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Abstract: One of the most significant challenges involved in efforts to understand the equation of state
of dense neutron-rich matter is the uncertain density dependence of the nuclear symmetry energy. In
particular, the nuclear symmetry energy is still rather poorly constrained, especially at high densities.
On the other hand, detailed knowledge of the equation of state is critical for our understanding of
many important phenomena in the nuclear terrestrial laboratories and the cosmos. Because of its
broad impact, pinning down the density dependence of the nuclear symmetry energy has been a
long-standing goal of both nuclear physics and astrophysics. Recent observations of neutron stars,
in both electromagnetic and gravitational-wave spectra, have already constrained significantly the
nuclear symmetry energy at high densities. The next generation of telescopes and gravitational-wave
observatories will provide an unprecedented wealth of detailed observations of neutron stars, which
will improve further our knowledge of the density dependence of nuclear symmetry energy, and
the underlying equation of state of dense neutron-rich matter. Training deep neural networks to
learn a computationally efficient representation of the mapping between astrophysical observables
of neutron stars, such as masses, radii, and tidal deformabilities, and the nuclear symmetry energy
allows its density dependence to be determined reliably and accurately. In this work, we use a
deep learning approach to determine the nuclear symmetry energy as a function of density directly
from observational neutron star data. We show, for the first time, that artificial neural networks can
precisely reconstruct the nuclear symmetry energy from a set of available neutron star observables,
such as masses and radii as measured by, e.g., the NICER mission, or masses and tidal deformabilities
as measured by the LIGO/VIRGO/KAGRA gravitational-wave detectors. These results demonstrate
the potential of artificial neural networks to reconstruct the symmetry energy and the equation of state
directly from neutron star observational data, and emphasize the importance of the deep learning
approach in the era of multi-messenger astrophysics.

Keywords: neutron stars; gravitational waves; equation of state; dense matter; nuclear symmetry energy

1. Introduction

Understanding the equation of state (EOS) of dense neutron-rich matter in terms of the
fundamental interactions between its constituents is an extraordinarily challenging problem
and represents a key outstanding question in modern physics and astrophysics [1–3]. Due
to its broad ramifications for many important phenomena, ranging from understanding
the heavy ion collision dynamics in nuclear laboratories to the most violent cosmic events,
such as binary neutron star (BNS) mergers and supernovae, to gravitational waves, the
determination of the EOS of dense matter has been a major shared goal of both the nuclear
physics (see, e.g., Refs. [4–13]) and astrophysics (see, e.g., Refs. [14–35]) communities.
It has been a primary scientific thrust for establishing key research facilities in astro-
physics [1] and nuclear physics [2], such as large ground-based telescopes, advanced X-ray
space-borne observatories, the Neutron Star Interior Composition Explorer (NICER) [36],
LIGO/VIRGO/KAGRA [37–39] gravitational-wave detectors, and all advanced radioactive
beam laboratories around the globe.
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In cold neutron star matter, the nucleonic component of the EOS can be written in
terms of the energy per nucleon ρ as [40]

E(ρ, δ) = ESNM(ρ) + Esym(ρ)δ2, (1)

where ESNM(ρ) = E(ρ, 0) is the energy per nucleon of symmetric nuclear matter (SNM),
Esym(ρ) is the symmetry energy, and δ = (ρn − ρp)/ρ is the isospin asymmetry, with ρn,
ρp, and ρ = ρn + ρp being the neutron, proton, and total density, respectively. Presently, the
EOS of cold nuclear matter under extreme conditions of density, pressure, and/or isospin
asymmetry still remains rather uncertain and theoretically controversial, particularly at
supra-saturation densities, mainly due to the poorly known high-density behavior of the
nuclear symmetry energy Esym(ρ) [4,5].

To determine the EOS from first principles, we need to solve quantum chromodynamics
(QCD), which is the fundamental theory of strong interactions. However, at present, model-
independent results are only available for a rather limited density range. At low densities of
ρ ∼ [1− 2]ρ0

1, we can use ab initio approaches together with nuclear interaction derived from
Chiral Effective Theory (χEFT) with controlled uncertainty estimates [41–50]. At asymptot-
ically high densities of ρ & 50 ρ0, perturbative QCD calculations converge and provide
reliable results [51–57]. At intermediate densities of ρ ∼ [2− 10]ρ0, however, there are
still no reliable QCD predictions [58]. To derive the EOS from QCD in the intermediate-
density region, one needs to develop non-perturbative approaches, such as the Monte
Carlo simulation of QCD on a lattice (lattice QCD), but the application of these methods
to systems at finite densities is hindered by the notorious sign problem; see, e.g., Ref. [59].
Therefore, at intermediate densities, the EOS construction still relies on phenomenological
approaches employing a variety of many-body methods and effective interactions, such as
the relativistic mean field theory, and density functionals based on the Skyrme, Gogny, or
Similarity Renormalization Group (SRG) evolved interactions.

Meanwhile, we have witnessed extraordinary progress in efforts to constrain the
high-density EOS from both nuclear laboratory experiments with radioactive beams, and
multi-messenger astrophysical (MMA) observations of neutron stars. In particular, exten-
sive analyses of experimental data of heavy-ion reactions from intermediate to relativistic
energies, especially various forms of nucleon collective flow and the kaon production,
have already constrained significantly the EOS of SNM up to approximately 4.5 ρ0; see,
e.g., Ref. [6]. In addition, thanks to the great efforts and collaboration of both the nu-
clear physics and astrophysics communities, significant progress has been made in the
last two decades in constraining the symmetry energy around, and below, nuclear mat-
ter saturation density using results from both astrophysical observations and terrestrial
nuclear experiments; see, e.g., Refs. [5,9–11,60–63]. However, the poorly known density
dependence of the nuclear symmetry energy Esym(ρ) at supra-saturation densities, and
the possible hadron-to-quark phase transition, still remain the most uncertain aspects
of the EOS of dense matter [4,5,21,22,24]. Furthermore, the appearance of various new
particles, such as hyperons and resonances, is also strongly dependent upon the high-
density trend of Esym(ρ) [64–79]. Because, above the hadron-to-quark transition density,
the nuclear symmetry energy would naturally lose its physical meaning, it is critical to
determine simultaneously both the high-density behavior of the symmetry energy and the
detailed properties of the hadron-to-quark phase transition, analyzing combined data from
astrophysical observations and nuclear laboratory experiments [5].

