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ABSTRACT 

ModelGen is an operator that automatically translates a source 

model expressed in a source metamodel into an equivalent target 

model expressed in a different metamodel. For example, given an 

XML schema, ModelGen can automatically generate an equiva-

lent relational schema or Java interface. This paper describes a 

new algorithm for ModelGen with several novel properties. It 

automatically determines a series of transformations to generate 

the target model. It generates forward- and reverse-views that 

transform instances of the source model into instances of the 

target and back again. It supports rich mappings of inheritance 

hierarchies to flat relations. And it supports incremental modifica-

tion of a source-to-target mapping. We prove its correctness and 

demonstrate its practicality in an implementation. 

1. INTRODUCTION 
In this paper, we address the problem of automatically translating 

a model expressed in one formalism into an equivalent model 

expressed in another formalism. For example, a database architect 

may develop an entity-relationship (ER) diagram, from which a 

relational schema must be designed. Similarly, the architect needs 

to provide application developers with interface definitions ex-

pressed in an object-oriented (OO) programming language, such 

as Java or C#. Finally, the architect may want to generate a 

schema from these interface definitions to support data exchange 

expressed as an XML Schema Definition (XSD). 

In many schema translation tasks, producing the schema in the 

target formalism is only one half of the job. The other half is 

producing a mapping that describes how the source schema 

constructs relate to the target constructs and specifies how to 

translate data between the source and target representation. For 

example, an XSD schema produced for data exchange needs to be 

instantiated by serializing an object graph. Similarly, in object-to-

relational schema translation, data transformations are required to 

shred objects into relations and reassemble them.  

Feedback we have received from product developers suggests that 

generating correct data transformations is one of the most 

challenging issues in schema translation. For example, in object-

to-relational schema translation, there exist a variety of strategies 

for translating each object-oriented construct, such as inheritance, 

associations, complex types, or nested collections. Combinations 

of these strategies yield a huge space of scenarios. Producing data 

transformations for this space of scenarios is difficult and error-

prone. A particularly hard issue is supporting flexible inheritance 

strategies since minor changes in inheritance translation may have 

a disruptive effect on the generated data transformations. 

In the model-management framework [4], schema translation is 

encapsulated in the operator ModelGen. It automatically translates 

a source model expressed in a source metamodel into an 

equivalent target model expressed in a different metamodel. We 

use the terms model and metamodel instead of schema and data 

model for consistency with the metadata field and for clarity. A 

model can be a database schema, interface definition, or object 

model. The latter two are not normally called ‗schemas.‘ 

Similarly, the phrase ‗data model‘ is a uniquely database term. 

‗Metamodel‘ is more neutral and makes clearer its relationship to 

models, which are instances of a metamodel. 

ModelGen is a generic operator, in the sense that it can work with 

a range of source and target metamodels, such as ER, SQL, OO 

interfaces, XSD, RDFS, or types supported by the .NET Common 

Language Runtime (CLR). Implementing ModelGen in a com-

pletely generic fashion seems out of reach due to the myriad 

semantic details of each metamodel and data transformation lan-

guage. Instead, we developed an extensible, rule-driven core that 

can be customized to specific model-translation tasks with moder-

ate effort. As a proof of concept, we customized our generic 

ModelGen implementation to build an object-to-relational schema 

translation tool. The tool is integrated with a high-quality user 

interface that runs inside Microsoft Visual Studio 2005 and 

produces provably correct mappings. We demonstrated the tool in 

[5]. This paper reports on the techniques we used to build and 

customize ModelGen. 

Our basic strategy follows the approach of Atzeni and Torlone in 

[1]. Using this approach, we define a universal metamodel, called 

the super-metamodel, which has all of the main modeling 

constructs found in popular metamodels. In this respect, it is the 

union of its component metamodels. To support a new 

metamodel, new constructs can be added to it. 

The super-metamodel is used to define transformations generical-

ly. For example, the concepts of Entity in the ER metamodel and 

Class in an OO metamodel correspond to a single construct in the 

super-metamodel, called an Abstract. The concepts of Tuple in 

SQL and Struct in an OO metamodel correspond to the super-

metamodel construct Structure. Therefore, a transformation from 

Abstract to Structure can be used to translate either an entity or 

class into a tuple or struct. Thus, many fewer transformations are 

required than if we must specify transformations for each [source 

metamodel, target metamodel] pair. 

In the Atzeni and Torlone approach, translation proceeds in three 

steps: (1) transform the source model into an instance of the 

super-metamodel; (2) identify and then execute a series of trans-

formations that eliminates from the source model all modeling 
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constructs absent in the target metamodel; (3) transform this inter-

mediate model into the target metamodel.  

Our first contribution is the generation of instance-level transfor-

mations between the source schema and generated target schema. 

While there are solutions that can transform instances of the given 

source model into instances of the generated target model (e.g., 

[2],[19],[20]), they require passing the instances through an 

intermediate generic representation. This is impractical for large 

databases and unnecessary when only view definitions are 

required. To avoid this, we augment each transformation rule 

applied in step (2) above to generate not only target schema 

elements but also elementary forward- and reverse-views in 

Datalog that describe how each eliminated construct of the source 

model is represented in the target. We prove that these views are 

correct, i.e., do not lose information: The composition of the 

forward-view and reverse-view is the identity. 

The final forward- and reverse-views between the source and tar-

get schemas are obtained by composing the elementary views (via 

view unfolding). The correctness of the composition is ensured by 

the correctness of the elementary views. The composed views are 

expressed in terms of the super-metamodel. They are fed into a 

custom component that translates them into the native mapping 

language, e.g., SQL or XQuery. In our customized object-to-

relational (OR) tool, the resulting native views are in SQL.  

Our second contribution is a rich set of transformations for inheri-

tance mapping. It allows the engineer to decide on the number of 

relations used for representing a sub-class hierarchy and to assign 

each direct or inherited property of a class independently to any 

relation. These transformations allow a per-class choice of inheri-

tance mapping strategy. They subsume all OR inheritance strate-

gies we know of, including horizontal and vertical partitioning 

[14], their combinations, and many new strategies. The trans-

formations are driven by a data structure called a mapping matrix. 

We developed algorithms for populating mapping matrices from 

per-class annotations of the inheritance hierarchy and generating 

provably correct elementary views. The complexity of inheritance 

mapping is encapsulated in a single transformation rule. Since the 

final views are obtained by composition, inheritance mappings do 

not interfere with mapping strategies for other OO constructs. 

Our third contribution is an extensible plan generator. Each 

transformation rule encapsulates a small piece of a complete 

transformation. As new modeling features are introduced or new 

strategies identified, new rules may be necessary. As a result, the 

series of rules executed in the translation step needs to be 

modified. We have developed an A* search algorithm that, given 

a set of constructs to eliminate and a target metamodel, generates 

a transformation plan that (a) eliminates all constructs absent from 

the target metamodel, (b) includes no irrelevant transformations, 

and (c) minimizes a cost function, such as plan length. The search 

algorithm is invoked only once for each [set of transformations, 

source metamodel, target metamodel] triple. In addition to 

enabling extensibility of our schema translator, this plan generator 

is generic in the sense that it works with a range of source and 

target metamodels, such as ER, Extended ER (EER), SQL, OO, 

XSD, RDFS, Java or .NET types. Implementing it using our 

approach (or that of [1]) requires an extensible set of rules, which 

in turn requires an extensible plan generation algorithm to select 

the best series of rules to apply. 

Our fourth contribution is a technique for propagating incremental 

updates of the source model into incremental updates of the target 

model. To do this, we ensure that an unchanged target object has 

the same id each time it is generated, thereby allowing us to reuse 

the previous version instead of creating a new one. This avoids 

losing a user‘s customizations of the target and makes incremental 

updating fast. This practical requirement stems from the fact that 

schema translation is typically an interactive process in which the 

architect analyzes different translation choices. She switches back 

and forth between the source and target schema, both of which 

may be large and thus require careful on-screen layout. In such 

scenarios, it is unacceptable to regenerate the target schema and 

discard the layout information upon changes in schema translation 

strategy, i.e., interactive schema translation is required. 

Our final contribution is an implementation of a generic 

ModelGen component for fast development of end-to-end model-

translation solutions. We report on the customization effort it took 

us to build an OR schema translation tool using ModelGen. 

The rest of this paper is structured as follows. Section 2 presents 

an illustrative scenario. Section 3 describes our super-metamodel 

and provides a state-based semantics for it. Section 4 specifies our 

syntax for transformations and shows that each transformation is 

correct. Section 5 describes how we support multiple strategies 

for mapping inheritance hierarchies into relations. Section 6 

describes how to transform models incrementally. Section 7 

explains our search algorithm to identify transformation plans. 

