1 and
subtract g(S1,B1) from the middle, which results in:

TS1
≥ TS1

· w − TB1
· (w ·#v + v) + TS1

+ TB1
−

g(S1,B1) > max((TS1
− TB1

), 0).
(24)

We pose Y = g(S1,B1) · g(S1,S2). When dividing (24) by Y ,
we obtain:

TS1

Y
≥

TS1

Y
w −

TB1

Y
· (w ·#v + v) +

TB1

Y
+

TS1

Y
−

1

g(S1,S2)
> max(

TS1

Y
−

TB1

Y
, 0).

We multiply the resulting equation by g(S1,S2) we obtain:

Z · srcIdata ≥ Z · srcIdata · w − in(a1) · (w ·#v + v)+

in(a1) + Z · srcIdata − 1 > max(Z · srcIdata − in(a1), 0).

Where:

• srcIdata and in(a1) are deduced from Theorem 5.

• Z =
g(S1,S2)

g(S1,B1)
.

Since Z ·srcIdata and srcIdata are both strictly superior
than 0. Then, even if we replace Z · srcIdata by srcIdata

this inequality remains true. Hence, referring to inequality
(8) , we obtain a precedence relation between an hierar-
chical actor and its sub-consumer actor when replacing
in(a1) + srcIdata − 1 by d(Ha, a1).

Sink interface/sub-producer actor delayed com-
munication: a delayed communication between the
sub-producer actor and the sink interface is defined
through the following hierarchical dependency conditions:

• [w] fires at the same time or after the end time of
[w ·#u+ u].

• [w−1] fires strictly before the end time of [w ·#u+u].

• [w] fires strictly before the end time of [w ·#u+u+1].

Based on these conditions we deduce the Lemma 7.

Lemma 3.13 Let S1 be a composed subsystem with

sample period TS1
containing a set of atomic blocks

B1, B2, ..., Bn firing in delayed communication mode. Bn

represents the sub-producer atomic block with sample pe-

riod TBn
. A hierarchical dependency exists between the

wth execution of S1 and uth execution of B1 if:

TS1
= c · TBn

. (25)

Where c is in [0..1[
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Proof: Hierarchical dependency conditions are trans-
lated into the following in-equations:

TBn
· (w ·#u+ u) ≤ TS1

(w − 1). (26)

TBn
· (w ·#u+ u) > TS1

(w − 2). (27)

TBn
· (w ·#v + v + 1) > TS1

(w − 1). (28)

When combining inequalities (26), (27) and (28) we
obtain:

min(
w − 1

w ·#u+ u+ 1
,

w − 2

w ·#u+ u
)·TS1 < TBn

≤
w − 1

w ·#u+ u
·TS1 .

Since 0 ≤ w−1 < w.#u+u, it exists a coefficient c ∈ [0..1[
such that:

TS1
= c · TBn

.

To ensure deadlock freeness
between the hierarchical actor and the sub-producer actor
in direct communication case, we refer to Theorem 7.

Theorem 3.14 To ensure deadlock freeness between an

hierarchical actor and its sub-producer actor, IBSDF in-

troduces the sink interface concept such that:

sinkIdata =

{ u
γ
out(an) if sinkIdata ≤ u · out(an).

u
β
out(an) otherwise.

where snkIdata =
TS1

g(S1,S3)
; out(an) =

TBn

g(S1,Bn)
;

γ =
g(S1,S3)

g(S1,Bn)
·
TBn

TS1
· u ≥ 1 and β =

g(S1,S3)

g(S1,Bn)
·
TBn

TS1
· u < 1.

Proof: We multiply equality (25) of Lemma 7 by
v

g(S1,Bn)·g(S1,S3)
. We obtain:

v

g(S1,Bn)
·

TS1

g(S1,S3)
=

v

g(S1,S3)
·

TBn

g(S1,Bn)
·
TS1

TBn

.

Equality (2) of Lemma 1 is obtained by replacing, in

the resulting equation,
TS1

g(S1,S3)
by sinkIdata,

TBn

g(S1,Bn)
by

out(an), γ and β by
g(S1,S3)

g(S1,Bn)
·
TBn

TS1
· v. Where γ and β rep-

resent duplication numbers of the rate of tokens available
in the sink interface within two different cases. Hence, the
sink interface sinkI and the sub-producer actor an obey
the deadlock freeness and consistency condition already
proved in Lemma 1. Based on the precedence con-
straints between two levels we determine the initial token
amount in the FiFo connecting the hierarchical actor and
the sub-producer actor.

Theorem 3.15 In the delayed communication case, the

initial amount of tokens d(an, Ha) of FiFo connecting the

hierarchical actor and the sub-producer actor is given by

snkIdata + out(an)− 1.

Proof: Inequality (26) is equivalent to:

TBn
· (w ·#u+ u)− TS1

· w ≤ −TS1
.

Inequality (27) is equivalent to:

TBn
· (w ·#u+ u)− TS1

· w > −2TS1
.

Inequality (28) is equivalent to:

TBn
· (w ·#u+ u)− TS1

· w > −TBn
− TS1

.

