
 1

Translating Schemas and Data between Metamodels
Peter Mork

The MITRE Corporation
7515 Colshire Dr

McLean, VA 22102, USA

pmork@mitre.org

Philip A. Bernstein

Microsoft Research
1 Microsoft Way

Redmond, WA 98052, USA

philbe@microsoft.com

Sergey Melnik

Microsoft Research
1 Microsoft Way

Redmond, WA 98052, USA

melnik@microsoft.com

ABSTRACT

ModelGen is an operator that automatically translates a source

model expressed in a source metamodel into an equivalent target

model expressed in a different metamodel. For example, given an

XML schema, ModelGen can automatically generate an equiva-

lent relational schema or Java interface. This paper describes a

new algorithm for ModelGen with several novel properties. It

automatically determines a series of transformations to generate

the target model. It generates forward- and reverse-views that

transform instances of the source model into instances of the

target and back again. It supports rich mappings of inheritance

hierarchies to flat relations. And it supports incremental modifica-

tion of a source-to-target mapping. We prove its correctness and

demonstrate its practicality in an implementation.

1. INTRODUCTION
In this paper, we address the problem of automatically translating

a model expressed in one formalism into an equivalent model

expressed in another formalism. For example, a database architect

may develop an entity-relationship (ER) diagram, from which a

relational schema must be designed. Similarly, the architect needs

to provide application developers with interface definitions ex-

pressed in an object-oriented (OO) programming language, such

as Java or C#. Finally, the architect may want to generate a

schema from these interface definitions to support data exchange

expressed as an XML Schema Definition (XSD).

In many schema translation tasks, producing the schema in the

target formalism is only one half of the job. The other half is

producing a mapping that describes how the source schema

constructs relate to the target constructs and specifies how to

translate data between the source and target representation. For

example, an XSD schema produced for data exchange needs to be

instantiated by serializing an object graph. Similarly, in object-to-

relational schema translation, data transformations are required to

shred objects into relations and reassemble them.

Feedback we have received from product developers suggests that

generating correct data transformations is one of the most

challenging issues in schema translation. For example, in object-

to-relational schema translation, there exist a variety of strategies

for translating each object-oriented construct, such as inheritance,

associations, complex types, or nested collections. Combinations

of these strategies yield a huge space of scenarios. Producing data

transformations for this space of scenarios is difficult and error-

prone. A particularly hard issue is supporting flexible inheritance

strategies since minor changes in inheritance translation may have

a disruptive effect on the generated data transformations.

In the model-management framework [4], schema translation is

encapsulated in the operator ModelGen. It automatically translates

a source model expressed in a source metamodel into an

equivalent target model expressed in a different metamodel. We

use the terms model and metamodel instead of schema and data

model for consistency with the metadata field and for clarity. A

model can be a database schema, interface definition, or object

model. The latter two are not normally called ‗schemas.‘

Similarly, the phrase ‗data model‘ is a uniquely database term.

‗Metamodel‘ is more neutral and makes clearer its relationship to

models, which are instances of a metamodel.

ModelGen is a generic operator, in the sense that it can work with

a range of source and target metamodels, such as ER, SQL, OO

interfaces, XSD, RDFS, or types supported by the .NET Common

Language Runtime (CLR). Implementing ModelGen in a com-

pletely generic fashion seems out of reach due to the myriad

semantic details of each metamodel and data transformation lan-

guage. Instead, we developed an extensible, rule-driven core that

can be customized to specific model-translation tasks with moder-

ate effort. As a proof of concept, we customized our generic

ModelGen implementation to build an object-to-relational schema

translation tool. The tool is integrated with a high-quality user

interface that runs inside Microsoft Visual Studio 2005 and

produces provably correct mappings. We demonstrated the tool in

[5]. This paper reports on the techniques we used to build and

customize ModelGen.

Our basic strategy follows the approach of Atzeni and Torlone in

[1]. Using this approach, we define a universal metamodel, called

the super-metamodel, which has all of the main modeling

constructs found in popular metamodels. In this respect, it is the

union of its component metamodels. To support a new

metamodel, new constructs can be added to it.

The super-metamodel is used to define transformations generical-

ly. For example, the concepts of Entity in the ER metamodel and

Class in an OO metamodel correspond to a single construct in the

super-metamodel, called an Abstract. The concepts of Tuple in

SQL and Struct in an OO metamodel correspond to the super-

metamodel construct Structure. Therefore, a transformation from

Abstract to Structure can be used to translate either an entity or

class into a tuple or struct. Thus, many fewer transformations are

required than if we must specify transformations for each [source

metamodel, target metamodel] pair.

In the Atzeni and Torlone approach, translation proceeds in three

steps: (1) transform the source model into an instance of the

super-metamodel; (2) identify and then execute a series of trans-

formations that eliminates from the source model all modeling

 2

constructs absent in the target metamodel; (3) transform this inter-

mediate model into the target metamodel.

Our first contribution is the generation of instance-level transfor-

mations between the source schema and generated target schema.

While there are solutions that can transform instances of the given

source model into instances of the generated target model (e.g.,

[2],[19],[20]), they require passing the instances through an

intermediate generic representation. This is impractical for large

databases and unnecessary when only view definitions are

required. To avoid this, we augment each transformation rule

applied in step (2) above to generate not only target schema

elements but also elementary forward- and reverse-views in

Datalog that describe how each eliminated construct of the source

model is represented in the target. We prove that these views are

correct, i.e., do not lose information: The composition of the

forward-view and reverse-view is the identity.

The final forward- and reverse-views between the source and tar-

get schemas are obtained by composing the elementary views (via

view unfolding). The correctness of the composition is ensured by

the correctness of the elementary views. The composed views are

expressed in terms of the super-metamodel. They are fed into a

custom component that translates them into the native mapping

language, e.g., SQL or XQuery. In our customized object-to-

relational (OR) tool, the resulting native views are in SQL.

Our second contribution is a rich set of transformations for inheri-

tance mapping. It allows the engineer to decide on the number of

relations used for representing a sub-class hierarchy and to assign

each direct or inherited property of a class independently to any

relation. These transformations allow a per-class choice of inheri-

tance mapping strategy. They subsume all OR inheritance strate-

gies we know of, including horizontal and vertical partitioning

[14], their combinations, and many new strategies. The trans-

formations are driven by a data structure called a mapping matrix.

We developed algorithms for populating mapping matrices from

per-class annotations of the inheritance hierarchy and generating

provably correct elementary views. The complexity of inheritance

mapping is encapsulated in a single transformation rule. Since the

final views are obtained by composition, inheritance mappings do

not interfere with mapping strategies for other OO constructs.

Our third contribution is an extensible plan generator. Each

transformation rule encapsulates a small piece of a complete

transformation. As new modeling features are introduced or new

strategies identified, new rules may be necessary. As a result, the

series of rules executed in the translation step needs to be

modified. We have developed an A* search algorithm that, given

a set of constructs to eliminate and a target metamodel, generates

a transformation plan that (a) eliminates all constructs absent from

the target metamodel, (b) includes no irrelevant transformations,

and (c) minimizes a cost function, such as plan length. The search

algorithm is invoked only once for each [set of transformations,

source metamodel, target metamodel] triple. In addition to

enabling extensibility of our schema translator, this plan generator

is generic in the sense that it works with a range of source and

target metamodels, such as ER, Extended ER (EER), SQL, OO,

XSD, RDFS, Java or .NET types. Implementing it using our

approach (or that of [1]) requires an extensible set of rules, which

in turn requires an extensible plan generation algorithm to select

the best series of rules to apply.

Our fourth contribution is a technique for propagating incremental

updates of the source model into incremental updates of the target

model. To do this, we ensure that an unchanged target object has

the same id each time it is generated, thereby allowing us to reuse

the previous version instead of creating a new one. This avoids

losing a user‘s customizations of the target and makes incremental

updating fast. This practical requirement stems from the fact that

schema translation is typically an interactive process in which the

architect analyzes different translation choices. She switches back

and forth between the source and target schema, both of which

may be large and thus require careful on-screen layout. In such

scenarios, it is unacceptable to regenerate the target schema and

discard the layout information upon changes in schema translation

strategy, i.e., interactive schema translation is required.

Our final contribution is an implementation of a generic

ModelGen component for fast development of end-to-end model-

translation solutions. We report on the customization effort it took

us to build an OR schema translation tool using ModelGen.