Recent MMA observations of neutron stars provide unique means to probe the high-
density EOS and, in particular, the Esym(ρ) at densities currently inaccessible in the nuclear
laboratories. Moreover, these new advances in neutron star (NS) observations have opened
an alternative pathway for the model-independent extraction of the symmetry energy,
and the EOS, via statistical approaches (see, e.g., Refs. [35,80–85]). These observations
include the Shapiro delay measurements of massive ∼2M� pulsars [86–88], the radius
measurement of quiescent low-mass X-ray binaries and thermonuclear bursters [80–82,89,90],
the X-ray timing measurements of pulsars by the NICER mission [91,92], and the detection
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and inference of gravitational waves from compact binary mergers involving NSs by the
LIGO/VIRGO/KAGRA collaboration [93–95]. Typical NS observables include mass M,
radius R, moment of inertia I, quadrupole moment Q, dimensionless tidal deformability Λ
(and derivatives, e.g., Love number k2 and tidal deformability λ), and compactness M/R.
Specifically, the NICER mission aims at the compactness M/R of NSs by measuring the
gravitational lensing of the thermal emission from the stellar surface. On the other hand,
gravitational-wave (GW) observations of BNS and neutron star–black hole (NSBH) mergers
provide information on the tidal disruption of the star in the presence of its companion,
quantified by the tidal deformability parameter λ. Some of these NS observables are related
via EOS-independent universal relations, such as the well-known I-Love-Q relation, which
relates I, k2, and Q [96,97].

There is a plethora of diverse statistical approaches to construct the most probable EOS
from NS observational data, with the Bayesian inference [35,80–84] as the most commonly
used technique at the present. There are also other methods, such as those based on the
Gaussian processes, which are variants of the Bayesian inferences with nonparametric
representation of the EOS; see, e.g., Ref. [85]. Despite the significant effort to extract the
genuine EOS from the NS astrophysical data, it is still unclear what the true dense matter
EOS should look like, mainly due to the uncertainties of the assumed prior distributions in
the Bayesian analyses [58]. Therefore, the need arises for alternative approaches to construct
the model-independent EOS. Recently, approaches based on deep neural networks (DNNs)
have gained interest in the research community and have been extensively explored and
applied in a wide range of scientific and technical domains. Deep learning (DL) algorithms,
a subset of machine learning (ML), are highly scalable computational techniques with the
ability to learn directly from raw data, employing artificial neurons arranged in stacked
layers, named neural networks, and optimization methods based on gradient descent
and back-propagation [98,99]. These techniques, especially with the aid of GPU comput-
ing, have proven to be highly successful in tasks such as image recognition [100], natural
language processing [101], and recently also emerged as a new tool in engineering and sci-
entific applications, alongside traditional High-Performance Computing (HPC) in the new
field of Scientific Machine Learning [102]. DL approaches have been already successfully
applied in a wide range of physics and astrophysics domains; see, e.g., Refs. [103–113]. In
particular, DL has been applied in GW data analysis for the detection [114–121], parameter
estimation [122,123], and denoising [124] of GW signals from compact binary mergers. In
previous works [125,126], we also pioneered the use of DL methods, specifically Convo-
lutional Neural Network (CNN) [127] algorithms, for the detection and inference of GW
signals from BNS mergers embedded in both Gaussian and realistic LIGO noise. Several
studies have also explored the DL approach as a tool to extract the dense matter EOS from
NS observations [58,128–131].

In this work, we explore a DL approach to extract the nuclear symmetry energy
Esym(ρ), the most uncertain part of the EOS, directly from NS astrophysical data. Specifi-
cally, we train DNNs to map pairs of NS mass and radius M− R, or stellar mass and tidal
deformability M−Λ, to Esym(ρ). We show, for the first time, that DL can be used to infer
the nuclear symmetry energy directly from NS observational data accurately and reliably.
Most importantly, we show that DL algorithms can be used successfully to construct a
model-independent Esym(ρ) and therefore determine precisely the density dependence of
the nuclear symmetry energy at supra-saturation densities. These results are a step towards
achieving the goal of determining the EOS of dense neutron-rich matter, and emphasize
the potential and importance of this DL approach in the MMA era, as an ever-increasing
volume of NS observational data becomes available with the advent of the next generation
of large telescopes and GW observatories.

This paper is organized as follows. After the introductory remarks in this section, in
Section 2, we discuss the main features and parameterization of the EOS applied in this
work. In Section 3, we briefly recall the formalism for solving the structure equations of
static NSs and calculating the tidal deformability. In Section 4, we discuss the DL approach
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used to map the NS observables to the nuclear symmetry energy. We present our results
in Section 5. At the end, we conclude in Section 6 with a short summary and outlook on
future investigations.

Conventions: We use units in which G = c = 1.

2. Equation of State

The EOS is the major ingredient for solving the NS structure equations and calculating
global stellar properties, such as mass M, radius R, and dimensionless tidal deformability
Λ. The most commonly used theoretical approaches to determine the nuclear EOS fall into
two major categories—phenomenological and microscopic methods. Phenomenological
approaches are based on effective interactions constructed to describe the ground state of
finite nuclei and therefore applications to systems at high isospin asymmetries must be
considered with care [132]. Moreover, at large densities, no experimental data are available
to constrain such interactions and therefore predictions based on these methods could
be very different from the realistic behavior. Among the most used phenomenological
approaches are methods based on Skyrme interactions [133,134] and relativistic mean-field
(RMF) models [135]. On the other hand, microscopic approaches start with realistic two-
body and three-body nucleon forces that describe accurately free-space nucleon scattering
data and the deuteron properties. Such interactions are either based on meson-exchange
theory [136,137], or recent χEFT [46,138–140]. The major challenge for the many-body
methods is the treatment of the short-range repulsive core of the nucleon–nucleon inter-
action, and this represents the difference among the available techniques. Among the
most well-known microscopic many-body methods are the Brueckner–Hartree–Fock (BHF)
approach [141] and its relativistic counterpart, the Dirac–Brueckner–Hartree–Fock (DBHF)
theory [142,143], the variational approach [144], the Quantum Monte Carlo technique and
its derivatives [145,146], the self-consistent Green’s function technique [147], the χEFT [49],
and the Vlow k approach [148].