We combine the three inequalities, add TS1
+ TBn

and
subtract g(S1,S3) from the middle, which results in:

TBn
≥ TBn

· (w ·#u+ u)− TS1
· w + TS1

+ TBn

− g(S1,S3) > max(TBn
− TS1

, 0).
(29)

We pose Y ′ = g(S1,Bn) · g(S1,S3). When dividing (29) by
Y ′, we obtain:

TBn

Y ′
≥

TBn

Y ′
(w ·#u+ u)−

TS1

Y ′
w +

TS1

Y ′
+

TBn

Y ′
−

1

g(S1,Bn)
> max((

TBn

Y ′
−

TS1

Y ′
), 0).

The multiplication of the obtained equation by g(S1,Bn)

yields to:

Z ′
· out(an) ≥ Z ′

· out(an) · (w ·#u+ u)− sinkIdata · w

+ sinkIdata + Z ′
· out(an)− 1 >

max(sinkIdata − Z ′
· out(an), 0).

Where:

• sinkIdata and out(an) are deduced from Theorem 7.

• Z ′ =
g(S1,Bn)

g(S1,S3)
.

Since Z ′ > 0, then, even if we replace Z ′ · out(an) by
out(an), this inequality remains true. By consequence,
referring to inequality (9) , we obtain a precedence relation
between an hierarchical actor and its sub-consumer actor
when replacing snkIdata + out(an)− 1 by d(an, Ha).

To transform a composed Simulink subsystem S, with
delayed communication between levels, into a deadlock
free and consistent hierarchical actor, we rely on the two
following corollaries.

Corollary 3.15.1 To model delayed communication

between two levels of the hierarchy and ensure deadlock

freeness and consistency, IBSDF MoC introduces the

source and sink interfaces concept such that:

srcIdata =

{

v
x
in(a1) if srcIdata ≤ v · in(a1).

v
α
in(a1) otherwise.

where srcIdata =
TS1

g(S1,S2)
; in(a1) =

TB1

g(S1,B1)
;

x =
g(S1,S2)

g(S1,B1)
·
TB1

TS1
v ≥ 1 and α =

g(S1,S2)

g(S1,B1)
.
TB1

TS1
v < 1.

sinkIdata =







u
γ
out(an) if sinkIdata ≤

u · out(an).
u
β
out(an) otherwise.

where snkIdata =
TS1

g(S1,S3)
; out(an) =

TBn

g(S1,Bn)
; γ =

g(S1,S3)

g(S1,Bn)
·
TBn

TS1
v ≥ 1 and β =

g(S1,S3)

g(S1,Bn)
.
TBn

TS1
v < 1.

Corollary 3.15.2 In the delayed communication case,

the initial amount of tokens d(Ha, a1) of FiFo connecting

the hierarchical actor and the sub-consumer actor is given

by in(a1) + srcIdata − 1 and the initial amount of tokens

d(an, Ha) of FiFo connecting the hierarchical actor and

the sub-producer actor is given by snkIdata+out(an)−1.
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Figure 8. Multi-rate Simulink system in delayed communication

case.

To illustrate Simulink to IBSDF transformation in the
delayed communication case, we consider a multi-rate
Simulink system S shown in figure 8 containing five blocks
S1, S2, S3, B1 and B2. S1, S2 and S3 are the blocks of
the top level with sample times TS1

= 80ms, TS2
= 100ms

and TS3
= 100ms, respectively. S1 is composed subsys-

tem containing two atomic blocks B1 and B2 with sample
times TB1

= 60ms and TB2
= 20ms, respectively. ( S2

and S3 can be atomic or composed blocks, in this exam-
ple S2 and S3 are composed subsystems but we only focus
on S1 transformation to illustrate our results.)
Subsystems S1, S2 and S3 are transformed into hier-

archical actors Ha1, Ha2 and Ha3, respectively. Atomic
blocks B1 and B2 are transformed into atomic actors a1
and a2, respectively. Communication between S1 and S2,
Communication between S1 and S3, Communications be-
tween B1 and B2 are obtained according to the rule of
modeling one-level delayed communication mentioned in
section 3.3.1. We obtain as results:

• in(Ha1) = srcIdata =
TS1

g(S1,S2)
= 80

gcd(100,80) = 4.

• out(Ha1) = snkIdata =
TS1

g(S1,S3)
= 100

gcd(100,80) = 4.

• out(a1) =
TB1

g(B2,B1)
= 60

gcd(60,20) = 3.

• in(a2) =
TB2

g(B1,B2)
= 20

gcd(60,20) = 1.

• d(a1, a2) = out(a1)− 1 = 0.

Communication between S1 and B1 and Communication
between S1 and B2 are both delayed multi-levels com-
munication. To model these communications and ensure
deadlock freeness and consistency during the transforma-
tion process , we apply Corollary 3. Note that the exe-
cution repetition numbers v and u are obtained based on
the “Compute Repetition Algorithm”:

• in(a1) =
TB1

g(S1,B1)
= 60

gcd(60,100) = 3. Since v = 1,

srcIdata = 4 ≥ v.in(a1) = 3 then α is equal to
g(S1,S2)

g(s1,B1)
.
TB1

TS1
.v = 20

20 .
60
80 .3 = 3

4 ≤ 1.