The rest of this paper is structured as follows. Section 2 presents

an illustrative scenario. Section 3 describes our super-metamodel

and provides a state-based semantics for it. Section 4 specifies our

syntax for transformations and shows that each transformation is

correct. Section 5 describes how we support multiple strategies

for mapping inheritance hierarchies into relations. Section 6

describes how to transform models incrementally. Section 7

explains our search algorithm to identify transformation plans.

Section 8 discusses our implementation. Section 9 discusses

related work and Section 10 is the conclusion.

namespace SimpleExample

{

public class Company

{

public string Name;

}

public sealed class Supplier : Company

{

public Item[] Parts;

}

public struct Item

{

public string ISBN;

public int Cost;

}

}

CREATE TABLE

Company (

Name varchar(50),

oid int NOT NULL PRIMARY KEY

)

CREATE TABLE

Supplier (

oid int NOT NULL PRIMARY KEY

SameAs int NOT NULL UNIQUE FOREIGN KEY REFERENCES Company(oid)

)

CREATE TABLE

PartsArray (

Supplier int NOT NULL FOREIGN KEY REFERENCES Supplier(oid)

ItemISBN varchar(50)

ItemCost int

)

Figure 1: The C# input on the left is transformed into the SQL output on the right.

 3

2. EXAMPLE
Before delving into our algorithms, we illustrate the complete

process by showing how to translate a CLR namespace into an

equivalent SQL schema. This namespace, shown on the left side

of Figure 1 includes two class definitions and a simple structured

type. For simplicity, we will assume that the order of values in an

array is not relevant.

The first task is to identify which CLR constructs are not sup-

ported by SQL. For example, SQL disallows classes, inheritance,

arrays, and non-lexical attributes. To remove each of these

constructs, we need to identify a transformation plan guaranteed

to produce sets of structured types whose attributes are lexical.

Using our A* search algorithm, we identify a suitable

transformation plan consisting of five transformation rules:

(1) Convert each array of values into a join table. (2) Remove

inheritance structures, in this case using vertical partitioning;

alternative strategies are considered in Section 5. (3) Replace each

class with a relation that includes an explicit object identifier, or

oid. (4) Replace each containment relationship with a foreign-key

relationship. (5) Replace each attribute that references another

relation with a foreign-key relationship.

In Figure 1, rule (1) translates the Item array into a PartsArray

table with From and To attributes that reference Supplier and

Item. Rule (2) translates the inheritance relationship between

Supplier and Company into a SameAs reference from Supplier

to Company. Rule (3) translates Company and Supplier from

classes to relations, and adds a primary key to each. Rule (4) isn‘t

used in this example. Rule (5) converts SameAs and From into

foreign keys that reference the primary keys of Company and

Supplier, respectively. Because no primary key exists for Item,

rule (5) translates To into the attributes of Item.

x y1

y2

…

yn

Parts

Supplier Item

x z1

z2

…

zn

From

Parts_Array

y1

y2

…

yn

To

ItemSupplier

Figure 2: Transformation from an array to a join table.

The first transformation is displayed in Figure 2. Each array is

replaced by a join table with two columns. The first column

(From) references the instance containing the array. The second

(To) references the values stored in the array.

This schema-level transformation has associated instance-level

transformations that are used to generate forward- and reverse-

views. Note that the Parts attribute has been mapped to the join-

relation PartsArray.

Forward-view: For each Supplier x and related Item y,

the first line generates a tuple z using a Skolem function f.

The second and third lines populate the tuple using x and y.

PartsArray(z=f(x,y)) :- Parts(x,y)

From(z,x) :- Parts(x,y)

To(z,y) :- Parts(x,y)

Reverse-view: In this simple example, the reverse-view

simply inverts the forward view:

Parts(x,y) :- From(z,x), To(z,y)

Composing the forward- and reverse-views maps Parts(x,y) to

itself. Thus, the mapping does not lose information. The same

holds for the other transformations. So running them in sequence

also avoids losing information.

These five transformations are executed and the result is exported

as a DDL statement, as shown in the right side of Figure 1. Note

that all of the elements defined in the CLR namespace appear in

the SQL schema except the Item structure. Instances of this

structure can be generated by projecting ISBN and Cost from the

PartsArray relation.

3. BACKGROUND
Before we can define transformation rules, we need to describe

the super-metamodel in which they are expressed. The super-

metamodel we use in this paper supports many of the constructs

present in popular metamodels, enough to illustrate our tech-

niques. It is not intended to be complete, i.e. capture all of the

features of rich metamodels such as XSD or SQL with complex

constraints and triggers. First, we formally define our metamodel

constructs. We then provide a relational schema for them.

We assume the existence of a finite set of lexical values L, a

countably infinite set of object instances ID, and a countably

infinite set of attributes F. These sets are disjoint.

3.1 Super-Metamodel
A data instance D is a triple of the form <DL, DID, DA> where

DL L, DID  ID and DA is a set of triples of the form <xDID,

aF, yDID  DL>. A data instance can be interpreted as an edge-

labeled graph whose nodes are lexical values or object instances

and each edge links an object instance to a lexical or object

instance. A data element is any component of a data instance such

as a lexical, object value, labeled edge, or collection of values.

A model is a (possibly infinite) set of data instances. E.g., a model

can be a CLR type definition or SQL schema. A metamodel is a

(possibly infinite) set of models (e.g., CLR or SQL themselves).

The super-metamodel is the set of all models that can be

expressed as a triple of the form <T, A, C> in which T is a set of

types, A is a set of attributes and C is a set of constraints. A valid

instance of such a model is a function I that relates each element

of TA to a set of data elements, subject to the constraints in C.

The lexical types partition L into discrete domains; these lexical

types are shared by all models (and metamodels). A complex type

T defines a new set of instances: I(T) is a finite subset of ID. We

also allow collection types, which are declared with respect to

some base type. For a given collection C(T), I(C) is a finite set of

collections of T. For example, List(int) is a finite set of (ordered)

lists of integers. The super-metamodel in this paper includes list

and set collections.

There is a special NULL value that is an instance of every type

(i.e., TT, NULLI(T)). For collection types, NULL represents an

empty collection. Otherwise, NULL represents an empty instance

(of an abstract type) or an empty value (for lexical types). This

representation is in keeping with SQL and CLR, both of which

support explicit NULL values.

 4

Types are connected via attributes. An attribute FF is a total

mapping from a complex type D to type R . It is defined formally

by I(F)  (P1I(R)–NULL)  (P2NULL), such that

a) P1P2 = I(D)

b) P1P2 = 

c) NULLP2
These conditions ensure that I(D) is partitioned into instances P1

that map to non-null values and instances P2 that map to NULL

(and only NULL). Condition (a) ensures that the mapping is total,

and (c) maps NULL to NULL. Note that the domain of I(F) is I(D),

and the range, a subset of I(R).

Cardinality constraints can be placed on an attribute. If the

minimum cardinality of an attribute is One, then P2={NULL}. If the

maximum cardinality is One, then F is a (total) function. When the

minimum and maximum cardinalities are both One, F is a total

function in the more traditional sense—every non-null element of

I(D) is mapped to a single non-null element of I(R).

The super-metamodel supports additional constraints, such as

inclusions and keys. The simplest inclusion is a generalization

that relates one abstract type to a set of abstract types (called the

specialization): G(X, S) indicates that type X is more general than

the types of S. This introduces a new restriction on the valid

instances of a model: SS, I(S)  I(X).

A key defined on T identifies a set of attributes whose values

uniquely identify an instance of T. K(T, A) indicates that values of

the attributes in A uniquely identify instances of type T. The inter-

pretation of a key is straightforward when all elements of A have a

maximum cardinality of One. More formally, we say t1 and t2

agree on A if (v)(<t1,v>I(A)  <t2,v>I(A)). The key constraint

K(T, A) says that if t1 and t2 agree on every A A, then t1=t2.

Since some metamodels distinguish between abstract and struc-

tured types, we preserve this distinction in the super-metamodel.

We assume that the set of all attributes of each structured type

constitutes a key (although this violates the SQL metamodel).

Finally, an inclusion dependency imposes a restriction on a set of

attributes: Inc(T,K,B) indicates that type T references the

attributes of key K, using a partial function B to relate attributes of

T to key attributes of K. Its semantics is that the values of the

attributes of T are a subset of the values of the attributes of K.

Note that a relation is not modeled as a cross-product of types.

Instead, a relation is a structured type, and therefore a complex

type, whose instances are tuples. Attributes are used to relate the

tuple object to its corresponding values. This allows us to trans-

form abstract types into structured types (and vice versa). In this

framework, NULL is a tuple whose attribute values are all NULL.