Around saturation density ρ0, the ESNM(ρ) and Esym(ρ) predicted by many-body
theories can be Taylor expanded as

ESNM(ρ) = E0 +
K0

2
x2 +

J0

6
x3, (2)

Esym(ρ) = S0 + Lx +
Ksym

2
x2 +

Jsym

6
x3, (3)

with x ≡ (ρ − ρ0)/3ρ0. The expansion coefficients in these expressions can be con-
strained by nuclear experiments and have the following meanings [149]: E0 ≡ ESNM(ρ0),
K0 ≡ [9ρ2d2ESNM/dρ2]ρ0 , and J0 ≡ [27ρ3d3ESNM/dρ3]ρ0 are the binding energy, incompress-
ibility, and skewness of SNM; S0 ≡ Esym(ρ0), L ≡ [3ρdEsym/dρ]ρ0 , Ksym ≡ [9ρ2d2Esym/dρ2]ρ0 ,
and Jsym ≡ [27ρ3d3Esym/dρ3]ρ0 are the magnitude, slope, curvature, and skewness of
the symmetry energy at ρ0. Currently, the most probable values of these parameters
are as follows: E0 = −15.9 ± 0.4 MeV, K0 = 240 ± 20 MeV, −300 ≤ J0 ≤ 400 MeV,
S0 = 31.7± 3.2 MeV, L = 58.7± 28.1 MeV, −400 ≤ Ksym ≤ 100 MeV, and −200 ≤ Jsym ≤
800 MeV; see e.g., Ref. [150]. Although, at higher densities, the Taylor expansions diverge
themselves [151], Equations (2) and (3) can also be viewed as parameterizations where,
in principle, the parameters are left free [150]. In this respect, the above relations have
dual meanings. Namely, for systems with low isospin asymmetries, they are Taylor expan-
sions near the saturation density, while, for very neutron-rich systems at supra-saturation
densities, they should be regarded as parameterizations [150]. For further discussion on
the relationship between the Taylor expansions and the parameterizations adopted in our
analysis, the reader is referred to, e.g., Ref. [150]. These parameterizations are often used
in metamodeling of the NS EOS and have been applied previously, for instance, in solving
the NS inverse-structure problem and constraining the high-density symmetry energy by
astrophysical observations of NSs [150,152]. The NS EOS metamodel has been also applied
in Bayesian analyses to extract the most probable values of the high-density parameters
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of the EOS, where the posterior Probability Distribution Functions (PDFs) of the EOS
parameters and their correlations are inferred directly from NS observational data [153].
The parameterizations described here have the advantage, over the widely used piecewise
polytropes for directly parameterizing the pressure as a function of energy or baryon den-
sity of NS matter, of keeping the isospin dependence of the EOS, and they explicitly retain
information on the composition for the whole density range, without losing the ability to
model a wide range of EOSs as predicted by various many-body approaches. This feature
of the metamodeling approach is particularly important for inferring the high-density
symmetry energy parameters, or directly Esym(ρ), as it clearly separates the contribution of
Esym(ρ) to the EOS.

For the purpose of our analysis, in the present study, we adopt the EOS metamodel
described briefly above and, by varying the EOS parameters, generate a large number
of EOSs and corresponding M − R, or M − Λ sequences, by solving the NS structure
equations. We assume a simple model of matter in the NS core consisting of protons,
neutrons, electrons, and muons (the npeµ-model) in β-equilibrium. With ESNM(ρ) and
Esym(ρ), parameterized by Equations (2) and (3), E(ρ, δ) is calculated through Equation (1).
Then, the pressure of NS matter in β-equilibrium

P(ρ, δ) = ρ2 dε(ρ, δ)/ρ

dρ
(4)

can be computed from the energy density ε(ρ, δ) = ρ[En(ρ, δ) + MN ] + ε l(ρ, δ), where MN
is the average nucleon mass and ε l(ρ, δ) is the lepton energy density. Details for calculating
ε l(ρ, δ) can be found in, e.g., Ref. [154]. Below approximately 0.07 f m−3, the core EOS is
supplemented by a crustal EOS, which is more suitable at lower densities. For the inner
crust, we apply the EOS by Pethick et al. [155] and, for the outer crust, the one by Haensel
and Pichon [156].

Figure 1. (Left window) Energy per particle of SNM as a function of the reduced density ρ/ρ0. The
EOS of SNM is kept fixed by setting all parameters in Equation (1). Specifically, we set E0 = 15.9 MeV,
K0 = 240 MeV, and J0 = 0 MeV. (Middle window) Symmetry energy Esym as a function of ρ/ρ0 for
L = 40, 50, 60, 70, 80 MeV, with Ksym = 0 MeV. (Right window) Same as the middle window but for
Ksym = −400, −300, −200, −100, 0, 100 MeV, with L = 58.7 MeV. In both middle and right windows,
S0 = 31.7 MeV and Jsym = 0 MeV. See text for details.