• out(a2) =
TB2

g(S1,B2)
= 20

gcd(20,80) = 1. Since u = 3,

snkIdata = 4 ≥ u.out(a2) = 3 ∗ 1 then β is equal to
g(S1,S3)

g(S1,B2)
.
TB2

TS1
.u = 20

20 .
20
80 .3 = 3

4 ≤ 1.

Delays between levels are obtained according to Corollary
4:

• d(Ha1, a1) = in(a1) + srcIdata − 1 = 6.

• d(Ha1, a2) = out(a2) + snkIdata − 1 = 4.

Figure 9 illustrates the resulting IBSDF graph.

Figure 9. Resulting IBSDF in delayed communication case.

Modeling levels hybrid communication

To model levels direct communication, we have to model
source/sub-consumer actor communication and sink/sub-
producer actor communication.

Source/sub-consumer actor hybrid communica-
tion: a hybrid communication between the source inter-
face and the consumer sub-actor is defined through the
following hierarchical dependency conditions:

• [w ·#v + v] fires strictly after the beginning time of
[w].

• [w ·#v + v − 1] fires before or at the same beginning
time of [w].

• [w ·#v+v] fires before or at the same beginning time
of [w+1].

Based on these conditions we deduce the Lemma 8.

Lemma 3.16 Let S1 be a composed subsystem with

sample period TS1
containing a set of atomic blocks

B1, B2, ..., Bn firing in hybrid communication mode. B1

represents the sub-consumer atomic block with sample pe-

riod TB1 . A hierarchical dependency exists between the

wth execution of S1 and vth execution of B1 if:

TS1
= b · TB1

. (30)

Where b is a coefficient superior or equal to 1.

Proof: Hierarchical dependency conditions are trans-
lated into the following in-equations:

TS1
· (w − 1) < TB1

· (w ·#v + v − 1). (31)

TS1
· (w − 1) ≥ TB1

· (w ·#v + v − 2). (32)

TS1
· w ≥ TB1

· (w ·#v + v − 1). (33)

When we added inequality (32) and inequality (33) we
obtain:

2TS1
· w − TS1

≥ 2TB1
· (w ·#v + v)− 3TB1

.

We multiply inequality (31) by -1 and added it with the
resulted inequality. We obtain:

TS1
> TB1

w ·#v + v − 2

w
.

Since w·#v+v−2
w

> 1, it exists a coefficient b > 1 such that:

TS1 = b · TB1 .

To ensure deadlock freeness between the
hierarchical actor and the sub-consumer actor in direct
communication case, we refer to Theorem 9.
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Theorem 3.17 To ensure deadlock freeness between an

hierarchical actor and its sub-consumer actor, IBSDF

introduces the source interface concept such that:

srcIdata =

{

v
x
in(a1) if srcIdata ≤ v · in(a1).

v
α
in(a1) otherwise.

where srcIdata =
TS1

g(S1,S2)
; in(a1) =

TB1

g(S1,B1)
; x =

g(S1,S2)

g(S1,B1)
·

TB1

TS1
v ≥ 1 and α =

g(S1,S2)

g(S1,B1)
·
TB1

TS1
v < 1.

Proof: We multiply equality (30) of Lemma 8 by
v

g(S1,B1)·g(S1,S2)
.

We obtain:

v

g(S1,B1)
·

TS1

g(S1,S2)
=

v

g(S1,S2)
·

TB1

g(S1,B1)
·
TS1

TB1

.

Equality (1) of Lemma 1 is obtained by replacing, in the

resulting equation,
TS1

g(S1,S2)
by srcIdata,

TB1

g(S1,B1)
by in(a1),

x and α by
g(S1,S2)

g(S1,B1)
·
TB1

TS1
· v. Where x and α represent

duplication numbers of the rate of tokens available in the
source interface within two different cases. Hence, the
source interface srcI and the sub-consumer actor a1 obey
the deadlock freeness and consistency condition already
proved in Lemma 1.

Based on the precedence constraints between two
levels we determine the initial token amount in the FiFo
connecting the hierarchical actor and the sub-consumer
actor.

Theorem 3.18 In the hybrid communication case, the

initial amount of tokens d(Ha, a1) of FiFo connecting the

hierarchical actor and the sub-consumer actor is given by

in(a1).

Proof: Inequality (31) is equivalent to:

TS1
· w − TB1

· (w ·#v + v) < TS1
− TB1

.

Inequality (32) is equivalent to:

TS1 · w − TB1 · (w ·#v + v) ≥ TS1 − 2TB1 .

Inequality (33) is equivalent to:

TS1
· w − TB1

· (w ·#v + v) ≥ −TB1
.

We combine the three inequalities and add TB1
, which

results in the following quation:

TS1
> TS1

·w−TB1
·(w ·#v+v)+TB1

≥ max(TS1
−TB1

, 0).
(34)

We pose Y = g(S1,B1) · g(S1,S2). When dividing (34) by
Y , we obtain:

TS1

Y
>

TS1

Y
w−

TB1

Y
·(w·#v+v)+

TB1

Y
≥ max(

TS1

Y
−
TB1

Y
, 0).