3.2 Relational Schema
The previous section presented a super-metamodel that has fea-

tures common to many popular metamodels, summarized in

Table 2. A relational schema for this super-metamodel is in

Figure 3. In this schema, each model element is uniquely

identified via an object identifier, and by convention, the first

attribute of each predicate is an object identifier. The types in the

super-metamodel are organized into a hierarchy. A collection type

is either a list or set, and a simple type is either a collection or a

lexical type. A complex type is either an abstract or structured

type.

4. TRANSFORMATIONS
Using the Atzeni-Torlone approach, an implementation of Model-

Gen has four basic steps: (1) import the source model, (2)

manually or automatically generate a valid transformation plan

Table 1: Relationships among common metamodels

Construct SQL EER Java XSD

Lexical Type int,

varchar

scalar int,

string

integer,

string

Structured Type tuple element

Abstract Type entity type class complex type

List Type array list

Set Type table

Attribute column attribute,

relationship

field attribute

Containment nesting

Simple types include lexicals and collections:

 LexicalType(TypeID, TypeName)

 ListType(TypeID, TypeName, BaseType)

 SetType(TypeID, TypeName, BaseType)

Complex types can be structured or abstract:

 StructuredType(TypeID, TypeName)

 AbstractType(TypeID, TypeName)

Complex types have attributes and can be nested:

 Attribute(AttrID, AttrName, Domain, Range, MinCard, MaxCard)

 Containment(ConID, AttrName, Parent, Child, MinCard, MaxCard)

• Domain/Parent must be a complex type.

• Range/Child can be any type.

• Min/MaxCard are Zero, One or N and apply to the range/child.

A key indicates a set of attributes that identify a complex object:

 KeyConstraint(KeyID, TypeID, IsPrimary)

• TypeID references the type for which this is a key.

• Primary indicates if this is the primary key for the type.

 KeyAttribute(KeyAttrID, KeyID, AttrID)

• KeyID references the key for which this is an attribute.

• AttrID references an attribute of the associated type.

An inclusion dependency establishes a subset relationship:

 InclusionDependency(IncID, TypeID, KeyID)

• TypeID references the type for which this dependency holds.

• KeyID references the associated key.

 InclusionAttribute(IncAttrID, IncID, AttrID, KeyAttrID)

• IncID references the inclusion for which this is an attribute.

• AttrID references an attribute of the associated type.

• KeyAttrID: references a key attribute of the associated key.

Generalization is used to extend a type or construct a union:

 Generalization(GenID, TypeID, IsDisjoint, IsTotal)

A type can serve as the parent for multiple generalizations.

Disjoint and Total describe the generalization.

 Specialization(SpecID, GenID, TypeID)

• GenID references the parent generalization.

• TypeID references the associated specialized type.

Figure 3: Relational schema for super-metamodel

 5

which consists of a sequence of transformations (3) execute the

transformations in the plan, and (4) export the result. Step 1 is

trivial; it is just a 1:1 translation of the input model into super-

metamodel constructs. All of the remaining steps revolve around

the transformations, which is also where most of our innovations

lie. So we discuss them now, in this section and the next. We

explain step (2), automatic generation of a transformation plan, in

Section 7. We discuss step (4) in Section 8 on Implementation.

4.1 Defining a Transformation
Each step of a transformation plan is a transformation that

removes certain constructs from the model and generates other

constructs. The transformation is expressed as a set of Datalog

rules. Thus, constructs are expressed as predicates, each of which

is a super-metamodel construct in Figure 3. For example, the

following is a simplified version of the rule that replaces an

abstract type, such as a class definition, by a structured type, such

as relation definition:

StructuredType(newAS(id), name) :- AbstractType(id, name)

The Skolem function newAS(id) generates a new TypeID for the

structured type definition based on the abstract type‘s TypeID. All

Skolem functions names are prefixed by new to aid readability.

A transformation is a triple of the form <D, F, R> where D is a set

of rules that expresses a model transformation, F is a forward

view that expresses the target model as a view over the source,

and R is a reverse view that expresses the source as a view over

the target.

Datalog is verbose when many rules have the same body. To

avoid this, we introduce a condensed format for expressing rules

in D. Each rule is of the form ―<body>  <head>‖. Unlike

normal Datalog, we allow the head to contain multiple terms. A

rule in D with body b and n terms in the head is equivalent to a

Datalog program with n rules, each of which has one term in the

head implied by b. For example, A(x,y)  B(x), C(f(y)) is equiva-

lent to the Datalog program B(x) :- A(x,y) and C(f(y)) :- A(x,y).

Some of the rules in each model transformation D also populate a

binary predicate Map, whose transitive closure identifies all of the

elements derived from a given source element. For example,

adding Map to the rule that replaces an abstract type by a

structured type, we get:

AbstractType(id, name)

  StructuredType(newAS(id), name), Map(id, newAS(id))

Map(id, newAS(id)) says that the element identified by id is mapped

to a new element identified by newAS(id).

After executing all of the transformations, we can extract from the

transitive closure of Map those tuples that relate source elements

to target elements. Tools that display the source and target models

can use this mapping to offer various user-oriented features, such

as the ability to navigate back and forth between corresponding

elements or to copy annotations such as layout hints or comments.

Datalog rules add tuples to the head predicates but never delete

them. Since we need to delete tuples that correspond to constructs

being replaced in a model, we use a unary predicate Delete that

identifies elements to delete. After all the rules of a transformation

are executed, a non-Datalog post-processing step deletes the ele-

ments identified in the Delete predicate. For example, in the rule

that replaces an abstract type by a structured type, the predicate

Delete removes the abstract type that is being replaced, as follows:

 AbstractType(id, name)

  StructuredType(newAS(id), name), Map(id, newAS(id)), Delete(id)

The rules in a model transformation D are schema-level mappings.

Forward- and reverse-views are instance-level mappings. The

predicates and variables in a view are variables in the rules of D.

For example, a simplified version of the forward-view for replac-

ing an abstract type by a structured type is ―id(x)  newAS[id](x)”.

This rule says that if x is an object of the abstract type identified

by id, then it is also a tuple of the structured type identified by

newAS[id]. To generate such views in Datalog, we can define

predicates that create their components, such as the following:

ViewHead(newRule(newAS(id)), newPredicate(id, "x"))

ViewBody(newRule(newAS(id)), newPredicate(newAS(id), "x"))

We can then conjoin these to the head of the rule that replaces an

abstract type by a structured type.

Since views are expressed using predicates of a non-standard

metamodel, namely our super-metamodel, we need to define their

semantics. To do this, we represent the model before and after a

transformation as a model graph. Its nodes correspond to simple

and complex types. Its edges correspond to attributes. For

example, in Figure 4, R is a structured type with attributes a and

b. The value of b is a structured type S with attributes c and d;

attributes a, c, and d have lexical type.

Figure 4 A Model Graph

An instance of a model graph is an instance graph, which is

comprised of a set of values for each node and a set of value pairs

for each edge. A view is a formula that defines how to populate

the nodes and edges of one instance graph from those of another.

A transformation is correct if the forward-view converts every

instance Is of the source model into a valid instance It of the

target model, and the reverse-view converts It back into Is

without loss of information. That is, the composition of the

forward- and reverse-views is the identity. We do not require the

conversethere may be instances of the target model that cannot

be converted into instances of the source model. Note that this

definition of correctness is more stringent than the one in [20],

which only requires that the forward view generate a valid

instance of the target model.

Sections 4.2-4.5 define the transformations that are needed to

convert from CLR to SQL. For each transformation, we give its

model transformation and its forward-/reverse-views. We write

the views as instance transformations and omit the verbose Data-

log predicates that would generate them. Since the forward- and

reverse-views for the first three transformations are inverses of

each other, correctness is immediately apparent. We give a de-

tailed correctness argument for the transformation of Section 4.5.

c

R

S
 int

a

d

 int int

b

 6

4.2 Convert Abstract to Structured Type
This transformation replaces each abstract type with a structured

type. To preserve object identity, a new oid attribute is added to

the structured type, unless the abstract type already included a

primary key. The model transformation rules are as follows:

 AbstractType(id, name)

  StructuredType(newAS(id), name), Map(id, newAS(id)), Delete(id)

 AbstractType(id, name), ¬KeyConstraint(_, id, “True”)

  Attribute(newOID(id), “oid”, newAS(id), “Int”, “1”, “1”),

 KeyConstraint(NewASKey(id), NewAS(id), “True”),

 KeyAttribute(NewASKeyAttr(id), NewASKey(id), NewOID(id))

To avoid generating useless unique variables, we use an under-

score in a slot for an existential variable that appears only once in

the rule. Our use of negated predicates, such as ¬KeyConstraint

above, is done carefully to ensure that stratification is possible.