Section 8 discusses our implementation. Section 9 discusses 

related work and Section 10 is the conclusion. 

namespace SimpleExample

{

public class Company

{

public string Name;

}

public sealed class Supplier  :  Company

{

public Item[] Parts;

}

public struct Item

{

public string ISBN;

public int Cost;

}

}

CREATE TABLE

Company (

Name varchar(50),

oid int NOT NULL PRIMARY KEY

)

CREATE TABLE

Supplier (

oid int NOT NULL PRIMARY KEY

SameAs int NOT NULL UNIQUE FOREIGN KEY REFERENCES Company(oid)

)

CREATE TABLE

PartsArray (

Supplier int NOT NULL FOREIGN KEY REFERENCES Supplier(oid)

ItemISBN varchar(50)

ItemCost int

)

 

Figure 1: The C# input on the left is transformed into the SQL output on the right. 



 3 

2. EXAMPLE 
Before delving into our algorithms, we illustrate the complete 

process by showing how to translate a CLR namespace into an 

equivalent SQL schema. This namespace, shown on the left side 

of Figure 1 includes two class definitions and a simple structured 

type. For simplicity, we will assume that the order of values in an 

array is not relevant. 

The first task is to identify which CLR constructs are not sup-

ported by SQL. For example, SQL disallows classes, inheritance, 

arrays, and non-lexical attributes. To remove each of these 

constructs, we need to identify a transformation plan guaranteed 

to produce sets of structured types whose attributes are lexical. 

Using our A* search algorithm, we identify a suitable 

transformation plan consisting of five transformation rules: 

(1) Convert each array of values into a join table. (2) Remove 

inheritance structures, in this case using vertical partitioning; 

alternative strategies are considered in Section 5. (3) Replace each 

class with a relation that includes an explicit object identifier, or 

oid. (4) Replace each containment relationship with a foreign-key 

relationship. (5) Replace each attribute that references another 

relation with a foreign-key relationship. 

In Figure 1, rule (1) translates the Item array into a PartsArray 

table with From and To attributes that reference Supplier and 

Item. Rule (2) translates the inheritance relationship between 

Supplier and Company into a SameAs reference from Supplier 

to Company. Rule (3) translates Company and Supplier from 

classes to relations, and adds a primary key to each. Rule (4) isn‘t 

used in this example. Rule (5) converts SameAs and From into 

foreign keys that reference the primary keys of Company and 

Supplier, respectively. Because no primary key exists for Item, 

rule (5) translates To into the attributes of Item. 

x y1

y2

…

yn

Parts

Supplier Item

x z1

z2

…

zn

From

Parts_Array

y1

y2

…

yn

To

ItemSupplier  

Figure 2: Transformation from an array to a join table. 

The first transformation is displayed in Figure 2. Each array is 

replaced by a join table with two columns. The first column 

(From) references the instance containing the array. The second 

(To) references the values stored in the array. 

This schema-level transformation has associated instance-level 

transformations that are used to generate forward- and reverse-

views. Note that the Parts attribute has been mapped to the join-

relation PartsArray. 

Forward-view: For each Supplier x and related Item y, 

the first line generates a tuple z using a Skolem function f. 

The second and third lines populate the tuple using x and y. 

PartsArray(z=f(x,y)) :- Parts(x,y) 

From(z,x) :- Parts(x,y)  

To(z,y) :- Parts(x,y) 

Reverse-view: In this simple example, the reverse-view 

simply inverts the forward view: 

Parts(x,y) :- From(z,x), To(z,y) 

Composing the forward- and reverse-views maps Parts(x,y) to 

itself. Thus, the mapping does not lose information. The same 

holds for the other transformations. So running them in sequence 

also avoids losing information.  

These five transformations are executed and the result is exported 

as a DDL statement, as shown in the right side of Figure 1. Note 

that all of the elements defined in the CLR namespace appear in 

the SQL schema except the Item structure. Instances of this 

structure can be generated by projecting ISBN and Cost from the 

PartsArray relation. 

3. BACKGROUND 
Before we can define transformation rules, we need to describe 

the super-metamodel in which they are expressed. The super-

metamodel we use in this paper supports many of the constructs 

present in popular metamodels, enough to illustrate our tech-

niques. It is not intended to be complete, i.e. capture all of the 

features of rich metamodels such as XSD or SQL with complex 

constraints and triggers. First, we formally define our metamodel 

constructs. We then provide a relational schema for them. 

We assume the existence of a finite set of lexical values L, a 

countably infinite set of object instances ID, and a countably 

infinite set of attributes F. These sets are disjoint. 

3.1 Super-Metamodel 
A data instance D is a triple of the form <DL, DID, DA> where 

DL L, DID  ID and DA is a set of triples of the form <xDID, 

aF, yDID  DL>. A data instance can be interpreted as an edge-

labeled graph whose nodes are lexical values or object instances 

and each edge links an object instance to a lexical or object 

instance. A data element is any component of a data instance such 

as a lexical, object value, labeled edge, or collection of values. 

A model is a (possibly infinite) set of data instances. E.g., a model 

can be a CLR type definition or SQL schema. A metamodel is a 

(possibly infinite) set of models (e.g., CLR or SQL themselves). 

The super-metamodel is the set of all models that can be 

expressed as a triple of the form <T, A, C> in which T is a set of 

types, A is a set of attributes and C is a set of constraints. A valid 

instance of such a model is a function I that relates each element 

of TA to a set of data elements, subject to the constraints in C. 

The lexical types partition L into discrete domains; these lexical 

types are shared by all models (and metamodels). A complex type 

T defines a new set of instances: I(T) is a finite subset of ID. We 

also allow collection types, which are declared with respect to 

some base type. For a given collection C(T), I(C) is a finite set of 

collections of T. For example, List(int) is a finite set of (ordered) 

lists of integers. The super-metamodel in this paper includes list 

and set collections. 

There is a special NULL value that is an instance of every type 

(i.e., TT, NULLI(T)). For collection types, NULL represents an 

empty collection. Otherwise, NULL represents an empty instance 

(of an abstract type) or an empty value (for lexical types). This 

representation is in keeping with SQL and CLR, both of which 

support explicit NULL values. 
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Types are connected via attributes. An attribute FF is a total 

mapping from a complex type D to type R . It is defined formally 

by I(F)  (P1I(R)–NULL)  (P2NULL), such that 

a) P1P2 = I(D) 

b) P1P2 =  

c) NULLP2 
These conditions ensure that I(D) is partitioned into instances P1 

that map to non-null values and instances P2 that map to NULL 

(and only NULL). Condition (a) ensures that the mapping is total, 

and (c) maps NULL to NULL. Note that the domain of I(F) is I(D), 

and the range, a subset of I(R). 

Cardinality constraints can be placed on an attribute. If the 

minimum cardinality of an attribute is One, then P2={NULL}. If the 

maximum cardinality is One, then F is a (total) function. When the 

minimum and maximum cardinalities are both One, F is a total 

function in the more traditional sense—every non-null element of 

I(D) is mapped to a single non-null element of I(R). 

The super-metamodel supports additional constraints, such as 

inclusions and keys. The simplest inclusion is a generalization 

that relates one abstract type to a set of abstract types (called the 

specialization): G(X, S) indicates that type X is more general than 

the types of S. This introduces a new restriction on the valid 

instances of a model: SS, I(S)  I(X). 

A key defined on T identifies a set of attributes whose values 

uniquely identify an instance of T. K(T, A) indicates that values of 

the attributes in A uniquely identify instances of type T. The inter-

pretation of a key is straightforward when all elements of A have a 

maximum cardinality of One. More formally, we say t1 and t2 

agree on A if (v)(<t1,v>I(A)  <t2,v>I(A)). The key constraint 

K(T, A) says that if t1 and t2 agree on every A A, then t1=t2. 

Since some metamodels distinguish between abstract and struc-

tured types, we preserve this distinction in the super-metamodel. 

We assume that the set of all attributes of each structured type 

constitutes a key (although this violates the SQL metamodel). 

Finally, an inclusion dependency imposes a restriction on a set of 

attributes: Inc(T,K,B) indicates that type T references the 

attributes of key K, using a partial function B to relate attributes of 

T to key attributes of K. Its semantics is that the values of the 

attributes of T are a subset of the values of the attributes of K. 

Note that a relation is not modeled as a cross-product of types. 

Instead, a relation is a structured type, and therefore a complex 

type, whose instances are tuples. Attributes are used to relate the 

tuple object to its corresponding values. This allows us to trans-

form abstract types into structured types (and vice versa). In this 

framework, NULL is a tuple whose attribute values are all NULL.  