We use Equations (2) and (3) as parameterizations, together with the parabolic approx-
imation of the nucleonic EOS Equation (1), and fix E0, K0, and S0 at their most probable
currently known values from nuclear laboratory experiments and/or nuclear theories.
Since the main focus of this analysis is specifically on extracting Esym(ρ) from NS observ-
ables, we fix the SNM EOS, ESNM(ρ), by setting J0 = 0 MeV, and vary only Esym(ρ). The
J0 parameter controls the stiffness of the SNM EOS and in turn the maximum NS mass
Mmax of the resultant stellar models. The maximum NS mass of 2.14 M� observed so
far [88] requires J0 to be larger than −200 MeV, depending slightly on the symmetry energy
parameters [157]. At present, the predicted range of J0 still has relatively large uncertain-
ties [157], which also partially justifies our choice of setting J0 = 0. With ESNM(ρ) kept
fixed, the EOS is therefore solely determined by Esym(ρ). The EOS of SNM ESNM(ρ) is
shown in the left window of Figure 1. For the purpose of our analysis, we also set the
symmetry energy skewness parameter Jsym = 0 MeV. This choice is also partially justified



Galaxies 2022, 10, 16 6 of 19

by the very large uncertainty range of Jsym at present [157], but the main reason for setting
Jsym = 0 is to simplify our problem. In following works, we plan to consider the effect of
both J0 and Jsym. This would allow for the modeling of a wider class of EOSs as predicted
by various many-body approaches, and models of the nuclear interaction. Together with
using realistic NS astrophysical observations, this data-driven approach would allow for
extracting realistic symmetry energies, and in turn the EOS. With the above choices, we
subsequently vary the symmetry energy parameters L and Ksym to generate many samples
of Esym(ρ), and the EOS. The effect of varying the L and Ksym parameters on the symmetry
energy is illustrated in the middle and right windows of Figure 1. While, in principle, these
parameters are absolutely free, the asymptotic boundary conditions of the EOS near ρ0 and
δ = 0 provide some prior knowledge of the ranges of these parameters. The ranges of L
and Ksym are further restricted by imposing the requirement that the EOSs satisfy causality,
and the resultant NS models can support a maximal mass of at least 2.14 M�. The ranges
of the symmetry energy Esym(ρ) and pressure P satisfying all constraints are shown in
Figure 2.

Figure 2. Range of the nuclear symmetry energy Esym (left window) and pressure P (right window).
The Esym and P are plotted as functions of the reduced density ρ/ρ0.

3. Neutron Star Structure Equations and Tidal Deformability

In this section, we briefly review the formalism for calculating the NS mass M, radius
R, and tidal deformability λ. For a spherically symmetric relativistic star, the Einstein’s field
equations reduce to the familiar Tolaman–Oppenheimer–Volkoff (TOV) [158] equation:

dp(r)
dr

= − ε(r)m(r)
r2

[
1 +

p(r)
ε(r)

][
1 +

4πr3 p(r)
m(r)

][
1− 2m(r)

r

]−1

, (5)

where the gravitational mass within a sphere of radius r is determined by

dm(r)
dr

= 4πε(r)r2. (6)

To proceed with the solution of the above equations, one needs to provide the EOS
of stellar matter in the form p(ε). Starting from some central energy density εc = ε(r = 0)
at the center of the star, with the initial condition m(0) = 0, Equations (5) and (6) can be
integrated until p vanishes, signifying that the edge of the star has been reached. Some
care should be taken at r = 0 since, as seen above, the TOV equation is singular there. The
point r = R where p0 vanishes defines the NS radius and M = m(R) = 4π

∫ R
0 ε(r′)r′2dr′

determines the NS gravitational mass.
For a given EOS, there is a unique relationship between the stellar mass and the central

density εc. Thus, for a particular EOS, there is a unique sequence of NSs parameterized by
the central density (or equivalently the central pressure pc = p(0)). The range of the M− R
relation computed with the EOSs considered in this work is shown in the left window of
Figure 3.
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The tidal deformability λ is a parameter quantifying the tidal deformation effects
experienced by NSs in coalescing binary systems during the early stages of an inspiral.
This parameter is defined as [159–161]

λ = −
Qij

Eij
, (7)

where Qij is the induced mass quadruple moment of an NS in the gravitational tidal field
Eij of its companion. The tidal deformability can be expressed in terms of the NS radius, R,
and dimensionless tidal Love number, k2, as

λ =
2
3

k2R5. (8)

The tidal Love number k2 is calculated using the following expression [162,163]:

k2(β, yR) =
8
5

β5(1− 2β)2[2− yR + 2β(yR − 1)]

× {2β[6− 3yR + 3β(5yR − 8)]

+ 4β3[13− 11yR + β(3yR − 2)

+ 2β2(1 + yR)] + 3(1− 2β)2[2− yR

+ 2β(yR − 1)] ln(1− 2β)}−1, (9)

where β ≡ M/R is the dimensionless compactness parameter and yR ≡ y(R) is the solution
of the following first-order differential equation (ODE):

dy(r)
dr

= −y(r)2

r
− y(r)

r
F(r)− rQ(r), (10)

with

F(r) =
{

1− 4πr2[ε(r)− p(r)]
}[

1− 2m(r)
r

]−1

, (11)

Q(r) = 4π

[
5ε(r) + 9p(r) +

ε(r) + p(r)
c2

s (r)
− 6

r2

][
1− 2m(r)

r

]−1

− 4m2(r)
r4

[
1 +

4πr3 p(r)
m(r)

]2[
1− 2m(r)

r

]−2

, (12)

where c2
s (r) ≡ dp(r)/dε(r) is the squared speed of sound. Starting at the center of the

star, for a given EOS, Equation (10) needs to be integrated self-consistently together with
Equations (5) and (6). Imposing the additional boundary condition for y at r = 0 such
that, y(0) = 2, the Love number k2 and the tidal deformability λ can be readily calculated.
One can also compute the dimensionless tidal deformability Λ, which is related to the
compactness parameter β and the Love number k2 through

Λ =
2
3

k2

β5 . (13)

The range of Λ as a function of the stellar mass is shown in the right window of
Figure 3.
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Figure 3. Range of mass–radius relation (left window) and dimensionless tidal deformability Λ
(right window) for the EOSs considered in this study. Λ is plotted as a function of stellar mass M. The
mass ranges of the three heaviest pulsars known at present [86–88] are indicated in the left window.