The forward view is: id(x)  newAS[id](x), newOID[id](x, newID(x)).

The last predicate says that newOID[id] is an attribute whose value

for the tuple x is newID(x).

The reverse view is: newAS[id](x)  id(x). Notice that we do not

need to map back the new oid attribute of the structured type,

since it is not needed for information preservation of the source

abstract type. It is immediately apparent that the forward- and

reverse-views are inverses of each other and hence are correct.

4.3 Replace Multi-value Attr. by Join Table
This transformation replaces each attribute with a maximum

cardinality of N by a join table containing two attributes: From

and To. An example application of this rule appeared in Figure 2.

The model transformation rule is as follows:

 Attribute(id, name, d, r, min, “N”)

  StructuredType(newJT(id), name),

 Attribute(newJTFrom(id), “From”, newJT(id), d, “1”, “1”),

 Attribute(newJTTo(id), “To”, newJT(id), r, min, “1”),

 Map(id, newJT(id)), Delete(id)

The forward view is:

 id(x,y)  newJT[id] (newTuple(x,y)), newJTFrom[id] (newTuple(x,y),x),

 newJTTo[id] (newTuple(x,y),y)

The reverse view is: newJTFrom[id](z,x), newJTTo[id] (z,y)  id(x,y)

It is immediately apparent that the forward- and reverse-views are

inverses of each other and hence are correct.

4.4 Remove Containment
This transformation replaces a containment relationship between a

parent type and child by an attribute in the child that refers to its

parent. This attribute is added to any existing keys defined on the

child. Moreover, if the parent can only contain a single child, the

new attribute constitutes a key. The model transformation rules

are as follows:

 Containment(id, name, parent, child, min, max)

  Attribute(newCA(id), “Parent”, parent, child, “One”, “One”),

 Map(id, newCA(id)), Delete(id)

 Containment(id, name, parent, child, min, max),

 KeyConstraint(key, child, _, schema)

  KeyAttribute(newCAKeyAttr(id), key, newCA(id))

 Containment(id, name, parent, child, min, “One”)

  KeyConstraint(newCAKey(id), child, “False”),

 KeyAttribute(newCAK2(id), newCAKey(id), newCA(id))

The forward view is: id(x,y)  newCA[id](y,x)

The reverse view is: newCA[id](x,y)  id(y,x)

Like the previous two rules, the forward- and reverse-views are

inverses of each other and hence are correct.

4.5 Remove Structured Attribute
This transformation replaces an attribute a that references a

structured type S all of whose attributes are lexicals. It replaces a

by lexical attributes that uniquely identify a tuple of S. If S has a

primary key, then a is replaced by the key attributes of S and there

is an inclusion dependency from the new attributes to that key.

Otherwise, a is replaced by all of S‘s attributes. The transforma-

tion is applied iteratively to eliminate nested structured types.

For example, consider three structured types: R, S and T (see

Figure 5). R references S using attribute a and has primary key k

(an Int). S has no primary key, but it has two attributes b (an Int)

and c (which references T). T has a primary key attribute d (an

Int). Applying the transformation to S.c replaces that attribute by

S.d and adds an inclusion dependency from S.d to T.d. Now all

attributes of S are lexicals. So we can apply the transformation

again to replace R.a by R.b and R.d.

Figure 5 Removing two structured attributes

The model transformation rules are as follows:

 StructuredType(domain, name), Attribute(id, _, domain, range, _, “One”),

  LexicalType(range, _)

  MixedStructuredType(domain, name)

 Attribute(id, name, domain, range1, min1, “One”),

 StructuredType(range1, name),  MixedStructuredType(range1, name),

 Attribute(attr, _, range1, range2, min2, “One”), Min(min1, min2, min)

  Attribute(newSA(id, attr), newName(name1, name2), domain,

 range2, min, “One”) , Map(id, newSA(id, attr)), Delete(id)

 Attribute(id, _, _, range, _, “One), KeyAttribute(keyAttr, key, id),

 StructuredType(range, _)

  KeyAttribute(newSAKeyAttr(keyAttr, attr), key, newSA(id, attr)),

 Map(keyAttr, newSAKeyAttr(keyAttr, attr))

For each id and attri that satisfy the second model transformation

rule, there is a forward view:

 id[x, z], attri[z, y]  newSA(id, attri)[x, y]

In the following reverse view, either attr1 … attrk are the attributes

in the key of structured type range1, or range1 has no key and k

attributes in total:

 newSA(id, attr1)[x, t1], attr1(s, t1), ..., newSA(id, attrk)[x, tk], attrk(s, tk)

  attr[x, s]

a

b

R

S

 int

 int

k

d
T

c

 int

b

R

S

 int

 int

k

d
T

 int

b

d

d

 7

To explain the above view definitions and argue their correctness,

we simplify the notation by replacing the terms id, attri, and

newSA(id, attri) in the view definitions by the symbols a, bi, and abi,

yielding the following (see Figure 6):

a(r,s), bi(s,t)  abi(r,t) // forward views

ab1(r, t1), b1(s, t1), ... abk(r, tk), bk(s, tk)  a(r,s) // reverse view

Figure 6 Model graphs before and after applying the

transformation that removes a structured attribute

As shown in Figure 6, the structure S has n attributes, k of which

are key attributes (if there is a key). The attribute R.a that refers to

the structure S is replaced by new attributes that correspond one-

to-one with the attributes of the S. To show that the forward- and

reverse-views are correct, we need to show that their composition

is the identity. We form the composition by substituting the

forward view for each abi in the reverse view, yielding:

 a(r,s1), b1(s1, t1), b1(s, t1), ..., a(r,sk), bk(sk, tk), bk(s, tk)  a(r,s)

a is a function, so s1 = s2 = … = sk. Replacing the si‘s by s1 we get:

 a(r,s1), b1(s1, t1), b1(s, t1), ..., a(r,s1), bk(s1, tk), bk(s, tk)  a(r,s)

Since b1, … bk is either a key or comprises all the attributes of s,

we have s = s1. Replacing the s1‘s by s we get:

 a(r,s), b1(s, t1), ..., bk(s, tk)  a(r,s)

Since there must exist values for t1, ..., tk in s, the above rule

reduces to a(r,s) :- a(r,s), which is the identity.

The above argument glosses over one annoying corner case: If

nulls are allowed, the transformation does not distinguish between

R.a being a null pointer or being a non-null pointer that points to a

structure containing all nulls. One can fix this by having the trans-

formation add a Boolean attribute to R to distinguish these cases.

4.6 Additional Transformations
The transformations presented in this paper are sufficient for

transforming from CLR to SQL. We have additional transforma-

tions to address more target metamodels. Due to space limitations,

we provide a brief summary of some of them.

Convert structured types to abstract types. This transformation is

the inverse of the one presented in Section 4.2.

Replace an attribute with maximum cardinality N by a new

attribute with maximum cardinality of One. If the range of the old

attribute was T, the range of the new attribute is a set of T. The

difference between the old and new attributes is evident when the

attribute participates in a key constraint. A multi-valued attribute

provides multiple key values (i.e., each value is unique); a set-

valued attribute provides a single key value.

Replace a list of T with a set of indexed structures. The new

structured type has two attributes, Index and Value. The range of

the former is Integer, and the latter, T.

Stratify sets. This transformation takes a set of sets and converts it

into a set of indexed structures (as in the preceding rule). This

transformation is needed to support the nested relational model.

Add an attribute to an otherwise empty complex type. This new

attribute has minimum and maximum cardinality of Zero.

Remove multiple-containment. Whenever type T is contained in

multiple parent types, this transformation creates a new specializa-

tion of T. Each old containment relationship is transformed into a

new containment relationship that references exactly one of the

new specializations of T. For example, if type A is contained in

both B and C, this transformation creates types B-A and C-A, which

are contained in B and C, respectively.

4.7 Composing Transformations
A transformation plan is a sequence of n transformations. The first

transformation takes the initial model m0 as input and the last

transformation produces the final model mn as output. Our goal is

to generate a forward view VF that defines mn as a function of m0

and a reverse view VR that defines m0 as a function of mn. Given

the forward- and reverse-views, this can be done incrementally.