3.2 Relational Schema 
The previous section presented a super-metamodel that has fea-

tures common to many popular metamodels, summarized in 

Table 2. A relational schema for this super-metamodel is in 

Figure 3. In this schema, each model element is uniquely 

identified via an object identifier, and by convention, the first 

attribute of each predicate is an object identifier. The types in the 

super-metamodel are organized into a hierarchy. A collection type 

is either a list or set, and a simple type is either a collection or a 

lexical type. A complex type is either an abstract or structured 

type.  

 

 

4. TRANSFORMATIONS 
Using the Atzeni-Torlone approach, an implementation of Model-

Gen has four basic steps: (1) import the source model, (2) 

manually or automatically generate a valid transformation plan 

Table 1: Relationships among common metamodels 

Construct SQL EER Java XSD 

Lexical Type int, 

varchar 

scalar int, 

string 

integer, 

string 

Structured Type tuple   element 

Abstract Type  entity type class complex type 

List Type   array list 

Set Type table    

Attribute column attribute, 

relationship 

field attribute 

Containment    nesting 

 

Simple types include lexicals and collections: 

    LexicalType(TypeID, TypeName) 

    ListType(TypeID, TypeName, BaseType) 

    SetType(TypeID, TypeName, BaseType)     

Complex types can be structured or abstract: 

    StructuredType(TypeID, TypeName) 

    AbstractType(TypeID, TypeName) 

Complex types have attributes and can be nested: 

  Attribute(AttrID, AttrName, Domain, Range, MinCard, MaxCard) 

  Containment(ConID, AttrName, Parent, Child, MinCard, MaxCard) 

• Domain/Parent must be a complex type. 

• Range/Child can be any type. 

• Min/MaxCard are Zero, One or N and apply to the range/child. 

A key indicates a set of attributes that identify a complex object: 

   KeyConstraint(KeyID, TypeID, IsPrimary) 

• TypeID references the type for which this is a key. 

• Primary indicates if this is the primary key for the type. 

   KeyAttribute(KeyAttrID, KeyID, AttrID) 

• KeyID references the key for which this is an attribute. 

• AttrID references an attribute of the associated type. 

An inclusion dependency establishes a subset relationship: 

   InclusionDependency(IncID, TypeID, KeyID) 

• TypeID references the type for which this dependency holds. 

• KeyID references the associated key. 

   InclusionAttribute(IncAttrID, IncID, AttrID, KeyAttrID) 

• IncID references the inclusion for which this is an attribute. 

• AttrID references an attribute of the associated type. 

• KeyAttrID: references a key attribute of the associated key.  

Generalization is used to extend a type or construct a union: 

   Generalization(GenID, TypeID, IsDisjoint, IsTotal) 

A type can serve as the parent for multiple generalizations. 

Disjoint and Total describe the generalization. 

   Specialization(SpecID, GenID, TypeID) 

• GenID references the parent generalization. 

• TypeID references the associated specialized type. 

Figure 3: Relational schema for super-metamodel 
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which consists of a sequence of transformations (3) execute the 

transformations in the plan, and (4) export the result. Step 1 is 

trivial; it is just a 1:1 translation of the input model into super-

metamodel constructs. All of the remaining steps revolve around 

the transformations, which is also where most of our innovations 

lie. So we discuss them now, in this section and the next. We 

explain step (2), automatic generation of a transformation plan, in 

Section 7. We discuss step (4) in Section 8 on Implementation. 

4.1 Defining a Transformation 
Each step of a transformation plan is a transformation that 

removes certain constructs from the model and generates other 

constructs. The transformation is expressed as a set of Datalog 

rules. Thus, constructs are expressed as predicates, each of which 

is a super-metamodel construct in Figure 3. For example, the 

following is a simplified version of the rule that replaces an 

abstract type, such as a class definition, by a structured type, such 

as relation definition: 

StructuredType(newAS(id), name) :- AbstractType(id, name) 

The Skolem function newAS(id) generates a new TypeID for the 

structured type definition based on the abstract type‘s TypeID. All 

Skolem functions names are prefixed by new to aid readability. 

A transformation is a triple of the form <D, F, R> where D is a set 

of rules that expresses a model transformation, F is a forward 

view that expresses the target model as a view over the source, 

and R is a reverse view that expresses the source as a view over 

the target. 

Datalog is verbose when many rules have the same body. To 

avoid this, we introduce a condensed format for expressing rules 

in D. Each rule is of the form ―<body>  <head>‖. Unlike 

normal Datalog, we allow the head to contain multiple terms. A 

rule in D with body b and n terms in the head is equivalent to a 

Datalog program with n rules, each of which has one term in the 

head implied by b. For example, A(x,y)  B(x), C(f(y)) is equiva-

lent to the Datalog program B(x) :- A(x,y) and C(f(y)) :- A(x,y). 

Some of the rules in each model transformation D also populate a 

binary predicate Map, whose transitive closure identifies all of the 

elements derived from a given source element. For example, 

adding Map to the rule that replaces an abstract type by a 

structured type, we get: 

AbstractType(id, name) 

                StructuredType(newAS(id), name), Map(id, newAS(id)) 

Map(id, newAS(id)) says that the element identified by id is mapped 

to a new element identified by newAS(id).  

After executing all of the transformations, we can extract from the 

transitive closure of Map those tuples that relate source elements 

to target elements. Tools that display the source and target models 

can use this mapping to offer various user-oriented features, such 

as the ability to navigate back and forth between corresponding 

elements or to copy annotations such as layout hints or comments. 

Datalog rules add tuples to the head predicates but never delete 

them. Since we need to delete tuples that correspond to constructs 

being replaced in a model, we use a unary predicate Delete that 

identifies elements to delete. After all the rules of a transformation 

are executed, a non-Datalog post-processing step deletes the ele-

ments identified in the Delete predicate. For example, in the rule 

that replaces an abstract type by a structured type, the predicate 

Delete removes the abstract type that is being replaced, as follows: 

   AbstractType(id, name) 

        StructuredType(newAS(id), name), Map(id, newAS(id)), Delete(id) 

The rules in a model transformation D are schema-level mappings. 

Forward- and reverse-views are instance-level mappings. The 

predicates and variables in a view are variables in the rules of D. 

For example, a simplified version of the forward-view for replac-

ing an abstract type by a structured type is ―id(x)  newAS[id](x)”. 

This rule says that if x is an object of the abstract type identified 

by id, then it is also a tuple of the structured type identified by 

newAS[id]. To generate such views in Datalog, we can define 

predicates that create their components, such as the following: 

ViewHead(newRule(newAS(id)), newPredicate(id, "x")) 

ViewBody(newRule(newAS(id)), newPredicate(newAS(id), "x")) 

We can then conjoin these to the head of the rule that replaces an 

abstract type by a structured type. 

Since views are expressed using predicates of a non-standard 

metamodel, namely our super-metamodel, we need to define their 

semantics. To do this, we represent the model before and after a 

transformation as a model graph. Its nodes correspond to simple 

and complex types. Its edges correspond to attributes. For 

example, in Figure 4, R is a structured type with attributes a and 

b. The value of b is a structured type S with attributes c and d; 

attributes a, c, and d have lexical type.  

 
Figure 4 A Model Graph 

An instance of a model graph is an instance graph, which is 

comprised of a set of values for each node and a set of value pairs 

for each edge. A view is a formula that defines how to populate 

the nodes and edges of one instance graph from those of another.  

A transformation is correct if the forward-view converts every 

instance Is of the source model into a valid instance It of the 

target model, and the reverse-view converts It back into Is 

without loss of information. That is, the composition of the 

forward- and reverse-views is the identity. We do not require the 

conversethere may be instances of the target model that cannot 

be converted into instances of the source model. Note that this 

definition of correctness is more stringent than the one in [20], 

which only requires that the forward view generate a valid 

instance of the target model. 

Sections 4.2-4.5 define the transformations that are needed to 

convert from CLR to SQL. For each transformation, we give its 

model transformation and its forward-/reverse-views. We write 

the views as instance transformations and omit the verbose Data-

log predicates that would generate them. Since the forward- and 

reverse-views for the first three transformations are inverses of 

each other, correctness is immediately apparent. We give a de-

tailed correctness argument for the transformation of Section 4.5.  

c 

R 

S 
 int 

a 

d 

 int  int 

b 
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4.2 Convert Abstract to Structured Type 
This transformation replaces each abstract type with a structured 

type. To preserve object identity, a new oid attribute is added to 

the structured type, unless the abstract type already included a 

primary key. The model transformation rules are as follows: 

    AbstractType(id, name) 

        StructuredType(newAS(id), name), Map(id, newAS(id)), Delete(id) 

    AbstractType(id, name), ¬KeyConstraint(_, id, “True”) 

        Attribute(newOID(id), “oid”, newAS(id), “Int”, “1”, “1”),  

            KeyConstraint(NewASKey(id), NewAS(id), “True”), 

            KeyAttribute(NewASKeyAttr(id), NewASKey(id), NewOID(id)) 

To avoid generating useless unique variables, we use an under-

score in a slot for an existential variable that appears only once in 

the rule. Our use of negated predicates, such as ¬KeyConstraint 

above, is done carefully to ensure that stratification is possible. 