We multiply the resulting equation by g(S1,S2) we obtain:

Z · srcIdata > Z · srcIdata · w − in(a1) · (w ·#v + v) + in(a1)

≥ max(Z · srcIdata − in(a1), 0).

Where:

• srcIdata and in(a1) are deduced from Theorem 9.

• Z =
g(S1,S2)

g(S1,B1)
.

Since Z > 0, then, even if we replace Z · srcIdata by
srcIdata this inequality remains true. Hence, referring to
inequality (8) , we obtain a precedence relation between
an hierarchical actor and its sub-consumer actor when re-
placing in(a1) by d(Ha, a1).

Sink interface/sub-producer actor hybrid com-
munication: a hybrid communication between the sub-
producer actor and the sink interface is defined through
the following hierarchical dependency conditions:

• [w] fires strictely after the beginning time of [w ·#u+
u].

• [w − 1] fires before or at the same beginning time of
[w ·#u+ u].

• [w] fires before or at the same beginning time of [w ·

#u+ u+ 1].

Based on these conditions we deduce the Lemma 9.

Lemma 3.19 Let S1 be a composed subsystem with

sample period TS1 containing a set of atomic blocks

B1, B2, ..., Bn firing in hybrid communication mode. Bn

represents the sub-producer atomic block with sample pe-

riod TBn
. A hierarchical dependency exists between the

wth execution of S and uth execution of Bn if:

TS1
= c · TBn

. (35)

Where c is in [0..1[

Proof: Hierarchical dependency conditions are trans-
lated into the following in-equations:

TBn
· (w ·#u+ u− 1) < TS1

· (w − 1). (36)

TBn
· (w ·#u+ u− 1) ≥ TS1

· (w − 2). (37)

TBn
· (w ·#v + v) ≥ TS1

· (w − 1). (38)

When combining inequalities (36), (37) and (38), we
obtain:

min(
w − 1

w ·#u+ u− 1
,

w − 2

w ·#u+ u
) · TS1 ≤ TBn

<
w − 1

w ·#u+ u− 1
· TS1

.

Since 0 ≤ w − 1 < w · #u + u − 1, it exists a coefficient
c ∈ [0..1[ such that:

TS1
= c · TBn

.

To ensure deadlock freeness
between the hierarchical actor and the sub-producer actor
in hybrid communication case, we refer to Theorem 11.

Theorem 3.20 To ensure deadlock freeness between an

hierarchical actor and its sub-producer actor, in hybrid

communication case, IBSDF MoC introduces the sink
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interface concept such that:

sinkIdata =







u
γ
out(an) if sinkIdata ≤

u · out(an).
u
β
out(an) otherwise.

where snkIdata =
TS1

g(S1,S3)
; out(an) =

TBn

g(S1,Bn)
; γ =

g(S1,S3)

g(S1,Bn)
·
TBn

TS1
v ≥ 1 and β =

g(S1,S3)

g(S1,Bn)
.
TBn

TS1
v < 1.

Proof: We multiply equality (35) of Lemma 9 by
v

g(S1,Bn)·g(S1,S3)
. We obtain:

v

g(S1,Bn)
·

TS1

g(S1,S3)
=

v

g(S1,S3)
·

TBn

g(S1,Bn)
·
TS1

TBn

.

Equality (2) of Lemma 1 is obtained by replacing, in

the resulting equation,
TS1

g(S1,S3)
by sinkIdata,

TBn

g(S1,Bn)
by

out(an), γ and β by
g(S1,S3)

g(S1,Bn)
·
TBn

TS1
· v. Where γ and β rep-

resent duplication numbers of the rate of tokens available
in the sink interface within two different cases. Hence, the
sink interface sinkI and the sub-producer actor an obey
the deadlock freeness and consistency condition already
proved in Lemma 1. Based on the precedence con-
straints between two levels we determine the initial token
amount in the FiFo connecting the hierarchical actor and
the sub-producer actor.

Theorem 3.21 In the hybrid communication case, the

initial amount of tokens d(an, Ha) of FiFo connecting the

hierarchical actor and the sub-producer actor is given by

srcIdata.

Proof: Inequality (36) is equivalent to:

TBn
· (w ·#u+ u)− TS1

· w < TBn
− TS1

.

Inequality (37) is equivalent to:

TBn
· (w ·#u+ u)− TS1

· w ≥ TBn
− 2TS1

.

Inequality (38) is equivalent to:

TBn
· (w ·#u+ u)− TS1

· w ≥ −TS1
.

We add TS1
and we combine the three inequalities, which

results in the following equation:

TBn
> TBn

·(w·#u+u)−TS1
·w+TS1

≤ max(TBn
−TS1

, 0).
(39)

We pose Y ′ = g(S1,Bn) · g(S1,S3). When dividing (39) by
Y ′, we obtain:

TBn

Y ′
≥

TBn

Y ′
(w·#u+u)−

TS1

Y ′
w+

TS1

Y ′
> max((

TBn

Y ′
−
TS1

Y ′
), 0).

The multiplication of the obtained equation by g(S1,Bn)

yields to:

Z ′
· out(an) ≥ Z ′

· out(an) · (w ·#u+ u)− sinkIdata · w

+ sinkIdata > max(sinkIdata − Z ′
· out(an), 0).