The initial transformation from m0 to m1 defines the initial views

VF and VR. Suppose we have forward- and reverse-views VF and

VR for the first i-1 transformations. For the ith transformation, its

forward view vf and reverse view vr are composed with VF and VR,

i.e., VF  vf and VR  vr, using ordinary view unfolding, thereby

generating VF and VR.

5. INHERITANCE MAPPINGS
The transformations in the last section assumed that every viola-

tion of the target metamodel is resolved using the same transfor-

mations. We now consider a more general strategy for mapping

inheritance hierarchies of abstract types into structured types that

allows the user to customize the mapping. Since this is the

familiar object-to-relational mapping problem, we use the terms

class and relation instead of abstract type and structured type.

For a given hierarchy, let C be the set of all classes in the (source)

hierarchy and let R be the set of target relations. The predicate

c(x) indicates that x is a direct instance of cC. Similarly, r(x)

indicates that x is a tuple of rR.

5.1 Mapping Matrices
A mapping matrix M describes how the attributes of classes are

mapped to attributes of relations. The mapping matrix contains

one column for each concrete cC and one row for each rR.

Each cell M[r, c] of the mapping matrix indicates which attributes

of c appear in r. For example, to map a class‘s direct and inherited

attributes to one table (a.k.a., horizontal partitioning), all of the

attributes of c appear in a single cell of M. To flatten a hierarchy,

R contains a single relation, so M has just one row.

For example, consider a simple

inheritance structure with four

classes: A is an abstract class (i.e., it

does not appear in the mapping

matrix) with two attributes: a1 and

primary key id. B is a subclass of A

with additional attribute a2. Finally,

C is a subclass of A with additional attribute a3 and D is a

a

b1 bn

R

S

Tk T1

ab1

b1 bn

R

S

T1

abn


Tn

bk

Tk Tn

bk

A

B

#

S
i
m
p
l
e

t
y
p
e
s

i
n
c
l
u
d
e

c
o
ll
e
c
t
i
o
n
s

a
n
d

l
e
x
i
c
a
l
s
:
L
i
s
t
T
y
p
e
(
T
y
p
e
I
D
,
T
y
p
e
N
a
m

C

D

id, a1

a3

2

a4

a2

 8

subclass of C with attribute a4. We map these classes into three

relations, R, S and T as shown in the top half of Table 2.

Table 2: A Sample Mapping Matrix

 B C D

R id,a1 id,a1 id,a3

S id,a2 id,a1

T id,a3 id,a4

rel {R,S} {R,T} {R,S,T}

attr* id,a1,a2 id,a1,a3 id,a1,a3,a4

5.2 Generating View Definitions
To explain the construction of view definitions from M, we need

some additional notation: PK(c) returns the primary key of c,

attr*(c) returns the direct and indirect attributes of c, rel(c) returns

the relations used to store instances of c (the non-empty cells of

column c), and r.a refers to attribute a of relation r. Flagged is the

set of all relations that contain a flag attribute, the values of which

are type identifiers. The type identifier of c is TypeID(c).

The forward-view for this transformation can be directly inferred

from M. For each attribute a in a cell M[r, c] the forward-view is:

c(x), a(x,y)  r(x), r.a(x,y). The reverse-view is more complex

and is based on the following constraints on M.

a) 
Rr

cattrcrM


)(*],[

b) r  rel(c)  PK(c)  M[r,c]

c) rel(c1) = rel(c2)  c1 = c2  rel(c1)  Flagged

Constraint (a) says that every attribute of c must appear in some

relation. Constraint (b) guarantees that an instance of c stored in

multiple relations can be reconstructed using its primary key,

which we assume can be used to uniquely identify instances.

Constraint (c) says that if two distinct classes have the same rel(c)

value, then each of them is distinguished by a type id in Flagged.

To test these constraints in our example, consider the last two

rows of Table 2. Constraint (a) holds since every attribute in the

bottom row appears in the corresponding column of M. Constraint

(b) holds because id appears in every non-empty cell. Constraint

(c) holds because no two classes have the same signature.

Constraint (c) guarantees that the mapping is invertible, so there

exists a correct reverse-view for the mapping. There are two cases:

For a given cC, either there is another class c with rel(c) =

rel(c), or not. If so, then r(rel(c)Flagged), so we can use

r.flag to identify instances of c: r(x), flag(x, TypeID(c))  c(x).

Otherwise, rel(c) is unique, so the instances of c are those that are

in all rel(c) relations and in no other relation, that is:

c(x)r(x)r(x) 
 rel(c)rcrelr)(

.

In relational algebra, this is the join of all rrel(c) composed with

the anti-semijoin of rrel(c). In both cases, the reverse view is an

inverse of the forward view provided that the class has an attrib-

ute. The reverse-view for a given attribute is read directly from the

mapping matrix. It is simply the union of its appearances in M.

(cC, rR: aM[c,r]) r.a(x, y)  c.a(x, y)

In our example, the forward- and reverse-mappings for B are:

B(x)  R(x), S(x)

R(x), S(x), ¬T(x)  B(x)

5.3 Generating M from Class Annotations
The mapping table M is very general, but can be hard to populate

to satisfy the required constraints (a) – (c) above. So instead of

asking users to populate the mapping table M, we offer them easy-

to-understand class annotations from which M is populated

automatically. Each class can be annotated by one of three

strategies: Own, All, or None. Own does vertical partitioning, the

default strategy: each inherited property is stored in the relation

associated with the ancestor class that defines it. All yields

horizontal partitioning: the direct instances of the class are stored

in one relation, which contains all of its inherited properties. None

means that no relation is created: the data is stored in the table for

the parent class. The strategy selection propagates down the

inheritance hierarchy, unless overridden by another strategy in

descendant classes. These annotations exploit the flexibility of the

inheritance mapping tables only partially, but are easy to

communicate to schema designers.

Let strategy(c) be the strategy choice for class c. For a given

annotated schema, the mapping matrix is generated by the

procedure PopulateMappingMatrix below (for brevity, we focus on

strategy annotations for classes only, omitting attributes). The root

classes must be annotated as ⇕ or ⇔. For every root class c,

PopulateMappingMatrix(c, undefined) should be called. After that, for

each two equal columns of the matrix (if such exist), the first

relation from the top of the matrix that has a non-empty cell in

those columns is added to Flagged.

procedure PopulateMappingMatrix(c: class, r: target relation)

if (strategy(c)  {⇕,⇔}) then r = new relation end if

if (c is concrete) then

 M[r, c] = M[r, c]  key attributes of c

 if (strategy(c) = ⇔) then

 M[r, c] = M[r, c]  declared and inherited attributes of c

 else

 placed = attrs = declared and inherited non-key attributes of c

 for each cell M[r, c] populated by ascendant of c do

 M[r, c] = M[r, c]  (M[r, c]  attrs)

 placed = placed – M[r, c]
 end for

 M[r, c] = M[r, c]  (attrs – placed)

end if

for each child c of c do

 PopulateMappingMatrix(c, r)
end for

6. INCREMENTAL UPDATING
Translating a model between metamodels can be an interactive

process, where the user (e.g., a database designer) incrementally

revises the source model and/or various mapping options, such as

the strategy for mapping inheritance. Typically, a user wants to

immediately view how design choices affect the generated result.

The system could simply regenerate the target model from the

revised input. However, this regeneration can be slow, especially

if the models are being stored in a database. For example, our

implementation uses a main memory object-oriented database

system, in which a full regeneration of the target schema can take

a minute or more. Also, it loses any customization the user per-

 9

formed on the target, such as changing the layout of a diagram-

matic view of the model or adding comments. We can improve the

user‘s experience in such scenarios by translating models in a

stateful fashion: the target model is updated incrementally instead

of being re-created from scratch by each modification.

Let m0 be a source model and m1, …, mn be a series of target

model snapshots obtained by an application of successive trans-

formations (i.e., a transformation plan). Each transformation is a

function that may add or delete schema elements. Let fi be a func-

tion that returns new elements in mi+1 given the old ones in mi.

Since fi uses Skolem functions to generate new elements, when-

ever it receives the same elements as input, it produces the same

outputs. Clearly, invoking a series of such functions f1, …, fn pre-

serves this property. That is, re-running the entire series of trans-

formations on m0 yields precisely the same mn as the previous run,

as the functions in effect cache all generated schema elements.

Now suppose the user modifies m0 producing m0. When m0 is

translated into a target model, the same sequence of transforma-

tions is executed as before. In this way, no new objects in the

target model are created for the unchanged objects in the source

model. Previously created objects are re-used; only their

properties are updated. For example, renaming an attribute in the

source model causes renaming of some target model elements

(e.g., attribute or type names); no new target objects are created.