The forward view is: id(x)  newAS[id](x), newOID[id](x, newID(x)). 

The last predicate says that newOID[id] is an attribute whose value 

for the tuple x is newID(x). 

The reverse view is: newAS[id](x)  id(x). Notice that we do not 

need to map back the new oid attribute of the structured type, 

since it is not needed for information preservation of the source 

abstract type. It is immediately apparent that the forward- and 

reverse-views are inverses of each other and hence are correct.  

4.3 Replace Multi-value Attr. by Join Table 
This transformation replaces each attribute with a maximum 

cardinality of N by a join table containing two attributes: From 

and To. An example application of this rule appeared in Figure 2. 

The model transformation rule is as follows: 

     Attribute(id, name, d, r, min, “N”) 

            StructuredType(newJT(id), name), 

                Attribute(newJTFrom(id), “From”, newJT(id), d, “1”, “1”), 

                Attribute(newJTTo(id), “To”, newJT(id), r, min, “1”), 

               Map(id, newJT(id)), Delete(id) 

The forward view is: 

   id(x,y)  newJT[id] (newTuple(x,y)), newJTFrom[id] (newTuple(x,y),x), 

                                     newJTTo[id] (newTuple(x,y),y) 

The reverse view is: newJTFrom[id](z,x), newJTTo[id] (z,y)  id(x,y) 

It is immediately apparent that the forward- and reverse-views are 

inverses of each other and hence are correct.  

4.4 Remove Containment 
This transformation replaces a containment relationship between a 

parent type and child by an attribute in the child that refers to its 

parent. This attribute is added to any existing keys defined on the 

child. Moreover, if the parent can only contain a single child, the 

new attribute constitutes a key. The model transformation rules 

are as follows: 

   Containment(id, name, parent, child, min, max) 

           Attribute(newCA(id), “Parent”, parent, child, “One”, “One”),  

               Map(id, newCA(id)), Delete(id) 

   Containment(id, name, parent, child, min, max), 

   KeyConstraint(key, child, _, schema) 

            KeyAttribute(newCAKeyAttr(id), key, newCA(id)) 

   Containment(id, name, parent, child, min, “One”)  

            KeyConstraint(newCAKey(id), child, “False”), 

                KeyAttribute(newCAK2(id), newCAKey(id), newCA(id)) 

The forward view is:   id(x,y)  newCA[id](y,x) 

The reverse view is:    newCA[id](x,y)  id(y,x) 

Like the previous two rules, the forward- and reverse-views are 

inverses of each other and hence are correct.  

4.5 Remove Structured Attribute 
This transformation replaces an attribute a that references a 

structured type S all of whose attributes are lexicals. It replaces a 

by lexical attributes that uniquely identify a tuple of S. If S has a 

primary key, then a is replaced by the key attributes of S and there 

is an inclusion dependency from the new attributes to that key. 

Otherwise, a is replaced by all of S‘s attributes. The transforma-

tion is applied iteratively to eliminate nested structured types.  

For example, consider three structured types: R, S and T (see 

Figure 5). R references S using attribute a and has primary key k 

(an Int). S has no primary key, but it has two attributes b (an Int) 

and c (which references T). T has a primary key attribute d (an 

Int). Applying the transformation to S.c replaces that attribute by 

S.d and adds an inclusion dependency from S.d to T.d. Now all 

attributes of S are lexicals. So we can apply the transformation 

again to replace R.a by R.b and R.d. 

 

Figure 5 Removing two structured attributes 

The model transformation rules are as follows: 

  StructuredType(domain, name), Attribute(id, _, domain, range, _, “One”), 

    LexicalType(range, _) 

           MixedStructuredType(domain, name) 

  Attribute(id, name, domain, range1, min1, “One”), 

  StructuredType(range1, name),  MixedStructuredType(range1, name), 

  Attribute(attr, _, range1, range2, min2, “One”), Min(min1, min2, min) 

         Attribute(newSA(id, attr), newName(name1, name2), domain,  

             range2, min, “One”) , Map(id, newSA(id, attr)), Delete(id) 

   Attribute(id, _, _, range, _, “One), KeyAttribute(keyAttr, key, id), 

   StructuredType(range, _) 

          KeyAttribute(newSAKeyAttr(keyAttr, attr), key, newSA(id, attr)), 

              Map(keyAttr, newSAKeyAttr(keyAttr, attr)) 

For each id and attri that satisfy the second model transformation 

rule, there is a forward view: 

     id[x, z], attri[z, y]  newSA(id, attri)[x, y]  

In the following reverse view, either attr1 … attrk are the attributes 

in the key of structured type range1, or range1 has no key and k 

attributes in total: 

      newSA(id, attr1)[x, t1], attr1(s, t1), ..., newSA(id, attrk)[x, tk], attrk(s, tk) 

             attr[x, s] 

a 

b 

R 

S 

 int 

  int 

k 

d 
T 

c 

 int 

b 

R 

S 

 int 

 int 

k 

d 
T 

 int 

b 

d 
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To explain the above view definitions and argue their correctness, 

we simplify the notation by replacing the terms id, attri, and 

newSA(id, attri) in the view definitions by the symbols a, bi, and abi, 

yielding the following (see Figure 6): 

a(r,s), bi(s,t)  abi(r,t)    // forward views 

ab1(r, t1), b1(s, t1), ... abk(r, tk), bk(s, tk)  a(r,s) // reverse view 

 

Figure 6 Model graphs before and after applying the 

transformation that removes a structured attribute 

As shown in Figure 6, the structure S has n attributes, k of which 

are key attributes (if there is a key). The attribute R.a that refers to 

the structure S is replaced by new attributes that correspond one-

to-one with the attributes of the S. To show that the forward- and 

reverse-views are correct, we need to show that their composition 

is the identity. We form the composition by substituting the 

forward view for each abi in the reverse view, yielding: 

     a(r,s1), b1(s1, t1), b1(s, t1), ..., a(r,sk), bk(sk, tk), bk(s, tk)  a(r,s) 

a is a function, so s1 = s2 = … = sk. Replacing the si‘s by s1 we get: 

     a(r,s1), b1(s1, t1), b1(s, t1), ..., a(r,s1), bk(s1, tk), bk(s, tk)  a(r,s) 

Since b1, … bk is either a key or comprises all the attributes of s, 

we have s = s1. Replacing the s1‘s by s we get: 

     a(r,s), b1(s, t1), ..., bk(s, tk)  a(r,s) 

Since there must exist values for t1, ..., tk in s, the above rule 

reduces to a(r,s) :- a(r,s), which is the identity.  

The above argument glosses over one annoying corner case: If 

nulls are allowed, the transformation does not distinguish between 

R.a being a null pointer or being a non-null pointer that points to a 

structure containing all nulls. One can fix this by having the trans-

formation add a Boolean attribute to R to distinguish these cases. 

4.6 Additional Transformations 
The transformations presented in this paper are sufficient for 

transforming from CLR to SQL. We have additional transforma-

tions to address more target metamodels. Due to space limitations, 

we provide a brief summary of some of them. 

Convert structured types to abstract types. This transformation is 

the inverse of the one presented in Section 4.2. 

Replace an attribute with maximum cardinality N by a new 

attribute with maximum cardinality of One. If the range of the old 

attribute was T, the range of the new attribute is a set of T. The 

difference between the old and new attributes is evident when the 

attribute participates in a key constraint. A multi-valued attribute 

provides multiple key values (i.e., each value is unique); a set-

valued attribute provides a single key value. 

Replace a list of T with a set of indexed structures. The new 

structured type has two attributes, Index and Value. The range of 

the former is Integer, and the latter, T. 

Stratify sets. This transformation takes a set of sets and converts it 

into a set of indexed structures (as in the preceding rule). This 

transformation is needed to support the nested relational model. 

Add an attribute to an otherwise empty complex type. This new 

attribute has minimum and maximum cardinality of Zero. 

Remove multiple-containment. Whenever type T is contained in 

multiple parent types, this transformation creates a new specializa-

tion of T. Each old containment relationship is transformed into a 

new containment relationship that references exactly one of the 

new specializations of T. For example, if type A is contained in 

both B and C, this transformation creates types B-A and C-A, which 

are contained in B and C, respectively. 