Where:

• sinkIdata and out(an) are deduced from Theorem 11.

• Z ′ =
g(S1,Bn)

g(S1,S3)
.

Since Z ′ > 0, then, even if we replace Z ′ · out(an) by
out(an), this inequality remains true. Hence, referring to
inequality (9) , we obtain a precedence relation between
an hierarchical actor and its sub-consumer actor when re-
placing sinkIdata by d(an, Ha).

To transform a composed Simulink subsystem S, with
hybrid communication between levels, into a deadlock free
and consistent hierarchical actor, we rely on the two fol-
lowing Corollary 5 and Corollary 6.

Corollary 3.21.1 To model direct communication be-

tween two levels of the hierarchy and ensure deadlock

freeness and consistency, IBSDF MoC introduces the

source and sink interfaces concept such that:

srcIdata =

{

v
x
in(a1) if srcIdata ≤ v.in(a1).

v
α
in(a1) otherwise.

Where srcIdata =
TS1

g(S1,S2)
; in(a1) =

TB1

g(S1,B1)
;

x =
g(S1,S2)

g(S1,B1)
·
TB1

TS1
v ≥ 1 and α =

g(S1,S2)

g(S1,B1)
.
TB1

TS1
v < 1.

sinkIdata =







u
γ
out(an) if sinkIdata ≤

u · out(an).
u
β
out(an) otherwise.

Where snkIdata =
TS1

g(S1,S3)
; out(an) =

TBn

g(S1,Bn)
; γ =

g(S1,S3)

g(S1,Bn)
·
TBn

TS1
v ≥ 1 and β =

TBn

TS1
v < 1.

Corollary 3.21.2 In the hybrid communication case, the

initial amount of tokens d(Ha, a1) of FiFo connecting the

hierarchical actor and the sub-consumer actor is given by

in(a1) and the initial amount of tokens d(an, Ha) of FiFo
connecting the hierarchical actor and the sub-producer ac-

tor is given by sinkIdata.

To illustrate Simulink to IBSDF transformation in the
hybrid communication case, we consider a multi-rate
Simulink system S shown in figure 10 containing five
blocks S1, S2, S3, B1 and B2. S1, S2 and S3 are the
blocks of the top level with sample times TS1 = 100ms,
TS2 = 10ms and TS3 = 100ms, respectively. S1 is a com-
posed subsystem containing two atomic blocks B1 and B2

with sample times TB1
= 50ms and TS3

= 30ms, respec-
tively. ( S2 and S3 can be atomic or composed blocks, in
this example S2 and S3 are composed subsystems but we
only focus on S1 transformation to illustrate our results.)
Subsystems S1, S2 and S3 are transformed into hier-

archical actors Ha1, Ha2 and Ha3, respectively. Atomic
blocks B1 and B2 are transformed into atomic actors a1
and a2 respectively. Communications between S1 and S2,
Communications between S1 and S3, Communications be-
tween B1 and B2 are obtained according to the rules of
modeling one-level hybrid communication mentioned in
section 3.3.1. we obtain as results:

• in(Ha1) = srcIdata =
TS1

g(S1,S2)
= 100

gcd(100,10) = 10.

• out(Ha1) = snkIdata =
TS1

g(S1,S3)
= 100

gcd(100,100) = 1.
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Figure 10. Multi-rate Simulink system in hybrid communication

case.

Figure 11. Resulting IBSDF in hybrid communication case.

• out(a1) =
TB1

g(B2,B1)
= 50

gcd(50,30) = 5.

• in(a2) =
TB2

g(B1,B2)
= 30

gcd(50,30) = 3.

• d(a1, a2) = out(a1)− 1 = 4.

Communication between S1 and B1 and Communication
between S1 and B2 are both hybrid multi-levels commu-
nications. To model these communications and ensure
deadlock freeness and consistency during the transforma-
tion process , we apply Corollary 5. Note that the exe-
cution repetition numbers v and u are obtained based on
the “Compute Repetition Algorithm”:

• in(a1) =
TB1

g(S1,B1)
= 50

gcd(50,100) = 1. Since v = 3,

srcIdata = 10 ≥ v.in(a1) = 3 ∗ 1 then α is equal to
g(s1,S2)

g(s1,B1)
.
TB1

TS1
.v = 10

50 .
50
100 .3 = 3

10 ≤ 1.

• out(a2) =
TB2

g(S1,B2)
= 30

gcd(30,100) = 3. Since u = 10,

snkIdata = 1 ≤ u.out(a2) = 5 ∗ 3 then γ is equal to
g(s1,S3)

g(s1,B2)
.
TB2

TS1
.u = 100

10 . 30
100 .5 = 15 ≥ 1.

Delays between levels are obtained according to Corollary
6:

• d(Ha1, a1) = in(a1) = 1.

• d(Ha1, a2) = snkIdata = 1.

Figure 11 illustrates the resulting IBSDF graph.