The mechanism above covers incremental updates to m0. Deletion

is addressed as follows. Let mn be the schema generated from m0.

Before applying the transformations to m0, a shallow copy mcopy

of mn can be created which identifies all of the objects in mn. All

transformations are re-run on m0 to produce mn. If an element is

deleted from m0 when creating m0, then some elements previously

present in mcopy might not appear in mn. These target elements can

be identified by comparing mcopy to mn. They are marked as

―deleted‖, but are not physically disposed of. If they appear in mn

at some later run, the elements are resurrected by removing the

―deleted‖ marker. Thus, the properties of generated objects are

preserved upon deletion and resurrection. In our implementation,

for small changes to the source model, this incremental

regeneration of the target takes a fraction of a second.

7. AUTOMATIC PLAN GENERATION
In this section, we focus on automatic generation of a sequence of

transformations that comprises the transformation plan which

removes all constructs not supported by the target metamodel.

7.1 Metamodel Patterns
The planning algorithm takes as input source and target meta-

model signatures, SS and TS, which describe the constructs that

are valid for the source and target metamodels. SS may include

less than all valid source metamodel constructs, if an analysis of

the source model indicates some constructs are not present.

Each metamodel signature is a set of patterns, each of which is a

conjunction of predicates. As in transformation rules, the predi-

cates are super-metamodel constructs (see Error! Reference

source not found.). A signature contains one pattern for every

modeling construct that is valid for that metamodel. For example,

the CLR metamodel has five simple patterns, which correspond to

classes, structs, fields, arrays and lexical types. A more complex

pattern is needed to indicate that attributes in the relational model

must reference lexical values:

RA() :- Attribute(_,_,D,R,_,1), StructuredType(D,_), LexicalType(R,_)

The planning algorithm needs to know the patterns consumed and

generated by a transformation, called its input and output signa-

tures. Applying the transformation removes every instance of its

input pattern and generates instances of its output patterns.

The input and output patterns for a transformation rule are occa-

sionally parameterized. For example, consider the transformation

that converts an attribute with multiple values (such as an array)

into a join table. It replaces input pattern Multi-ValueAttr with new

parameterized output patterns T1Attr and T2Attr.

MultiValueAttr() :- Attribute(_,_,T1,T2,_,N)

T1Attr[ComplexType:T1] :- Attribute(_,_,X,T1,_,1), StructuredType(X)

T2Attr[Type:T2] :- Attribute(_,_,X,T2,_,1), StructuredType(X)

Parameterized patterns are needed when the specific patterns that

are generated by a transformation depend on which patterns have

already been removed. For example, if we remove all abstract

types before applying the above transformation, we know that the

attributes of the join table will not reference abstract types.

By specifying patterns as conjunctive queries, we can construct a

pattern hierarchy based on query containment. This hierarchy con-

tains patterns appearing in SS, TS, or a transformation signature

(not all possible patterns). When a transformation is applied, it

removes every pattern in its input signature, including any sub-

patterns in the hierarchy. Similarly, it generates every pattern in

the output signature, including any super-patterns. This observa-

tion is at the heart of the heuristic used by the planning algorithm

to identify a minimal transformation plan.

7.2 Planning
We use an A* search algorithm to identify a series of transforma-

tions that will produce a final model that conforms to the target

metamodel. The A* algorithm tries to minimize the number of

intermediate states needed to reach a goal state by using a

function to estimate the cost of reaching the goal from each state.

To use A*, we need to define the state space, the goal state, the

actions that transition between states, and the cost function.

We define a state to be two sets of patterns: Invalid patterns that

need to be removed from the model and Valid patterns that are

allowed by the target metamodel. A* begins at an initial state and

chooses actions that generate new states, until it reaches the goal

state. Our goal is to reduce Invalid to the empty set. Thus, we

need to define how a transformation modifies Invalid.

When a transformation is applied, it removes the patterns in its

input signature and introduces the patterns in its output signature.

It adds every pattern in the output signature to Invalid unless it

appears in Valid. It might also add sub-patterns to Invalid. For

example, consider a transformation T that replaces ListType(_,_,T)

by SetType(X,_), Attribute(_,_,X,int,1,1), Attribute(_, _,X,T,1,1), i.e.,

transforming each list into a set of index/value pairs. When T is

applied, we need to add Set() :- SetType(X,_) to Invalid, and, if

there were attributes that referenced the original list,

SetAttribute():-SetType(X,_), Attribute(_,_,_,X,_,_) as well.

For each sub-pattern S of pattern P in the output signature, S is

added to Invalid if every super-pattern of S appears in Present

= InvalidValid, which indicates that S is supported by the

 10

patterns present in the current model. (The number of sub-patterns

is bounded by the size of the pattern hierarchy.) For example, sup-

pose we 1) remove all multi-value attributes and 2) replace lists

with sets. Rule 1 eliminates MultiValueAttr() :- Attribute(_,_,_,_,_,N)

and its sub-patterns. Thus, MultiValueSetAttr() :- Attribute(_,_,_,X,_,

N), SetType(X) is not in Invalid. Since rule 2 adds Set() to

Invalid, we need to consider sub-patterns such as MultiValueSet-

Attr and SingleValueSetAttr() :- Attribute(_,_,_,X,_,1), SetType(X).

The former is not supported by patterns in the model, because

MultiValueAttr() was removed from Invalid. The latter is

supported, so it is added to Invalid.

Each parameterized output signature S must first be instantiated.

Each parameter of S refers to a predicate Q in the super-meta-

model (e.g., ComplexType) and a variable binding. To instantiate

S, we first generate Q' = {qQ  qSMM} where SMM is the set

of all predicates in the super-metamodel (i.e., Q' contains exten-

sional predicates only). We then generate a new output pattern for

each element of Q' that appears in Present.

For example, consider T1Attr[ComplexType:T1] from above. If we

assume that Present contains ComplexType and StructuredType,

but not AbstractType, then we instantiate T1Attr as:

Attribute(_,_,X,T1,_,1), StructuredType(X), ComplexType(T1)

Attribute(_,_,X,T1,_,1), StructuredType(X), StructuredType(T1)

In this case, we do not need to deal with attributes whose domain

is AbstractType since they are not supported in the current state.

Having identified all of the patterns added by the transformation,

we can now determine which patterns are removed by the trans-

formation. Every pattern P in the input signature is removed from

Invalid as are its sub-patterns. Super-patterns of P may also

need to be removed. For example, if we first remove all multi-

value attributes and then remove all single-value attributes that

reference a set (e.g., by unnesting), we have also removed all

attributes that reference a set. We assume that all non-leaf patterns

(excluding predicates in the super-metamodel) are defined to be

the union of their children. We therefore remove from Invalid

every pattern P' for which no leaf descendant of P' is in Present.

This process is summarized below. Invalid is the set of constructs

(currently used) that must not appear in the target model, and

Valid is the set of constructs that can appear in the target. This

procedure modifies Invalid based on a Transformation‘s input and

output signatures. In the first line, the let operator introduces an

alias. In the second line, Instantiate() is a method that instantiates

every parameterized pattern.

procedure PatternSearch(Invalid, Valid, Transformation)

 let Present = Invalid  Valid;

 for each P  Transformation.OutputSignature.Instantiate() do

 if PValid then Invalid.Add(P); end if

 for each S  Descendants(P) do

 if Parents(S)  {P}  Present and PValid then

 Invalid.Add(S); end if

 end for

 end for

 for each P  Transformation.InputSignature do

 Invalid.Remove(P);

 for each S  Descendants(P) do Invalid.Remove(S); end for

 end for

 for each P  Invalid  Patterns do

 if LeafDescendants(P)= then Invalid.Remove(P); end if

 end for

return
Having established the effect of applying a transformation to a

state, we can now define a heuristic that estimates the distance

(number of transformations) from a given state to the goal state.

For A* to identify a minimal plan, this heuristic must be admissi-

ble, which means it never over-estimates the distance to the goal.

We estimate this distance by making several simplifying assump-

tions. First, we assume that every pattern in the input signature

eliminates all of its sub-patterns and super-patterns. This provides

an estimate of the number of patterns eliminated by the transfor-

mation. We then estimate the distance to the goal by the minimum

number of transformations such that the sum of their estimates

equals or exceeds the number of patterns in Invalid. This heuristic

is admissible because it assumes that every transformation

removes as many patterns as possible. Thus, the benefit of each

transformation is overestimated, so the number of transformations

needed is underestimated.