4.7 Composing Transformations 
A transformation plan is a sequence of n transformations. The first 

transformation takes the initial model m0 as input and the last 

transformation produces the final model mn as output. Our goal is 

to generate a forward view VF that defines mn as a function of m0 

and a reverse view VR that defines m0 as a function of mn. Given 

the forward- and reverse-views, this can be done incrementally. 

The initial transformation from m0 to m1 defines the initial views 

VF and VR. Suppose we have forward- and reverse-views VF and 

VR for the first i-1 transformations. For the ith transformation, its 

forward view vf and reverse view vr are composed with VF and VR, 

i.e., VF  vf and VR  vr, using ordinary view unfolding, thereby 

generating VF and VR. 

5. INHERITANCE MAPPINGS 
The transformations in the last section assumed that every viola-

tion of the target metamodel is resolved using the same transfor-

mations. We now consider a more general strategy for mapping 

inheritance hierarchies of abstract types into structured types that 

allows the user to customize the mapping. Since this is the 

familiar object-to-relational mapping problem, we use the terms 

class and relation instead of abstract type and structured type. 

For a given hierarchy, let C be the set of all classes in the (source) 

hierarchy and let R be the set of target relations. The predicate 

c(x) indicates that x is a direct instance of cC. Similarly, r(x) 

indicates that x is a tuple of rR. 

5.1 Mapping Matrices 
A mapping matrix M describes how the attributes of classes are 

mapped to attributes of relations. The mapping matrix contains 

one column for each concrete cC and one row for each rR. 

Each cell M[r, c] of the mapping matrix indicates which attributes 

of c appear in r. For example, to map a class‘s direct and inherited 

attributes to one table (a.k.a., horizontal partitioning), all of the 

attributes of c appear in a single cell of M. To flatten a hierarchy, 

R contains a single relation, so M has just one row.  

For example, consider a simple 

inheritance structure with four 

classes: A is an abstract class (i.e., it 

does not appear in the mapping 

matrix) with two attributes: a1 and 

primary key id. B is a subclass of A 

with additional attribute a2. Finally, 

C is a subclass of A with additional attribute a3 and D is a 
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subclass of C with attribute a4. We map these classes into three 

relations, R, S and T as shown in the top half of Table 2. 

Table 2: A Sample Mapping Matrix 

 B C D 

R id,a1 id,a1 id,a3 

S id,a2  id,a1 

T  id,a3 id,a4 

    
rel {R,S} {R,T} {R,S,T} 

attr* id,a1,a2 id,a1,a3 id,a1,a3,a4 

5.2 Generating View Definitions 
To explain the construction of view definitions from M, we need 

some additional notation: PK(c) returns the primary key of c, 

attr*(c) returns the direct and indirect attributes of c, rel(c) returns 

the relations used to store instances of c (the non-empty cells of 

column c), and r.a refers to attribute a of relation r. Flagged is the 

set of all relations that contain a flag attribute, the values of which 

are type identifiers. The type identifier of c is TypeID(c). 

The forward-view for this transformation can be directly inferred 

from M. For each attribute a in a cell M[r, c] the forward-view is: 

c(x), a(x,y)  r(x), r.a(x,y). The reverse-view is more complex 

and is based on the following constraints on M. 

a) 
Rr

cattrcrM


 )(*],[
 

b) r  rel(c)  PK(c)  M[r,c] 

c) rel(c1) = rel(c2)  c1 = c2  rel(c1)  Flagged 

Constraint (a) says that every attribute of c must appear in some 

relation. Constraint (b) guarantees that an instance of c stored in 

multiple relations can be reconstructed using its primary key, 

which we assume can be used to uniquely identify instances. 

Constraint (c) says that if two distinct classes have the same rel(c) 

value, then each of them is distinguished by a type id in Flagged. 

To test these constraints in our example, consider the last two 

rows of Table 2. Constraint (a) holds since every attribute in the 

bottom row appears in the corresponding column of M. Constraint 

(b) holds because id appears in every non-empty cell. Constraint 

(c) holds because no two classes have the same signature. 

Constraint (c) guarantees that the mapping is invertible, so there 

exists a correct reverse-view for the mapping. There are two cases: 

For a given cC, either there is another class c with rel(c) = 

rel(c), or not. If so, then r(rel(c)Flagged), so we can use 

r.flag to identify instances of c: r(x), flag(x, TypeID(c))  c(x).  

Otherwise, rel(c) is unique, so the instances of c are those that are 

in all rel(c) relations and in no other relation, that is: 

c(x)r(x)r(x) 
 rel(c)rcrelr )(

.  

In relational algebra, this is the join of all rrel(c) composed with 

the anti-semijoin of rrel(c). In both cases, the reverse view is an 

inverse of the forward view provided that the class has an attrib-

ute. The reverse-view for a given attribute is read directly from the 

mapping matrix. It is simply the union of its appearances in M. 

(cC, rR: aM[c,r] ) r.a(x, y)  c.a(x, y)  

In our example, the forward- and reverse-mappings for B are:   

B(x)  R(x), S(x) 

R(x), S(x), ¬T(x)  B(x) 

5.3 Generating M from Class Annotations 
The mapping table M is very general, but can be hard to populate 

to satisfy the required constraints (a) – (c) above. So instead of 

asking users to populate the mapping table M, we offer them easy-

to-understand class annotations from which M is populated 

automatically. Each class can be annotated by one of three 

strategies: Own, All, or None. Own does vertical partitioning, the 

default strategy: each inherited property is stored in the relation 

associated with the ancestor class that defines it. All yields 

horizontal partitioning: the direct instances of the class are stored 

in one relation, which contains all of its inherited properties. None 

means that no relation is created: the data is stored in the table for 

the parent class. The strategy selection propagates down the 

inheritance hierarchy, unless overridden by another strategy in 

descendant classes. These annotations exploit the flexibility of the 

inheritance mapping tables only partially, but are easy to 

communicate to schema designers. 

Let strategy(c) be the strategy choice for class c. For a given 

annotated schema, the mapping matrix is generated by the 

procedure PopulateMappingMatrix below (for brevity, we focus on 

strategy annotations for classes only, omitting attributes). The root 

classes must be annotated as ⇕ or ⇔. For every root class c, 

PopulateMappingMatrix(c, undefined) should be called. After that, for 

each two equal columns of the matrix (if such exist), the first 

relation from the top of the matrix that has a non-empty cell in 

those columns is added to Flagged. 

procedure PopulateMappingMatrix(c: class, r: target relation) 

if (strategy(c)  {⇕,⇔}) then r = new relation end if 

if (c is concrete) then 

  M[r, c] = M[r, c]  key attributes of c 

  if (strategy(c) = ⇔) then 

    M[r, c] = M[r, c]  declared and inherited attributes of c  

  else  

      placed = attrs = declared and inherited non-key attributes of c 

      for each cell M[r, c] populated by ascendant of c  do 

         M[r, c] = M[r, c]  (M[r, c]  attrs)   

         placed = placed – M[r, c] 
      end for 

      M[r, c] = M[r, c]  (attrs – placed)  

end if 

for each child c of c do  

    PopulateMappingMatrix(c, r) 
end for 

6. INCREMENTAL UPDATING 
Translating a model between metamodels can be an interactive 

process, where the user (e.g., a database designer) incrementally 

revises the source model and/or various mapping options, such as 

the strategy for mapping inheritance. Typically, a user wants to 

immediately view how design choices affect the generated result. 

The system could simply regenerate the target model from the 

revised input. However, this regeneration can be slow, especially 

if the models are being stored in a database. For example, our 

implementation uses a main memory object-oriented database 

system, in which a full regeneration of the target schema can take 

a minute or more. Also, it loses any customization the user per-
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formed on the target, such as changing the layout of a diagram-

matic view of the model or adding comments. We can improve the 

user‘s experience in such scenarios by translating models in a 

stateful fashion: the target model is updated incrementally instead 

of being re-created from scratch by each modification.  

Let m0 be a source model and m1, …, mn be a series of target 

model snapshots obtained by an application of successive trans-

formations (i.e., a transformation plan). Each transformation is a 

function that may add or delete schema elements. Let fi be a func-

tion that returns new elements in mi+1 given the old ones in mi. 

Since fi uses Skolem functions to generate new elements, when-

ever it receives the same elements as input, it produces the same 

outputs. Clearly, invoking a series of such functions f1, …, fn pre-

serves this property. That is, re-running the entire series of trans-

formations on m0 yields precisely the same mn as the previous run, 

as the functions in effect cache all generated schema elements.  

Now suppose the user modifies m0 producing m0. When m0 is 

translated into a target model, the same sequence of transforma-

tions is executed as before. In this way, no new objects in the 

target model are created for the unchanged objects in the source 

model. Previously created objects are re-used; only their 

properties are updated. For example, renaming an attribute in the 

source model causes renaming of some target model elements 

(e.g., attribute or type names); no new target objects are created. 