4 Implementation

The overall extended work-flow ( figure 12) of our pro-
posed approach is based on a specification of the applica-
tion behavior with Simulink model, multi-core described
with IPXACT Language, performance metrics estimation
and automatic C code generation.
The first task is to transform a given Simulink model

into IBSDF graph. During this task, three main func-
tionalities are executed: As first step, Simulink model el-
ements are gathered and converted into software objects
using a Simulink Parser. Secondly, these software objects
are translated into IBSDF objects as detailed in section

3 . Then an IBSDF graph Generator reconstructs the
obtained objects into the IBSDF graph elements and gen-
erates the IBSDF graph format. The resulted graph un-
dergoes some transformations [25] until obtaining a DAG
graph to expose parallelism in an intuitive manner to the
mapping.

The next step is to map each actor of the DAG into the
multi-core platform in a specific manner using the simple
ordering heuristic algorithm [21] which is a modified ver-
sion of list scheduling algorithm [26]. The scheduling so-
lution performance is evaluated using ABC modules [27].
The performance metrics estimation serves to evaluate the
parallel system and helps designer to take the suitable de-
cisions.

Once the mapping decision is made, the last task of
the work-flow is to automatically generate a compatible C
code for the target hardware platform. In order to achieve
this, a host C code library is required. This library is re-
sulted from the code generation of each Simulink block
composing the model using Simulink coder tool. This
workf-low was implemented into S-Preesm tool.

Figure 12. The extended rapid prototyping work-flow.

5 Results and Discussion

In this section, an embedded signal processing applica-
tion is used to illustrate the efficiency of our approach in
a realistic setting. Such LTE QPSK is a complex model
adopting multi-core architecture on the transmitter and
receiver sides, it is a well suitable example to demonstrate
our approach capabilities. We have used S-Preesm tool to
translate the Simulink model provided by [22] and gener-
ate a compatible C code to the parallel hardware platform.

5.1 Case study overview: LTE QPSK

The Long-Term Evolution LTE QPSK is a wireless com-
munication of high speed data for mobile. The LTE sys-
tem design, based on the MIMO OFDM technology and

256 Translating Hierarchical Simulink Applications to Real-time multi-core Execution



Turbo coding, is required to optimize mobile speeds rang-
ing from 15 to 120km/h.
The LTE QPSK is a multi-rate Simulink model which

has three levels of hierarchy. The top level contains three
adjacent subsystems: the transmitter, the receiver and
the channel. The channel is required only for simulation,
consequently, we do not take it into account. Further the
transmitter and receiver channels are alike and treated
in the same way. Then, in the rest of our work we only
illustrate the LTE QPSK transmitter side. The Simulink
model of the transmitter is presented in Figure 13. The
top level includes 8 subsystems and atomic blocks:

• The Bernoulli Binary Generator: it creates a
Bernoulli random binary number. It generates 20
samples.

• The CRC encoder: it produces cyclic redundancy
code bits for each input data frame.

• The Turbo encoder: it encodes continuous stream
of data using a concatenated encoding structure and
an iterative algorithm to decode the sequence. The
turbo encoder was implemented as a composed sub-
system. More details are found in [22].

• Modulation QPSK, 16QAM, 64QAM : the modula-
tion is performed with a gray mapping.

• OFDM block: the orthogonal frequency division mul-
tiplexing (OFDM) is based on the fast reverse fourier
transform (IFFT) of each data symbol corresponding
to each transmitting antenna. OFDM is known as
the best kind of modulation which is able to overcome
multipath problems. OFDM block is implemented as
a composed subsystem. OFDM block is implemented
as a composed subsystem such as depicted in figure
14.

• The serial-to-parallel P/S block: it consists of con-
verting multiple data stream, received simultane-
ously, from serial format to parallel format.

5.2 Transformation

The Simulink model of the LTE QPSK Transmitter
chain had a hierarchy depth of two levels. We count 24
atomic blocks and 4 subsystems (we did not count output
and input blocks).
As first step, we simulated the Simulink model to ob-

tain sample times of each block (atomic and composed)
composing the given model. We have, then, executed the
transformation task of the work-flow. The transformation
of the LTE QPSK transmitter Simulink model is success-
fully done by applying algorithms detailed and proved in
section 3.
The resulting IBSDF graph is a consistent and dead-

lock free graph with the same hierarchy depth, the same
numbers of actors (atomic and hierarchical) and the same
number of FiFo channels as the input Simulink model.
The output graph can be seen in figure 15.
To illustrate how our proposed approach is applied to

this case study, we focused on the OFDM subsystem and
detailed its translation. The OFDM subsystem belongs to
the top level of the LTE QPSK transmitter model. This

Table 1. Translation statistic of LTE QPSK transmitter applica-

tion.

Subsystems number 4
Simulink model

atomic blocks number 24

Lines number 35

Subgraphs number 4
IBSDF graph

atomic actors number 24

FiFo number 35

atomic actors number 233
DAG graph

FiFo number 305

subsystem is connected to Training subsystem Training
insertion subsystem and QPSK modulator atomic block
with sample times respectively 8.10−1ms, 8.10−1ms and
200.10−1ms OFDM contains seven atomic blocks as de-
picted in figure 14. Communications between blocks and
levels are direct. According to corollaries 1 and 2 we ob-
tained:

• the amounts of tokens available in the source inter-
faces and sink interface are respectively srcIdata1 =
25, srcIdata2 = 1 and sinkIdata1 = 25.