Our planning algorithm is intended to minimize the number of

transformations in the plan. As a side-effect, no transformation

appears more than once in a plan because its first appearance can

be eliminated without affecting the overall correctness of the plan.

8. IMPLEMENTATION
A block diagram of our implementation is in Figure 8. It has the

following components: (1) importers that translate an input model

into the super-metamodel; (2) exporters that translate a model

from the super-metamodel into its native syntax, (3)

transformations, (4) metamodel rules, which are used by (5) the

transformation plan generator (described in Section 7), and (6) the

engine that executes transformation plans.

As others have noted [1][19], importing (or exporting) schemas to

(or from) the super-metamodel is very straightforward, requiring

little more than parsing (or generating) syntax and mapping

between the corresponding names of constructs in the native

metamodel and the super-metamodel.

3) Transformation rules

4) Metamodel signatures

S in

CLR

1) Importers

S
Q

L
 L

o
a
d
e
r

E
R

 L
o
a
d
e
r

C
L
R

 L
o
a
d
e

r

5) Transformation Planner

(based on A* search)

R = rule

TS = target
signatures

signature

SS = source signature

6) Transformation

Engine

S’ = S in super-metamodel

P =

plan

2) Exporters

S
Q

L
 W

rite
r

E
R

 W
rite

r
C

L
R

 W
rite

r

T in

SQL

T’ = T in

super-metamodel

Figure 8: Architecture Overview

Generating data manipulation operations from forward- and

reverse-views can be more challenging, depending on the

complexity of the transformations and the expressiveness of the

target language. If views are all expressible as project-select-join

queries, then it is easy to generate SQL from the view definitions.

If they have nested structures and union types, then the techniques

of [26] can be used. In general, we were satisfied to use existing

 11

code-generation technology and did not attempt to innovate or do

much optimization of the generated code. Figure 9 shows an

example of our code generator‘s output for the reverse-view of the

Supplier class in the example of Figure 1.

CREATE VIEW Supplier AS
 SELECT T1.oid, T1.Name, OJ7.ISBN, OJ7.Cost
 FROM Company T1
 INNER JOIN
 (SELECT T2.oid FROM Supplier T2) OJ4
 ON T1.oid = OJ4.oid
 LEFT OUTER JOIN
 (SELECT T6.oid, T5.ISBN, T5.Cost
 FROM Item T5, Company T6
 WHERE T6.oid = T5.Inverse_Supplier_Parts_Supplier_oid) OJ7
 ON OJ4.oid = OJ7.oid

Figure 9 A Generated View

We wanted to use an existing Datalog engine, but were unhappy

with the functionality and performance of ones that were available

to us, so we built our own. It has native support for Skolem

functions, for rules with compound heads (as described in Section

4), and for user-defined functions. We used the latter to generate

forward- and reverse-views.

The size of our implementation is summarized in Table 3. The

Datalog engine comprises more than half of our implementation.

This includes the calculus representation, in-memory processing,

view unfolding, and parser. The main ModelGen routines include

the rules and plan generator. We ended up coding a few rules in

C#, because it was easier to write or to understand. E.g., it was

sufficiently hard to understand the recursion in the Datalog rule to

remove structured attributes (Section 4.5) that we re-implemented

it in 100 lines of C#. The logic for mapping inheritance structures

into relations (Section 5) includes populating the mapping table

from class annotations and generating reverse-views with negation

when type flags are not used. The import/export routines include

120 lines of Datalog; the rest is in C#.

Our implementation runs inside the integrated development

environment Microsoft Visual Studio 2005. It uses Visual

Studio‘s in-memory database system and a prototype graphical

model editor. The database system enables easier data sharing

between tools, but it has significant overhead, which is what

pushed us to develop the techniques of Section 0. Screen shots of

a source model and generated target model displayed by the

implementation appear in [5].

Table 3 Code Size

Component Lines of Code

Super-metamodel representation 500

Datalog engine 6700

Main ModelGen routines 1500

Other imperative code 300

Mapping inheritance structures 1100

Import/export for CLR & SQL 800

SQL generation 900

Table 4 Execution Times in Milliseconds

 M1 M2 M3 M4

Number of elements 16 145 234 267

load the model 3 19 31 36

remove multiple containment 1 70 150 272

remove containment 2 75 154 279

Replace multi-valued attrs.

with join table

1 3 5 6

update references to objects

mapped to new objects

12 99 147 165

delete attributes referencing

dangling types

7 92 184 193

add keys (imperative code) < .5 1 1 1

in-line non-lexical references

(imperative)

< .5 1 3 5

remove inheritance annota-

tion-driven (imperative)

2 6 17 15

export the model 6 28 47 47

TOTAL 50 539 973 1286

Our implementation is relatively fast. Execution times for 4

models are shown in

Table 4. These models use a custom ER model, somewhat richer

than CLR. For example, it permits a class to contain multiple

classes, requiring us to use our transformation that eliminates

multiple containment (see Section 4.6). The first row is the

number of elements in each model. The remaining rows are times,

measured in milliseconds averaged over 30 runs on a 1.5 GHz

machine. The largest model, M4, generates 32 relational

tablesnot a huge model, but the result fills many screens.

9. RELATED WORK
The problem of translating data between metamodels goes back to

the 1970‘s. Early systems required users to specify a schema-

specific mapping between a given source and target schema (e.g.,

EXPRESS [24]). Later, Rosenthal and Reiner described schema

translation as one use of their database design workbench [22].

Like our approach, it is generic, but it is manual (the user selects

the transformations), its super-metamodel is less expressive (no

inheritance, attributed relationships, or collections), and mappings

are not automatically generated.

Atzeni & Torlone [1] showed how to automatically generate the

target schema and source-to-target mapping. They introduced the

idea of a repertoire of transformations over models expressed in a

super-metamodel, where each transformation replaces one con-

struct by others. They used a super-metamodel based on one pro-

posed by Hull and King in [12]. They represented transformation

signatures as graphs but transformation semantics was hidden in

imperative procedures. They did not generate instance-level

transformations, or even schema-level mappings between source

and target models, which are main contributions of our work.

 12

Two recent projects have extended Atzeni & Torlone‘s work. In

[19], Papotti & Torlone generate instance translations via three

data-copy steps: (1) copy the source data into XML, in a format

that expresses their super-metamodel; (2) use XQuery to reshape

the XML expressed in the source model into XML expressed in

the target model; and (3) copy the reshaped data into the target

system. Like [1], transformations are imperative programs. In [2],

Atzeni et al. use a similar 3-step technique: (1) copy the source

database into their relational data dictionary; (2) reshape the data

using SQL queries; and (3) copy it to the target. Like our work,

this project also uses Datalog rules to represent transformations.

In contrast to the above two approaches, we generate view defini-

tions that directly map the source and target models in both direc-

tions. The views can be used to provide access to the source data

using the target model, or vice versa, without copying any data at

all. Or they can be executed as data transfer programs to move the

data from source-to-target in just one copy step, not three. This is

more time efficient and avoids the use of a staging area, which is

twice the size of the database itself to accommodate the second

step of reshaping the data. Moreover, neither of the above projects

offer flexible mapping of inheritance hierarchies or incremental

updating of models, which are major features our solution.

The notion of horizontal and vertical partitioning of inheritance

hierarchies is well known [14]. However, as far as we know, no

published strategies are as flexible as the one we proposed here.

Hull‘s notion of information capacity [11] is commonly used for

judging the information preservation of schema transformations.

In [11] a target schema dominates (i.e., has at least as much

information capacity as) a source schema if there exists a mapping

m from instances of the source to instances of the target, and a

mapping m from instances of the target to instances of the source

such that m composed with m is the identity on instances of the

source. Our forward- and reverse-views are examples of such

mappings.

Atzeni & Torlone [1] proposed two algorithms for plan

generation. One of them assumes that transformations can be

serialized with respect to dependencies, which is not true in

general. By contrast, our algorithm can cope with cyclic

dependencies among transformations. The second algorithm of

Atzeni & Torlone [1] and the one of Papotti & Torlone [20] are

both non-deterministic. Therefore, these algorithms either need to

explore an exponential number of plans or might miss correct and

desirable plans. Our algorithm uses A* [23]. In the worst-case

(i.e., a heuristic that consistently returns 0), A* has complexity

O(n!). However, in practice our heuristic is a good approximation

and a correct solution is found quickly. Note that if no plan exists

then the Atzeni & Torlone algorithm is preferable. We optimize

for the case in which n is moderately large and a plan exists.