The mechanism above covers incremental updates to m0. Deletion 

is addressed as follows. Let mn be the schema generated from m0. 

Before applying the transformations to m0, a shallow copy mcopy 

of mn can be created which identifies all of the objects in mn. All 

transformations are re-run on m0 to produce mn. If an element is 

deleted from m0 when creating m0, then some elements previously 

present in mcopy might not appear in mn. These target elements can 

be identified by comparing mcopy to mn. They are marked as 

―deleted‖, but are not physically disposed of. If they appear in mn 

at some later run, the elements are resurrected by removing the 

―deleted‖ marker. Thus, the properties of generated objects are 

preserved upon deletion and resurrection. In our implementation, 

for small changes to the source model, this incremental 

regeneration of the target takes a fraction of a second. 

7. AUTOMATIC PLAN GENERATION 
In this section, we focus on automatic generation of a sequence of 

transformations that comprises the transformation plan which 

removes all constructs not supported by the target metamodel. 

7.1 Metamodel Patterns 
The planning algorithm takes as input source and target meta-

model signatures, SS and TS, which describe the constructs that 

are valid for the source and target metamodels.  SS may include 

less than all valid source metamodel constructs, if an analysis of 

the source model indicates some constructs are not present. 

Each metamodel signature is a set of patterns, each of which is a 

conjunction of predicates. As in transformation rules, the predi-

cates are super-metamodel constructs (see Error! Reference 

source not found.). A signature contains one pattern for every 

modeling construct that is valid for that metamodel. For example, 

the CLR metamodel has five simple patterns, which correspond to 

classes, structs, fields, arrays and lexical types. A more complex 

pattern is needed to indicate that attributes in the relational model 

must reference lexical values: 

RA() :- Attribute(_,_,D,R,_,1), StructuredType(D,_), LexicalType(R,_) 

The planning algorithm needs to know the patterns consumed and 

generated by a transformation, called its input and output signa-

tures. Applying the transformation removes every instance of its 

input pattern and generates instances of its output patterns. 

The input and output patterns for a transformation rule are occa-

sionally parameterized. For example, consider the transformation 

that converts an attribute with multiple values (such as an array) 

into a join table. It replaces input pattern Multi-ValueAttr with new 

parameterized output patterns T1Attr and T2Attr. 

MultiValueAttr() :- Attribute(_,_,T1,T2,_,N) 

T1Attr[ComplexType:T1] :- Attribute(_,_,X,T1,_,1), StructuredType(X) 

T2Attr[Type:T2] :- Attribute(_,_,X,T2,_,1), StructuredType(X) 

Parameterized patterns are needed when the specific patterns that 

are generated by a transformation depend on which patterns have 

already been removed. For example, if we remove all abstract 

types before applying the above transformation, we know that the 

attributes of the join table will not reference abstract types. 

By specifying patterns as conjunctive queries, we can construct a 

pattern hierarchy based on query containment. This hierarchy con-

tains patterns appearing in SS, TS, or a transformation signature 

(not all possible patterns). When a transformation is applied, it 

removes every pattern in its input signature, including any sub-

patterns in the hierarchy. Similarly, it generates every pattern in 

the output signature, including any super-patterns. This observa-

tion is at the heart of the heuristic used by the planning algorithm 

to identify a minimal transformation plan. 

7.2 Planning 
We use an A* search algorithm to identify a series of transforma-

tions that will produce a final model that conforms to the target 

metamodel. The A* algorithm tries to minimize the number of 

intermediate states needed to reach a goal state by using a 

function to estimate the cost of reaching the goal from each state. 

To use A*, we need to define the state space, the goal state, the 

actions that transition between states, and the cost function. 

We define a state to be two sets of patterns: Invalid patterns that 

need to be removed from the model and Valid patterns that are 

allowed by the target metamodel. A* begins at an initial state and 

chooses actions that generate new states, until it reaches the goal 

state. Our goal is to reduce Invalid to the empty set. Thus, we 

need to define how a transformation modifies Invalid. 

When a transformation is applied, it removes the patterns in its 

input signature and introduces the patterns in its output signature. 

It adds every pattern in the output signature to Invalid unless it 

appears in Valid. It might also add sub-patterns to Invalid. For 

example, consider a transformation T that replaces ListType(_,_,T) 

by SetType(X,_), Attribute(_,_,X,int,1,1), Attribute(_, _,X,T,1,1), i.e., 

transforming each list into a set of index/value pairs. When T is 

applied, we need to add Set() :- SetType(X,_) to Invalid, and, if 

there were attributes that referenced the original list, 

SetAttribute():-SetType(X,_), Attribute(_,_,_,X,_,_) as well. 

For each sub-pattern S of pattern P in the output signature, S is 

added to Invalid if every super-pattern of S appears in Present 

= InvalidValid, which indicates that S is supported by the 
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patterns present in the current model. (The number of sub-patterns 

is bounded by the size of the pattern hierarchy.) For example, sup-

pose we 1) remove all multi-value attributes and 2) replace lists 

with sets. Rule 1 eliminates MultiValueAttr() :- Attribute(_,_,_,_,_,N) 

and its sub-patterns. Thus, MultiValueSetAttr() :- Attribute(_,_,_,X,_, 

N), SetType(X) is not in Invalid. Since rule 2 adds Set() to 

Invalid, we need to consider sub-patterns such as MultiValueSet-

Attr and SingleValueSetAttr() :- Attribute(_,_,_,X,_,1), SetType(X). 

The former is not supported by patterns in the model, because 

MultiValueAttr() was removed from Invalid. The latter is 

supported, so it is added to Invalid. 

Each parameterized output signature S must first be instantiated. 

Each parameter of S refers to a predicate Q in the super-meta-

model (e.g., ComplexType) and a variable binding. To instantiate 

S, we first generate Q' = {qQ  qSMM} where SMM is the set 

of all predicates in the super-metamodel (i.e., Q' contains exten-

sional predicates only). We then generate a new output pattern for 

each element of Q' that appears in Present. 

For example, consider T1Attr[ComplexType:T1] from above. If we 

assume that Present contains ComplexType and StructuredType, 

but not AbstractType, then we instantiate T1Attr as: 

Attribute(_,_,X,T1,_,1), StructuredType(X), ComplexType(T1) 

Attribute(_,_,X,T1,_,1), StructuredType(X), StructuredType(T1) 

In this case, we do not need to deal with attributes whose domain 

is AbstractType since they are not supported in the current state. 

Having identified all of the patterns added by the transformation, 

we can now determine which patterns are removed by the trans-

formation. Every pattern P in the input signature is removed from 

Invalid as are its sub-patterns. Super-patterns of P may also 

need to be removed. For example, if we first remove all multi-

value attributes and then remove all single-value attributes that 

reference a set (e.g., by unnesting), we have also removed all 

attributes that reference a set. We assume that all non-leaf patterns 

(excluding predicates in the super-metamodel) are defined to be 

the union of their children. We therefore remove from Invalid 

every pattern P' for which no leaf descendant of P' is in Present. 

This process is summarized below. Invalid is the set of constructs 

(currently used) that must not appear in the target model, and 

Valid is the set of constructs that can appear in the target.  This 

procedure modifies Invalid based on a Transformation‘s input and 

output signatures. In the first line, the let operator introduces an 

alias. In the second line, Instantiate() is a method that instantiates 

every parameterized pattern. 

procedure PatternSearch(Invalid, Valid, Transformation) 

  let Present = Invalid  Valid; 

  for each P  Transformation.OutputSignature.Instantiate() do 

       if PValid then Invalid.Add(P); end if 

       for each S  Descendants(P) do 

           if Parents(S)  {P}  Present and PValid then 

              Invalid.Add(S); end if 

        end for 

  end for 

  for each P  Transformation.InputSignature do 

       Invalid.Remove(P); 

       for each S  Descendants(P) do Invalid.Remove(S); end for 

  end for 

  for each P  Invalid  Patterns do 

       if LeafDescendants(P)= then Invalid.Remove(P); end if 

  end for 

return 
Having established the effect of applying a transformation to a 

state, we can now define a heuristic that estimates the distance 

(number of transformations ) from a given state to the goal state. 

For A* to identify a minimal plan, this heuristic must be admissi-

ble, which means it never over-estimates the distance to the goal. 

We estimate this distance by making several simplifying assump-

tions. First, we assume that every pattern in the input signature 

eliminates all of its sub-patterns and super-patterns. This provides 

an estimate of the number of patterns eliminated by the transfor-

mation. We then estimate the distance to the goal by the minimum 

number of transformations such that the sum of their estimates 

equals or exceeds the number of patterns in Invalid. This heuristic 

is admissible because it assumes that every transformation 

removes as many patterns as possible. Thus, the benefit of each 

transformation is overestimated, so the number of transformations 

needed is underestimated. 