• The consumed data by the sub-consumer concate-
nate2, the sub-consumer Select rows and the pro-
duced data by the sub-producer Add cyclic pre-
fix are respectively equal to in(concatenate2) = 1,
in(Selectrows) = 1 and out(Addcyclicprefix) = 1.

• Source and the sink interfaces must be respectively
duplicated α = 1/25 x = 1 and β = 1/25 times
to ensure deadlock freeness between levels and the
output sub-graph consistency.

• The initial amount of tokens available in the
FiFo connecting the hierarchical actor OFDM
and the sub-consumer concatenate2 is equal to
d(OFDM, concatenate2) = 0. The initial amount
of tokens available in the FiFo connecting the hi-
erarchical actor OFDM and the sub-consumer Se-
lect rows is equal to d(OFDM,Selectrows) = 0.
Similarly, the initial amount of tokens available in
the FiFo connecting the hierarchical actor OFDM
and the sub-producer Add cyclic prefix is equal to
d(Addcyclicprefix,OFDM) = 0.

The resulted graph is illustrated in figure 16.
Since the transformation task is realized, the resulting

graph is converted into a DAG containing 203 actors and
305 FiFo channels. The information about generated LTE
QPSK transmitter graph is shown in Tab.1. Starting from
this result, we can provide solutions for scheduling and
code generation. The execution of the whole work-flow
using S-Preesm tool is achieved over the shortest feasible
time intervals. It takes only few Milli-seconds.

5.3 Code generation results and perfor-

mance evaluation

After the transformation of the LTE QPSK transmit-
ter side into a schedulable IBSDF graph through the pro-
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Figure 13. The Simulink model representing the LTE QPSK transmitter side.

Figure 14. OFDM Simulink subsystem

posed model transformation framework, The IBSDF un-
dergoes several operations to be ready for the generation
code process, as described in section 4. The LTE trans-
mitter Simulink application is translated into C parallel
code utilizing the AAM (Algorithm Architecture Match-
ing) [28] method. This method is based on generating self-
timed coordination code from data-flow graph schedule.
The host code and communication libraries are obtained
by generating the code of each Simulink block composing
the model by means of Simulink coder tool. In the one-
core architecture case, the generated code using S-Preesm
counts 1084 lines in which the host code library is not
considered.

The output result from the code generation using
Simulink coder is a vector of size (1000*1). This output
corresponds to the data stream transferred to the LTE
QPSK receiver side via the AWGN channel. To prove the
correctness and efficiency of our approach we generate the
code using S-Preesm tool. The result file was fairly close
to the Simulink coder result.

To show the positive impact of our approach on the
application performance, we deploy the generated codes
into the Raspberry pi3 architecture. The Raspberry pi3
had a Broadcom BCM2837 processor 64Bit with Quad
cores ARM Cortex-A53 and a clock speed with 1.2 GHZ.
The Raspberry pi 3 represents a good hardware platform
to introduce multi-core programming. Furthermore, we
choose to evaluate performance using Raspberry pi3
because most of smart phone devices are using similar
multi-core ARM processors as Raspberry. Metrics taken
into account during the overall process are: execution
time, speedup and efficiency. The speedup measure allows
programmer to detect how much an application executed
on multiple processors is faster than its execution on
a single processor. Efficiency, the second performance
metric, is deduced from the speed up metric. In fact,
efficiency is the average utilization of n processors. It is
obtained from the ratio of speed up and the number of
processors allocated.

5.3.1 Performance results using Simulink coder
tool

In this section we present the result using Simulink
coder tool. Since passing from Simulink applications to
multi-core implementations is not trivial as detailed in
previous sections, we generated, using Simulink coder, a C
code compatible only for single-core architecture. Then,
we deployed the generated code into the Raspberry pi3
platform. The resulted execution time is of 0.288s. The
achieved speedup and efficiency are equal to 1. This result
is due to the fact that we use only a single core.

5.3.2 Performance results using S-Preesm tool

In this section, we generated C compatible codes of the
LTE transmitter side application for several multi-core ar-
chitecture using S-Preesm tool. First, generated code was
deployed onto single-core. The resulted execution time is
of 0.273 s. Since the target architecture is constructed
with one core, speedup and efficiency are consequently
equal to 1.
To analyze the impact of multi-core architecture on the

”LTE transmitter side” execution time, speedup and ef-
ficiency, we generated C codes compatible for dual-cores,
3-cores and 4-cores using S-Preesm and starting from the
application Simulink model.

Table 2. Performance results of the code generated using the S-

Preesm tool.

Cores number Execution time Speedup Efficiency

1 0.273 s 1 1
2 0.183 s 1.49 0.745
3 0.153 s 1.78 0.59
4 0.110 s 2.48 0.62

When dealing with dual core, the application execution
time is of 0.185s. Speedup and efficiency values reach
1.49 and 0.745, respectively. We can observe in figure
17 that deploying into dual-cores noticeably improves the
Simulink application performance compared to deploying
into single-core.