The total tidal effect of two neutron stars in an inspiraling binary system is given by
the mass-weighted (dimensionless) tidal deformability (see, e.g., Refs. [159,161]):

Λ̃ =
16
13

(M1 + 12M2)M4
1Λ1 + (M2 + 12M1)M4

2Λ2

(M1 + M2)5 , (14)

where Λ1 = Λ1(M1) and Λ2 = Λ2(M2) are the (dimensionless) tidal deformabilities of the
individual binary components. As pointed out previously [159], although Λ is calculated
for single neutron stars, the universality of the neutron star EOS allows us to predict
the tidal phase contribution for a given binary system from each EOS. For equal-mass
binary systems, Λ̃ reduces to Λ. The weighted (dimensionless) deformability Λ̃ is usually
plotted as a function of the chirp mass M = (M1M2)

3/5/M1/5
T for various values of

the asymmetric mass ratio η = M1M2/M2
T , where MT = M1 + M2 is the total mass of

the binary.

4. Deep Neural Networks (DNNs)

In this section, we briefly discuss the basic setup, structure, and workflow associated
with implementing DNNs for our specific application. For more extensive discussions, the
reader is referred to a number of machine learning articles [98,164] and textbooks [99,165].

Deep neural networks consist of processing units, named neurons, which are arranged
in one to several layers (Figure 4a). A neuron acts as a filter, performing a linear operation
between the neurons in the previous layer and the weights associated with the neuron.
A DNN typically has an input layer, followed by one or more hidden layers, and a final
layer with one or more output neurons. As illustrated in Figure 4a, in a feedforward DNN,
calculations progress (from left to right) starting at the input layer and moving successively
through the hidden layers until reaching the output layer. In classification problems, the
output neurons give the probabilities that an input sample belongs to a specific class. In
regression problems, the output layer returns estimates of one or several target parameters.
Each neuron in a DNN performs a simple linear operation. Namely, for input values xi from
the previous layer, it outputs a single value a = f (∑ xiwi + b); see Figure 4b,c. Activation
functions f depend on the specific application but are typically chosen to be nonlinear or
piecewise functions, such as the sigmoid or hyperbolic tangent functions [166] (Figure 4b).
The weights wi and bias b are unique to each neuron and are parameters that are tuned
iteratively via a backpropagation algorithm during the DNN training (Figure 4b). Neuron
k in layer m accepts the outputs am−1

1 , am−1
2 ,. . . , am−1

N from all N from the previous layer
m − 1 and computes a single value am

k = f (∑ am−1
i wi + b) that is broadcasted to every

neuron in layer m + 1 [165].
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Figure 4. (a) Structure of an example deep neural network with input, hidden, and output layers
highlighted. In the feedforward neural networks used in this study, calculations move from left to
right, as illustrated in the figure. (b) Inputs to an example neuron from the previous layer. Also
shown is the calculation performed by the example neuron, with inputs weighted relative to one
another, bias added, and an activation function applied, in order to calculate a value a, referred to
as the activation of the neuron. (c) The activation of the example neuron serves as one of the inputs
to the next layer of neurons. Each neuron in the successive layers of the DNN is performing this
same operation with different values of the tunable parameters wi and b, within the backpropagation
algorithm. See text for details.

In this analysis, we apply a DL approach and formulate a regression problem, where
the inputs to the DNNs consist of M(R) or M(Λ) sequences, while the outputs consist
of Esym(ρ) estimates. Accordingly, the data sets consist of Esym(ρ) samples and M(R),
or M(Λ), sequences. We use the EOS metamodel discussed in Section 2, with the SNM
part of the EOS kept fixed, and vary only the symmetry energy. In particular, we set
E0 = 15.9 MeV, K0 = 240 MeV, J0 = 0 MeV, S0 = 31.7 MeV, Jsym = 0, and vary only
L and Ksym in Equations (2) and (3). Specifically, the values of L and Ksym are sampled
randomly from their respective ranges of [30.6–86.8] MeV and [−400–100] MeV. Recently,
the latest results of the PREX collaboration suggested a rather high value of L with an upper
limit at 143 MeV [167]. Examining the effect of higher L values is left to following works.
The resultant EOSs p(ε) are checked regarding whether they satisfy (i) the microscopic
stability condition, i.e., dp

dε ≥ 0, and (ii) the causality condition, i.e., the speed of sound

cs ≡
√

dp
dε ≥ c, which restricts the values of L and Ksym and the Esym(ρ) samples. For
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each EOS, the NS structure equations are solved to obtain M(R) and M(Λ) sequences. To
simulate NS observational data, from a given genuine M− R (or M− Λ) sequence, we
randomly choose 50 points in the range of 1M� to 2M�2. Then, each sample input is a
vector of dimension 100, with the two arrays of M and R (or M and Λ) values concatenated.
Similarly, each output sample is a vector of dimension 100 representing an estimated
Esym(ρ) in the density range of ∼0.5ρ/ρ0 to 5ρ/ρ0. In this respect, the DNN maps an input
M(R) or M(Λ) sequence to an output Esym(ρ). Realistic NS observations inevitably accrue
errors, which result in corresponding uncertainties when reconstructing the symmetry
energy, and/or the EOS. For the purpose of this analysis, however, we do not take into
account NS observational errors and uncertainties. This work should be regarded as a
proof-of-concept study, and the application to realistic NS data is left to a future article.

In supervised learning, the data sets are divided into training, validation, and testing
data. The training data set is used by the DNN to learn from, the validation data are used
to verify whether the network is learning correctly, and the testing data are used to assess
the performance of the trained model. The training data sets used in this work consist of
40,000 independent M(R), or M(Λ), sequences representing the DNN inputs, and 40,000
matching Esym(ρ) samples representing the DNN outputs. The validation and testing data
sets consist of ∼1000 input samples and the same number of output samples each.