Our planning algorithm is intended to minimize the number of 

transformations in the plan. As a side-effect, no transformation 

appears more than once in a plan because its first appearance can 

be eliminated without affecting the overall correctness of the plan.  

8. IMPLEMENTATION 
A block diagram of our implementation is in Figure 8. It has the 

following components: (1) importers that translate an input model 

into the super-metamodel; (2) exporters that translate a model 

from the super-metamodel into its native syntax, (3) 

transformations, (4) metamodel rules, which are used by (5) the 

transformation plan generator (described in Section 7), and (6) the 

engine that executes transformation plans.  

As others have noted [1][19], importing (or exporting) schemas to 

(or from) the super-metamodel is very straightforward, requiring 

little more than parsing (or generating) syntax and mapping 

between the corresponding names of constructs in the native 

metamodel and the super-metamodel.  
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Figure 8: Architecture Overview 

Generating data manipulation operations from forward- and 

reverse-views can be more challenging, depending on the 

complexity of the transformations and the expressiveness of the 

target language. If views are all expressible as project-select-join 

queries, then it is easy to generate SQL from the view definitions. 

If they have nested structures and union types, then the techniques 

of [26] can be used. In general, we were satisfied to use existing 
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code-generation technology and did not attempt to innovate or do 

much optimization of the generated code. Figure 9 shows an 

example of our code generator‘s output for the reverse-view of the 

Supplier class in the example of Figure 1. 

CREATE VIEW Supplier AS 
 SELECT T1.oid, T1.Name, OJ7.ISBN, OJ7.Cost 
 FROM Company T1 
 INNER JOIN 
  (SELECT T2.oid FROM Supplier T2) OJ4 
  ON T1.oid = OJ4.oid 
 LEFT OUTER JOIN 
  (SELECT T6.oid, T5.ISBN, T5.Cost  
  FROM Item T5, Company T6  
  WHERE T6.oid = T5.Inverse_Supplier_Parts_Supplier_oid) OJ7 
  ON OJ4.oid = OJ7.oid 

Figure 9 A Generated View 

We wanted to use an existing Datalog engine, but were unhappy 

with the functionality and performance of ones that were available 

to us, so we built our own. It has native support for Skolem 

functions, for rules with compound heads (as described in Section 

4), and for user-defined functions. We used the latter to generate 

forward- and reverse-views.  

The size of our implementation is summarized in Table 3. The 

Datalog engine comprises more than half of our implementation. 

This includes the calculus representation, in-memory processing, 

view unfolding, and parser. The main ModelGen routines include 

the rules and plan generator. We ended up coding a few rules in 

C#, because it was easier to write or to understand. E.g., it was 

sufficiently hard to understand the recursion in the Datalog rule to 

remove structured attributes (Section 4.5) that we re-implemented 

it in 100 lines of C#. The logic for mapping inheritance structures 

into relations (Section 5) includes populating the mapping table 

from class annotations and generating reverse-views with negation 

when type flags are not used. The import/export routines include 

120 lines of Datalog; the rest is in C#.  

Our implementation runs inside the integrated development 

environment Microsoft Visual Studio 2005. It uses Visual 

Studio‘s in-memory database system and a prototype graphical 

model editor. The database system enables easier data sharing 

between tools, but it has significant overhead, which is what 

pushed us to develop the techniques of Section 0. Screen shots of 

a source model and generated target model displayed by the 

implementation appear in [5]. 

Table 3 Code Size 

Component Lines of Code 

Super-metamodel representation 500 

Datalog engine 6700 

Main ModelGen routines 1500 

Other imperative code 300 

Mapping inheritance structures 1100 

Import/export for CLR & SQL 800 

SQL generation 900 

 

 

Table 4 Execution Times in Milliseconds 

 M1 M2 M3 M4 

Number of elements 16 145  234 267 

load the model 3 19 31 36 

remove multiple containment 1 70 150 272 

remove containment 2 75 154 279 

Replace multi-valued attrs. 

with join table 

1 3 5 6 

update references to objects 

mapped to new objects 

12 99 147 165 

delete attributes referencing 

dangling types 

7 92 184 193 

add keys (imperative code) < .5 1 1 1 

in-line non-lexical references 

(imperative) 

< .5 1 3 5 

remove inheritance annota-

tion-driven (imperative) 

2 6 17 15 

export the model 6 28 47 47 

TOTAL 50 539 973 1286 

Our implementation is relatively fast. Execution times for 4 

models are shown in  

 

Table 4. These models use a custom ER model, somewhat richer 

than CLR. For example, it permits a class to contain multiple 

classes, requiring us to use our transformation that eliminates 

multiple containment (see Section 4.6). The first row is the 

number of elements in each model. The remaining rows are times, 

measured in milliseconds averaged over 30 runs on a 1.5 GHz 

machine. The largest model, M4, generates 32 relational 

tablesnot a huge model, but the result fills many screens. 

9. RELATED WORK 
The problem of translating data between metamodels goes back to 

the 1970‘s. Early systems required users to specify a schema-

specific mapping between a given source and target schema (e.g., 

EXPRESS [24]). Later, Rosenthal and Reiner described schema 

translation as one use of their database design workbench [22]. 

Like our approach, it is generic, but it is manual (the user selects 

the transformations), its super-metamodel is less expressive (no 

inheritance, attributed relationships, or collections), and mappings 

are not automatically generated. 

Atzeni & Torlone [1] showed how to automatically generate the 

target schema and source-to-target mapping. They introduced the 

idea of a repertoire of transformations over models expressed in a 

super-metamodel, where each transformation replaces one con-

struct by others. They used a super-metamodel based on one pro-

posed by Hull and King in [12]. They represented transformation 

signatures as graphs but transformation semantics was hidden in 

imperative procedures. They did not generate instance-level 

transformations, or even schema-level mappings between source 

and target models, which are main contributions of our work. 
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Two recent projects have extended Atzeni & Torlone‘s work. In 

[19], Papotti & Torlone generate instance translations via three 

data-copy steps: (1) copy the source data into XML, in a format 

that expresses their super-metamodel; (2) use XQuery to reshape 

the XML expressed in the source model into XML expressed in 

the target model; and (3) copy the reshaped data into the target 

system. Like [1], transformations are imperative programs.  In [2], 

Atzeni et al. use a similar 3-step technique: (1) copy the source 

database into their relational data dictionary; (2) reshape the data 

using SQL queries; and (3) copy it to the target. Like our work, 

this project also uses Datalog rules to represent transformations. 

In contrast to the above two approaches, we generate view defini-

tions that directly map the source and target models in both direc-

tions. The views can be used to provide access to the source data 

using the target model, or vice versa, without copying any data at 

all. Or they can be executed as data transfer programs to move the 

data from source-to-target in just one copy step, not three. This is 

more time efficient and avoids the use of a staging area, which is 

twice the size of the database itself to accommodate the second 

step of reshaping the data. Moreover, neither of the above projects 

offer flexible mapping of inheritance hierarchies or incremental 

updating of models, which are major features our solution.  

The notion of horizontal and vertical partitioning of inheritance 

hierarchies is well known [14]. However, as far as we know, no 

published strategies are as flexible as the one we proposed here. 

Hull‘s notion of information capacity [11] is commonly used for 

judging the information preservation of schema transformations. 

In [11] a target schema dominates (i.e., has at least as much 

information capacity as) a source schema if there exists a mapping 

m from instances of the source to instances of the target, and a 

mapping m from instances of the target to instances of the source 

such that m composed with m  is the identity on instances of the 

source. Our forward- and reverse-views are examples of such 

mappings.  

Atzeni & Torlone [1] proposed two algorithms for plan 

generation. One of them assumes that transformations can be 

serialized with respect to dependencies, which is not true in 

general. By contrast, our algorithm can cope with cyclic 

dependencies among transformations. The second algorithm of 

Atzeni & Torlone [1] and the one of Papotti & Torlone [20] are 

both non-deterministic. Therefore, these algorithms either need to 

explore an exponential number of plans or might miss correct and 

desirable plans. Our algorithm uses A* [23]. In the worst-case 

(i.e., a heuristic that consistently returns 0), A* has complexity 

O(n!). However, in practice our heuristic is a good approximation 

and a correct solution is found quickly. Note that if no plan exists 

then the Atzeni & Torlone algorithm is preferable. We optimize 

for the case in which n is moderately large and a plan exists. 

Another rule-based approach was proposed by Bowers & 

Delcambre [5][7]. They focus on the power and convenience of 

their super-metamodel, Uni-Level Descriptions (UDL), which 

they use to define model and instance structures. They suggest 

using Datalog to query the set of stored models and to test the 

conformance of models to constraints.  