Better performance results in terms of execution time
and speedup when deploying into 3-cores are realized. In-
deed, executing the Simulink application 3-cores architec-
ture return an implementation with an execution time of
0.153s and improvement of 178% in speedup compared to
the reached speedup when using single-core as depicted in
figure 17.

The same application was deployed into 4-cores. Fig-
ure 17 showed That the minimum execution time of the
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Figure 15. The top level of the generated IBSDF graph after the translation of the LTE transmitter Simulink model using S-Preesm.

Figure 16. The obtained IBSDF sub-graph after the translation of the OFDM Simulink sub-system using S-Preesm.

case study application is achieved on 4-cores compared
to the single-core execution. Likewise, the best speedup
value is reached with 2.48 on 4-cores architecture mean-
ing that, compared to single-core execution, speedup is
approved with 248%. Table 2 summarizes performance
measurements for each target hardware implementation
when using S-Preesm tool.

5.3.3 Results analysis

The obtained results in previous sections showed the ef-
ficiency of our proposal to improve Simulink applications
performance. In fact, even deploying generated codes on
single-core platform, the execution time of the code gen-
erated using our proposal is lower than the one generated
using Simulink coder. This is due to the fact that Simulink
Coder tool enforces the addition of memory buffers and
latencies whenever there is a rate transition among non-
virtual blocks. Hence, the time performance of the ap-
plication is negatively influenced. However, these addi-
tions are not requiered when using our approach. Further,
S-Preesm implements a scheduling module which splits
the scheduling/mapping functionnality and the evaluation
cost of the generated solutions functionnality into two sub-
modules. This division produces an advanced scalability
in terms of schedule quality and execution time.

In order to demonstrate the effectiveness of our ap-
proach in improving Hierarchical Simulink application
performance, we investigate the execution time-efficiency
profile. This profile represents an important cost-
benefit trade-off in evaluating multi-core application per-
formance. Efficiency indicates benefit and execution time
indicates cost. Figure 18 illustrates the profile for “LTE
Transmitter side” Simulink application when using S-
Preesm. In the first instance, we compare only ratios of
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Figure 17. Execution time evaluation in function of number of

cores.

efficiency to execution time resulting from Simulink coder
and S-Preesm when deploying generated codes on single-
core platform. The ratio of efficiency to execution time
resulting from Simulink coder is equal to 3.47 and the ra-
tio of efficiency to execution time resulting from S-Preesm
is equal to 3.66. We find that the use of S-Preesm yields
better result. Furthermore, as depicted in Figure 18 the
ratio of efficiency to execution time reaches the maximum
when the execution is achieved onto 4-cores architecture.
Hence, compared to single-core execution, our Simulink
application archives the most efficiency utilization of each
core when executing onto 4-cores with a ratio of efficiency
to execution time equal to 5.63. Thus, surveying results
above, we reveal the impact of transforming hierarchi-
cal Simulink models into multi-core execution using our
proposal in improving performance in terms of execution
time, speedup and execution time-efficiency.
Further, transforming the Simulink model of LTE
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Figure 18. Execution time-Efficiency profile for ”LTE Transmitter

side.

QPSK Transmitter chain into multi-core execution us-
ing S-Preesm ease its parallelizing and allows us to take
advantages of this high degree of parallelism. Moreover,
OFDM subsystem can be reused for other similar systems.
The use of our open source proposal allows to eliminate
many constraints and configurations imposed by the com-
mercial toolbox “real-Time Workshop Embedded Coder”
required before code generation. S-Preesm allows also a
cost-free parallel C code generation.

6 Conclusion

In this article, we have described an efficient ap-
proach to automatically optimize and transform hierar-
chical Simulink to multi-core execution. The proposed
methodology consists of converting hierarchical Simulink
models into an intermediate model before generating par-
allel codes. In this work, we proposed IBSDF as an inter-
mediate representation. Our translation approach is the
first to preserve and exploit hierarchy behavior of Simulink
applications.

To achieve this, we extended the existing tool Preesm to
support Simulink applications which we named S-Preesm.
S-Preesm has been successfully applied to the hierarchi-
cal Simulink application ”LTE transmitter side”. Thanks
to our translation strategy, we succeed to transform the
complex Simulink application into a deadlock free and
consistent IBSDF graph; where we can determine initial
amount of tokens for each FiFo channel, consumed and
produced data according to communication type between
blocks and level of the Simulink model. After transform-
ing the Simulink application, the obtained graph is sub-
ject to scheduling/mapping algorithm to perform parallel
code generation. In addition, a host C code library corre-
sponding to each graph actor, is created to contribute to
the code generation.

Based on the complex Signal processing application
”LTE transmitter side”, experiments show the effective-
ness and the potential of our approach in embedded sys-
tems developments. The comparison of our approach re-
sults and Simulink coder results demonstrates the effi-
ciency of our technique to perform and facilitate the trans-
formation of hierarchical Simulink applications into multi-
core execution.

For further developments, we may extend this work to

support other block types such as conditional execution
block which is characterized with variable periods. As well
as future work , we may also adopt the hierarchical ap-
proach proposed in [16] to perform hierarchical Simulink
applications mapping into multi-core architecture. We
also aim to extend S-Preesm work-flow to support the
optimal scheduler proposed by Rebaya et al. [24].
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