The neural networks used here are feedforward DNNs with 10 hidden, dense, fully
connected layers of dimension 100, and ReLU activation functions. The first layer has a
linear activation function and corresponds to the input to the neural network, which, in this
case, is a one-dimensional concatenated vector containing the NS M and R (or Λ) values for
a given M(R) (or M(Λ)) sequence. At the end, there is a linear output layer of dimension
100 returning the estimated Esym(ρ). The network design was optimized by fine-tuning
multiple hyper-parameters, which include here the number and type of network layers,
the number of neurons in each layer, and the type of activation function. The optimal
network architecture was determined through multiple experiments and tuning of the
hyper-parameters. The feedforward DNN used in this work and its functionality is shown
schematically in Figure 4.

To build and train the neural networks, we used the Python toolkit Keras (https:
//keras.io (accessed on 28 September 2021)), which provides a high-level application pro-
gramming interface (API) to the TensorFlow [168] (https://www.tensorflow.org (accessed
on 28 September 2021)) deep learning library. We applied the technique of stochastic
gradient descent with an adaptive learning rate with the ADAM method [169] with the
AMSgrad modification [170]. To train the DNNs, we used an initial learning rate of 0.003
and chose a batch size of 500. During each training session, the number of epochs was
limited to 2000, or until the validation error stopped decreasing. The training of the DNNs
was performed on an NVIDIA Tesla V100 GPU and the size of the mini-batches was chosen
automatically depending on the specifics of the GPU and data sets. We used the mean
squared error (MSE) as a cost (or loss) function.

5. Results

We first examine the ability of the DNN to reconstruct the Esym(ρ) from a set of mass
and radius M− R measurements that may result from electromagnetic observations of
neutron stars, such as those from the NICER mission, for instance. Specifically, we apply
the trained DNN, described in the previous section, to a test data set containing ∼1000
simulated M(R) sequences, and compare the corresponding estimated output Esym(ρ)
with the exact symmetry energy for each sample. In Figure 5, we show results for five
representative examples from the test data set. It is seen that the estimated symmetry energy
(broken colored lines) for each input M− R sequence matches almost exactly the “true”
Esym(ρ) (solid black lines) over the entire density range considered here. The results are
very similar for the rest of the test data samples. Quantitatively, at 5ρ0, the mean absolute
error over the whole test data set is 1.2 MeV, with a standard deviation of 0.8 MeV, where
the errors are even smaller at lower densities. Choosing different ensembles of randomly

https://keras.io
https://keras.io
https://www.tensorflow.org
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selected points from the genuine M(R) curves does not alter appreciably the accuracy with
which the symmetry energy is estimated.

Figure 5. Example input M(R) sequences (left window) and corresponding estimated Esym(ρ) (right
window). The input samples consist of 50 randomly selected points, denoted by the “o” characters,
from the genuine M(R) curves, denoted by the solid lines, in the range of 1–2 M�. The output
data samples consist of 100 Esym(ρ) points in the range of ∼0.4–5 ρ0. Broken colored lines in the
right window denote the estimated Esym(ρ) and the solid lines represent the exact Esym(ρ). Same
curve colors in both windows denote pairs of input M(R) sequences and corresponding output
symmetry energy.

At this point, we need to reiterate that realistic NS observations inevitably carry un-
certainties, which would result in corresponding uncertainties in the estimated symmetry
energy. However, this work should be considered a “proof-of-concept study” and realis-
tic applications are left for following articles. In addition, these results are based on the
assumption that we have 50 NS M− R observations. Although, at present, such a large
number may seem rather optimistic, with the advent of the next generation of electromag-
netic observatories, this circumstance is rapidly changing as many more NS electromagnetic
observations are expected in the future. These results clearly demonstrate the ability of the
DL-based approach to extract the nuclear symmetry energy accurately from NS mass and
radius measurements, given that observational data of sufficient quality exist.

We next look at the ability of the neural network to extract the symmetry energy
entirely from GW data from compact binary mergers involving neutron stars, particularly
BNS events. Specifically, we assume a set of mass and tidal deformability M − Λ mea-
surements that may result from the LIGO/VIRGO/KAGRA GW detectors, and from the
next-generation GW ground-based (e.g., Einstein Telescope and the Cosmic Explorer) and
space-borne (e.g., LISA) observatories, in the future. In this case, the trained DNN model is
applied to a test data set containing ∼1000 simulated M(Λ) sequences, and the estimated
output Esym(ρ) is compared with the exact symmetry energy for each data sample. The
results are summarized in Figure 6, which shows five representative examples from the test
data set. Again, the estimated Esym(ρ) (broken colored lines) follows very closely the “true”
symmetry energy (solid black lines) for each input M−Λ sequence over the entire density
range, and the results follow a very similar trend for all samples in the test data set. The
overall performance of the DNN is again assessed by looking at the mean absolute error,
which, at 5ρ0, is 0.8 MeV, with a standard deviation of 0.4 MeV. As discussed in the previous
section, the input of the neural network consists of 50 randomly chosen points from a given
genuine M(Λ) curve in the range of 1–2 M�, and the output consists of 100 fixed points
of Esym(ρ) in the range ∼0.4–5 ρ0. Using different input ensembles of randomly selected
points does not change significantly the results presented in Figure 6. These findings
show that the Esym(ρ) can be extracted accurately, via artificial neural networks, directly
from GW observational data of neutron stars. They also emphasize the importance of the
DL-based approach for extracting the symmetry energy, the most uncertain component
of the dense matter EOS, from GW observations. As in the case of NS mass and radius
measurements, GW observations of neutron stars inevitably accrue errors, which result in
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corresponding uncertainties in the extracted symmetry energy, and the EOS. As already
mentioned, realistic applications of the DL method are left to following works.

These novel computational techniques will become particularly important in the future
with the advent of the next generation GW observatories, when millions of GW events will
be routinely detected per year, with at least several events involving neutron stars per day.
As more such GW events are detected and characterized, this data-driven approach will
eventually allow us to map precisely the GW observations of neutron stars to the Esym(ρ),
and in turn, the underlying EOS of dense nuclear matter.

Figure 6. Example input M(Λ) sequences (left window) and corresponding estimated Esym(ρ)

(right window). The input samples consist of 50 randomly selected points, denoted by the “o”
characters, from the genuine M(Λ) curves, denoted by the solid lines, in the range of 1–2 M�. All
other figure features are the same as in Figure 5. See text for details.