Poulovasilis and McBrien [21] introduce a universal metamodel, 

based on a hypergraph. They describe schema transformation 

steps that have associated instance transformations. In [17], they 

use transformations to translate a given schema from one 

metamodel to another. They briefly sketch a generic algorithm to 

translate a relational schema to an ER schema, but not the other 

way around. They do not discuss view generation. Boyd and 

McBrien [8] apply and enrich these transformations for 

ModelGen. Although they do give precise semantics for the 

transformations, they are quite low-level (e.g., add a node, delete 

an edge). They do not explain how to abstract them to a practical 

query language, nor do they describe an implementation. 

Jeusfeld and Johnen [13] describe a different generic technique 

for translating schemas between metamodels. They define an is-a 

hierarchy of metamodels. Given an schema in a source 

metamodel, their rule-based algorithm looks for constructs of the 

target metamodel with a common generalization in their universal 

metamodel. When there are choices, as there often are, the user is 

asked to decide. They apply it to reverse engineering a relational 

schema into an EER model. They do not discuss instance 

transformations. 

In the commercial world, ModelGen is primarily implemented in a 

non-generic way to translate ER models into relational schemas. 

Despite the popularity of the approach, and the big literature on 

ER modeling, we have found surprisingly few papers on 

algorithms to accomplish the translation. The most complete one 

we know if is by Markowitz and Shoshani [15], who present a 

procedure for translating an EER model into a normalized 

relational schema. Their main focus is on preserving constraints 

and on intelligent naming of relational attributes. They show that 

the generated schemas have the same information capacity as the 

input schema, but they do not give algorithms to generate view 

definitions. They show how to merge relations that correspond to 

entity types that are related by inheritance. This is done explicitly, 

relation by relation, not via a table-driven approach like ours. An 

implementation is described in [16]. 

There is a substantial literature on languages for expressing 

schema transformations. These papers do not provide algorithms 

for translating an arbitrary schema in one metamodel into an 

equivalent schema in another metamodel. Rather, they provide 

operators one can use to write a program that translates a schema 

and its data into another schema with corresponding data. We 

close by mentioning a few examples here, and refer the reader to 

those papers for pointers to other related work. 

Barsalou & Gagopadhyay [2] give a language (super-metamodel) 

to express multiple metamodels. They use it to produce query 

schemas and views for heterogeneous database integration. Issues 

of automated schema translation between metamodels and 

generation of inheritance mappings are not covered. 

Miller et al. [18] define schema transformations between schemas 

expressed in their universal metamodel called Schema Intention 

Graphs. Using Hull‘s notion of information capacity they prove 

their transformations preserve information and can be used to 

compare the equivalence of two given schemas. However, they do 

not provide an algorithm to translate a schema of one metamodel 

into that of another. 

Davidson and Kosky [10] define a Horn clause language based on 

a tuple calculus for expressing database transformations and 

constraints. They describe an implementation that can execute 

programs comprised of such transformations and constraints. Like 
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the previous two papers cited, they do not describe generic 

algorithms for schema translations between metamodels. 

Claypool & Rundensteiner [9] describe operators to transform 

schema structures expressed in their graph metamodel. The trans-

formation plan is user-defined, not automatically generated. They 

say that the operators can be used to transform instance data, but 

give no details. Song et al. [25] propose using graph grammars to 

translate models based on a user-defined mapping between the 

models.  

10. CONCLUSION 
In this paper, we described a rule-driven platform that can 

translate a model (e.g. database schema) from a source metamodel 

(e.g., relational, OO, XML) to a target metamodel and can be 

customized to specific metamodels and mapping languages with 

moderate effort. The main innovations are the ability to (i) 

generate provably-correct view definitions between the source and 

target models, (ii) map inheritance hierarchies to flat structures in 

a more flexible way, (iii) incrementally generate changes to the 

target model based on incremental changes to the source model, 

and (iv) generate transformation plans using a new and improved 

algorithm based on A*.  

We implemented the algorithm and proved that it is fast enough 

for interactive editing and generation of models. We embedded it 

in a tool for designing object to relational mappings. Based on 

this experience, we believe that this schema translation 

technology is suitable for commercial deployment.  

11. REFERENCES 
[1] Atzeni, P. and R. Torlone, Management of Multiple Models 

in an Extensible Database Design Tool. EDBT 1996, 79-95. 

[2] Atzeni, P., P. Cappellari and P. Bernstein: ModelGen: Model 

Independent Schema Translation. EDBT 2006. 

[3] Barsalou, T. and D. Gangopadhyay: M(DM): An Open 

Framework for Interoperation of Multimodel Multidatabase 

Systems. ICDE 1992, 218-227 

[4] Bernstein, P.A., Applying Model Management to Classical 

Meta Data Problems. CIDR 2003, pp. 209-220. 

[5] Bernstein, P., S. Melnik, P. Mork: Interactive Schema Trans-

lation with Instance-Level Mappings (demo), VLDB 2005. 

[6] Bowers, S., L.M.L. Delcambre. On Modeling Conformance 

for Flexible Transformation over Data Models, Knowledge 

Transformation for the Semantic Web (at 15th ECAI), 19-26. 

[7] Bowers, S. and L.M.L. Delcambre. The uni-level description: 

A uniform framework for representing information in 

multiple data models. ER 2003, LNCS 2813, pp 45-58. 

[8] Boyd, M. and P. McBrien: Comparing and Transforming 

Between Data Models Via an Intermediate Hypergraph Data 

Model. J. Data Semantics IV: 69-109 (2005) 

[9] Claypool, K.T. and E.A. Rundensteiner. Sangam: A Trans-

formation Modeling Framework. DASFAA 2003: 47-54.  

[10] Davidson, S.B. and A. Kosky: WOL: A Language for Data-

base Transformations and Constraints. ICDE 1997: 55-65 

[11] Hull, R. Relative Information Capacity of Simple Relational 

Database Schemata. SIAM J. Comput. 15(3): 856-886 (1986) 

[12] Hull, R. and R. King. Semantic Database Modeling: Survey, 

applications and research issues. ACM Comp. Surveys 19(3): 

201-260 (1987). 

[13] Jeusfeld, M.A. and U.A. Johnen: An Executable Meta Model 

for Re-Engineering of Database Schemas. Int. J. Cooperative 

Inf. Syst. 4(2-3): 237-258 (1995) 

[14] Keller, A.M., R. Jensen, S. Agrawal. Persistence Software: 

Bridging Object-Oriented Programming and Relational 

Databases. SIGMOD 1993, 523-528 

[15] Markowitz, V.M. and A. Shoshani: Representing Extended 

Entity-Relationship Structures in Relational Databases: A 

Modular Approach. ACM TODS 17(3): 423-464 (1992) 

[16] Markowitz, V.M. and A. Shoshani: An Overview of the 

Lawrence Berkeley Laboratory Extended Entity-Relationship 

Database Tools. ER 1994: 333-350 

[17] McBrien, P., and A. Poulovassilis: A Uniform Approach to 

Inter-model Transformations. CAiSE 1999: 333-348 

[18] Miller, R.J., Y.E. Ioannidis, R. Ramakrishnan: Schema 

equivalence in heterogeneous systems: bridging theory and 

practice. Inf. Syst. 19(1): 3-31 (1994) 

[19] Papotti, P. and R. Torlone: An Approach to Heterogeneous 

Data Translation based on XML Conversion. CAiSE 

Workshops (1) 2004: 7-19 

[20] Papotti, P., R. Torlone. Heterogeneous Data Translation 

Through XML Conversion. J. of Web Eng 4,3: 189-204 

(2005) 

[21] Poulovassilis, A. and P. McBrien: A General Formal 

Framework for Schema Transformation. Data Knowl. Eng. 

28(1): 47-71 (1998) 

[22] Rosenthal, A. and D. Reiner: Tools and Transformations - 

Rigorous and Otherwise - for Practical Database Design. 

ACM TODS 19(2): 167-211 (1994) 

[23] Russell, S. and P. Norvig, Artificial Intelligence: A Modern 

Approach, Prentice-Hall, 2003. 

[24] Shu, N.C., B. Housel, R. Taylor, S. Ghosh, V. Lum: 

EXPRESS: A Data EXtraction, Processing, and 

REStructuring System. ACM TODS 2(2): 134-174(1977) 

[25] Song, G., K. Zhang, and R.Wong. Model management 

though graph transformations. IEEE Symp. on Visual 

Languages and Human Centric Computing, pp. 75-82, 2004 

[26] Velegrakis, Y., Managing Schema Mappings in Highly 

Heterogeneous Environments, Ph.D. thesis, Univ. of 

Toronto, 2005.

 