Another rule-based approach was proposed by Bowers &

Delcambre [5][7]. They focus on the power and convenience of

their super-metamodel, Uni-Level Descriptions (UDL), which

they use to define model and instance structures. They suggest

using Datalog to query the set of stored models and to test the

conformance of models to constraints.

Poulovasilis and McBrien [21] introduce a universal metamodel,

based on a hypergraph. They describe schema transformation

steps that have associated instance transformations. In [17], they

use transformations to translate a given schema from one

metamodel to another. They briefly sketch a generic algorithm to

translate a relational schema to an ER schema, but not the other

way around. They do not discuss view generation. Boyd and

McBrien [8] apply and enrich these transformations for

ModelGen. Although they do give precise semantics for the

transformations, they are quite low-level (e.g., add a node, delete

an edge). They do not explain how to abstract them to a practical

query language, nor do they describe an implementation.

Jeusfeld and Johnen [13] describe a different generic technique

for translating schemas between metamodels. They define an is-a

hierarchy of metamodels. Given an schema in a source

metamodel, their rule-based algorithm looks for constructs of the

target metamodel with a common generalization in their universal

metamodel. When there are choices, as there often are, the user is

asked to decide. They apply it to reverse engineering a relational

schema into an EER model. They do not discuss instance

transformations.

In the commercial world, ModelGen is primarily implemented in a

non-generic way to translate ER models into relational schemas.

Despite the popularity of the approach, and the big literature on

ER modeling, we have found surprisingly few papers on

algorithms to accomplish the translation. The most complete one

we know if is by Markowitz and Shoshani [15], who present a

procedure for translating an EER model into a normalized

relational schema. Their main focus is on preserving constraints

and on intelligent naming of relational attributes. They show that

the generated schemas have the same information capacity as the

input schema, but they do not give algorithms to generate view

definitions. They show how to merge relations that correspond to

entity types that are related by inheritance. This is done explicitly,

relation by relation, not via a table-driven approach like ours. An

implementation is described in [16].

There is a substantial literature on languages for expressing

schema transformations. These papers do not provide algorithms

for translating an arbitrary schema in one metamodel into an

equivalent schema in another metamodel. Rather, they provide

operators one can use to write a program that translates a schema

and its data into another schema with corresponding data. We

close by mentioning a few examples here, and refer the reader to

those papers for pointers to other related work.

Barsalou & Gagopadhyay [2] give a language (super-metamodel)

to express multiple metamodels. They use it to produce query

schemas and views for heterogeneous database integration. Issues

of automated schema translation between metamodels and

generation of inheritance mappings are not covered.

Miller et al. [18] define schema transformations between schemas

expressed in their universal metamodel called Schema Intention

Graphs. Using Hull‘s notion of information capacity they prove

their transformations preserve information and can be used to

compare the equivalence of two given schemas. However, they do

not provide an algorithm to translate a schema of one metamodel

into that of another.

Davidson and Kosky [10] define a Horn clause language based on

a tuple calculus for expressing database transformations and

constraints. They describe an implementation that can execute

programs comprised of such transformations and constraints. Like

 13

the previous two papers cited, they do not describe generic

algorithms for schema translations between metamodels.

Claypool & Rundensteiner [9] describe operators to transform

schema structures expressed in their graph metamodel. The trans-

formation plan is user-defined, not automatically generated. They

say that the operators can be used to transform instance data, but

give no details. Song et al. [25] propose using graph grammars to

translate models based on a user-defined mapping between the

models.

10. CONCLUSION
In this paper, we described a rule-driven platform that can

translate a model (e.g. database schema) from a source metamodel

(e.g., relational, OO, XML) to a target metamodel and can be

customized to specific metamodels and mapping languages with

moderate effort. The main innovations are the ability to (i)

generate provably-correct view definitions between the source and

target models, (ii) map inheritance hierarchies to flat structures in

a more flexible way, (iii) incrementally generate changes to the

target model based on incremental changes to the source model,

and (iv) generate transformation plans using a new and improved

algorithm based on A*.

We implemented the algorithm and proved that it is fast enough

for interactive editing and generation of models. We embedded it

in a tool for designing object to relational mappings. Based on

this experience, we believe that this schema translation

technology is suitable for commercial deployment.

11. REFERENCES
[1] Atzeni, P. and R. Torlone, Management of Multiple Models

in an Extensible Database Design Tool. EDBT 1996, 79-95.

[2] Atzeni, P., P. Cappellari and P. Bernstein: ModelGen: Model

Independent Schema Translation. EDBT 2006.

[3] Barsalou, T. and D. Gangopadhyay: M(DM): An Open

Framework for Interoperation of Multimodel Multidatabase

Systems. ICDE 1992, 218-227

[4] Bernstein, P.A., Applying Model Management to Classical

Meta Data Problems. CIDR 2003, pp. 209-220.

[5] Bernstein, P., S. Melnik, P. Mork: Interactive Schema Trans-

lation with Instance-Level Mappings (demo), VLDB 2005.

[6] Bowers, S., L.M.L. Delcambre. On Modeling Conformance

for Flexible Transformation over Data Models, Knowledge

Transformation for the Semantic Web (at 15th ECAI), 19-26.

[7] Bowers, S. and L.M.L. Delcambre. The uni-level description:

A uniform framework for representing information in

multiple data models. ER 2003, LNCS 2813, pp 45-58.

[8] Boyd, M. and P. McBrien: Comparing and Transforming

Between Data Models Via an Intermediate Hypergraph Data

Model. J. Data Semantics IV: 69-109 (2005)

[9] Claypool, K.T. and E.A. Rundensteiner. Sangam: A Trans-

formation Modeling Framework. DASFAA 2003: 47-54.

[10] Davidson, S.B. and A. Kosky: WOL: A Language for Data-

base Transformations and Constraints. ICDE 1997: 55-65

[11] Hull, R. Relative Information Capacity of Simple Relational

Database Schemata. SIAM J. Comput. 15(3): 856-886 (1986)

[12] Hull, R. and R. King. Semantic Database Modeling: Survey,

applications and research issues. ACM Comp. Surveys 19(3):

201-260 (1987).

[13] Jeusfeld, M.A. and U.A. Johnen: An Executable Meta Model

for Re-Engineering of Database Schemas. Int. J. Cooperative

Inf. Syst. 4(2-3): 237-258 (1995)

[14] Keller, A.M., R. Jensen, S. Agrawal. Persistence Software:

Bridging Object-Oriented Programming and Relational

Databases. SIGMOD 1993, 523-528

[15] Markowitz, V.M. and A. Shoshani: Representing Extended

Entity-Relationship Structures in Relational Databases: A

Modular Approach. ACM TODS 17(3): 423-464 (1992)

[16] Markowitz, V.M. and A. Shoshani: An Overview of the

Lawrence Berkeley Laboratory Extended Entity-Relationship

Database Tools. ER 1994: 333-350

[17] McBrien, P., and A. Poulovassilis: A Uniform Approach to

Inter-model Transformations. CAiSE 1999: 333-348

[18] Miller, R.J., Y.E. Ioannidis, R. Ramakrishnan: Schema

equivalence in heterogeneous systems: bridging theory and

practice. Inf. Syst. 19(1): 3-31 (1994)

[19] Papotti, P. and R. Torlone: An Approach to Heterogeneous

Data Translation based on XML Conversion. CAiSE

Workshops (1) 2004: 7-19

[20] Papotti, P., R. Torlone. Heterogeneous Data Translation

Through XML Conversion. J. of Web Eng 4,3: 189-204

(2005)

[21] Poulovassilis, A. and P. McBrien: A General Formal

Framework for Schema Transformation. Data Knowl. Eng.

28(1): 47-71 (1998)

[22] Rosenthal, A. and D. Reiner: Tools and Transformations -

Rigorous and Otherwise - for Practical Database Design.

ACM TODS 19(2): 167-211 (1994)

[23] Russell, S. and P. Norvig, Artificial Intelligence: A Modern

Approach, Prentice-Hall, 2003.

[24] Shu, N.C., B. Housel, R. Taylor, S. Ghosh, V. Lum:

EXPRESS: A Data EXtraction, Processing, and

REStructuring System. ACM TODS 2(2): 134-174(1977)

[25] Song, G., K. Zhang, and R.Wong. Model management

though graph transformations. IEEE Symp. on Visual

Languages and Human Centric Computing, pp. 75-82, 2004

[26] Velegrakis, Y., Managing Schema Mappings in Highly

Heterogeneous Environments, Ph.D. thesis, Univ. of

Toronto, 2005.