6. Summary and Outlook

We have demonstrated, for the first time, the reconstruction of the nuclear symmetry
energy directly from MMA observations of neutron stars using deep learning approaches.
Specifically, we have shown that deep neural networks can extract Esym(ρ) accurately
from either mass and radius M− R or mass and tidal deformability M−Λ astrophysical
measurements of neutron stars. These results are a step towards realizing the goal of
determining the EOS of dense nuclear matter, and they underline the importance and
potential of the DL-based approach in the era of multi-messenger astrophysics, where an
ever-increasing volume of MMA data is becoming rapidly available.

Future directions include considering the complete set of EOS parameters in Equations (2)
and (3). Specifically, we will also take into account the effect of J0 and Jsym, which are set
to J0 = Jsym = 0 in the current analysis. Despite the large current uncertainties of these
higher-order parameters, their inclusion will allow us to model a much wider range of
realistic EOSs, and thus enable a direct comparison of Esym(ρ) estimates, obtained with the
DL techniques developed in this work, with realistic symmetry energies. Astrophysical ob-
servations of neutron stars inevitably carry error uncertainties, which lead to corresponding
errors and uncertainties in the extracted symmetry energy, and EOS. For realistic applica-
tions of our approach, the effect of empirical errors and uncertainties needs to be considered
and implemented consistently in the formalism. This can be achieved, for instance, by
recasting the Esym(ρ) regression problem into a probabilistic framework. In subsequent
works, we plan to implement Bayesian neural networks to perform the symmetry energy
inference task. In this paradigm, instead of having deterministic values, the weights of
these networks are characterized by probabilistic distributions by placing a prior over the
network weights [171]. Finally, we also plan to investigate likelihood-free inference meth-
ods based on normalizing flows [172]. By applying a series of nonlinear transforms to a
simple posterior shape (e.g., a multivariate Gaussian), the flow is able to reproduce complex
posteriors without evaluating the likelihood directly. These techniques have already gained
considerable interest in the research community, and, recently, a likelihood-free inference
method based on normalizing flows was applied [173] to rapidly perform parameter es-
timation of eight BBH GW events in the first LIGO catalog, GWTC-1 [174]. Such rapid
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processing will be particularly important for next-generation space telescopes and GW
detectors, whose sensitivity goals will allow for the detection and observation of compact
binary collisions, and neutron stars, throughout the history of the universe, exceeding
a million events per year, with thousands of BNS detections/year alone. Conventional
Bayesian inference approaches are not scalable to the study of thousands of BNS events per
year, and modern normalizing flow models could certainly help to extract BNS parameters
promptly and accurately.

Ultimately, as more events involving neutron stars are observed, these modern data-
driven approaches will allow us to rapidly process the ever-increasing amount of neutron
star observational data and determine precisely the nuclear symmetry energy and the EOS
of dense nuclear matter.
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2 At present, such a large number of simultaneous NS mass and radius (or M and Λ) measurements may look too optimistic.

However, with the rapid advent of the next generation of telescopes and GW detectors, a much greater number of NS observations
is expected in the near future.

References
1. The National Academies Press. New Worlds, New Horizons in Astronomy and Astrophysics; The National Academies Press:

Washington, DC, USA, 2011. Available online: https://www.nap.edu/catalog/12951/new-worlds-new-horizons-in-astronomy-
and-astrophysics (accessed on 28 September 2021).

2. The National Academies Press. Nuclear Physics: Exploring the Heart of Matter; Report of the Committee on the Assessment
of and Outlook for Nuclear Physics; The National Academies Press: Washington, DC, USA, 2012. Available online: https:
//www.nap.edu/catalog/13438/nuclear-physics-exploring-the-heart-of-matter (accessed on 28 September 2021).

3. 2015 U.S. Long Range Plan for Nuclear Sciences. Available online: https://www.osti.gov/servlets/purl/1296778 (accessed on 28
September 2021).

4. Li, B.A.; Ramos, À.; Verde, G.; Vidaña, I. Topical Issue on Nuclear Symmetry Energy. Eur. Phys. J. A 2014, 50, 9. [CrossRef]
5. Li, B.-A.; Cai, B.-J.; Xie, W.-J.; Zhang, N.-B. Progress in Constraining Nuclear Symmetry Energy Using Neutron Star Observables

Since GW170817. Universe 2021, 7, 182. [CrossRef]
6. Danielewicz, P.; Lacey, R.; Lynch, W.G. Determination of the equation of state of dense matter. Science 2002, 298, 1592–1596.

[CrossRef] [PubMed]
7. Baran, V.; Colonna, M.; Greco, V.; Di Toro, M. Reaction dynamics with exotic nuclei. Phys. Rep. 2005, 410, 335–466. [CrossRef]
8. Steiner, A.W.; Prakash, M.; Lattimer, J.M.; Ellis, P.J. Isospin asymmetry in nuclei and neutron stars. Phys. Rep. 2005, 411, 325–375.

[CrossRef]
9. Tsang, M.B.; Stone, J.R.; Camera, F.; Danielewicz, P.; Gandolfi, S.; Hebeler, K.; Horowitz, C.J.; Lee, J.; Lynch, W.G.; Kohley, Z.; et al.

Constraints on the symmetry energy and neutron skins from experiments and theory. Phys. Rev. C 2012, 86, 015803. [CrossRef]
10. Baldo, M.; Burgio, G.F. The nuclear symmetry energy. Prog. Part. Nucl. Phys. 2016, 91, 203–258. [CrossRef]
11. Li, B.-A. Nuclear symmetry energy extracted from laboratory experiments. Nucl. Phys. News 2017, 27, 7–11. [CrossRef]
12. Li, B.-A.; Cai, B.J.; Chen, L.W.; Xu, J. Nucleon effective masses in neutron-rich matter. Prog. Part. Nucl. Phys. 2018, 99, 29–119.

[CrossRef]
13. Burgio, G.F.; Vidaña, I. The Equation of State of Nuclear Matter: From Finite Nuclei to Neutron Stars. Universe 2020, 6, 119.

[CrossRef]
14. Lattimer, J.M.; Prakash, M. Neutron star structure and the equation of state. Astrophys. J. 2001, 550, 426–442. [CrossRef]
15. Lattimer, J.M.; Prakash, M. The equation of state of hot, dense matter and neutron stars. Phys. Rep. 2016, 621, 127–164. [CrossRef]

https://www.nap.edu/catalog/12951/new-worlds-new-horizons-in-astronomy-and-astrophysics
https://www.nap.edu/catalog/12951/new-worlds-new-horizons-in-astronomy-and-astrophysics
https://www.nap.edu/catalog/13438/nuclear-physics-exploring-the-heart-of-matter
https://www.nap.edu/catalog/13438/nuclear-physics-exploring-the-heart-of-matter
https://www.osti.gov/servlets/purl/1296778
http://doi.org/10.1140/epja/i2014-14009-x
http://dx.doi.org/10.3390/universe7060182
http://dx.doi.org/10.1126/science.1078070
http://www.ncbi.nlm.nih.gov/pubmed/12411575
http://dx.doi.org/10.1016/j.physrep.2004.12.004
http://dx.doi.org/10.1016/j.physrep.2005.02.004
http://dx.doi.org/10.1103/PhysRevC.86.015803
http://dx.doi.org/10.1016/j.ppnp.2016.06.006
http://dx.doi.org/10.1080/10619127.2017.1388681
http://dx.doi.org/10.1016/j.ppnp.2018.01.001
http://dx.doi.org/10.3390/universe6080119
http://dx.doi.org/10.1086/319702
http://dx.doi.org/10.1016/j.physrep.2015.12.005


Galaxies 2022, 10, 16 14 of 19

16. Watts, A.L.; Andersson, N.; Chakrabarty, D.; Feroci, M.; Hebeler, K.; Israel, G.; Lamb, F.K.; Miller, M.C.; Morsink, S.; Özel, F.; et al.
Colloquium: Measuring the neutron star equation of state using X-ray timing. Rev. Mod. Phys. 2016, 88, 021001. [CrossRef]

17. Özel, F.; Freire, P. Masses, radii, and the equation of state of neutron stars. Annu. Rev. Astron. Astrophys. 2016, 88, 401–440.
[CrossRef]

18. Oertel, M.; Hempel, M.; Klähn, T.; Typel, S. Equations of state for supernovae and compact stars. Rev. Mod. Phys. 2017, 89, 015007.
[CrossRef]

19. Baiotti, L. Gravitational waves from neutron star mergers and their relation to the nuclear equation of state. Prog. Part. Nucl. Phys.
2019, 109, 103714. [CrossRef]

20. Li, B.-A.; Krastev, P.G.; Wen, D.H.; Zhang, N.B. Towards understanding astrophysical effects of nuclear symmetry energy. Eur.
Phys. J. A 2019, 55, 117. [CrossRef]

21. Weber, F.; Negreiros, R.; Roseneld, P.; Stejner, M. Pulsars as astrophysical laboratories for nuclear and particle physics. Prog. Part.
Nucl. Phys. 2007, 59, 94–113. [CrossRef]

22. Alford, M.G.; Han, S.; Schwenzer, K. Signatures for quark matter from multi-messenger observations. J. Phys. G Nucl. Part. Phys.
2019, 46, 114001. [CrossRef]

23. Capano, C.D.; Tews, I.; Brown, S.M.; Margalit, B.; De, S.; Kumar, S.; Brown, D.A.; Krishnan, B.; Reddy, S. Stringent constraints on
neutron-star radii from multimessenger observations and nuclear theory. Nat. Astron. 2020, 4, 625–632. [CrossRef]

24. Blaschke, D.; Ayriyan, A.; Alvarez-Castillo, D.E.; Grigorian, H. Was GW170817 a canonical neutron star merger? Bayesian analysis
with a third family of compact stars. Universe 2020, 6, 81. [CrossRef]

25. Chatziioannou, K. Neutron-star tidal deformability and equation-of-state constraints. Gen. Relativ. Gravit. 2020, 52, 109. [CrossRef]
26. Annala, E.; Gorda, T.; Kurkela, A.; Vuorinen, A. Gravitational-Wave Constraints on the Neutron-Star-Matter Equation of State.

Phys. Rev. Lett. 2018, 120, 172703. [CrossRef]
27. Kievsky, A.; Viviani, M.; Logoteta, D.; Bombaci, I.; Girlanda, L. Correlations imposed by the unitary limit between few-nucleon

systems and compact stellar systems. Phys. Rev. Lett. 2018, 121, 072901. [CrossRef] [PubMed]
28. Landry, P.; Essick, R.; Chatziioannou, K. Nonparametric constraints on neutron star matter with existing and upcoming

gravitational wave and pulsar observations. Phys. Rev. D 2020, 101, 123007. [CrossRef]
29. Dietrich, T.; Coughlin, M.W.; Pang, P.T.H.; Bulla, M.; Heinzel, J.; Issa, L.; Tews, I.; Antier, S. Multimessenger constraints on the

neutron-star equation of state and the Hubble constant. Science 2020, 370, 1450–1453. [CrossRef] [PubMed]
30. Stone, J.R. Nuclear Physics and Astrophysics Constraints on the High Density Matter Equation of State. Universe 2021, 7, 257.

[CrossRef]
31. Li, A.; Zhu, Z.Y.; Zhou, E.P.; Dong, J.M.; Hu, J.N.; Xia, C.J. Neutron star equation of state: Quark mean-field (QMF) modeling and

applications. J. High Energy Astrophys. 2020, 28, 19–46. [CrossRef]
32. Burgio, G.F.; Vidaña I.; Schulze, H.-J.; Wei, J.-B. Neutron stars and the nuclear equation of state. Prog. Part. Nucl. Phys. 2021,

120, 103879. [CrossRef]
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