
Translating Shared State Based ebXML BPSS models to
WS-BPEL

Andreas Schönberger
Distributed and Mobile Systems Group

University of Bamberg
Bamberg, Germany

andreas.schoenberger@uni-bamberg.de
Christoph Pflügler

Inter-organizational Systems Group
University of Augsburg
Augsburg, Germany

christoph.pfluegler@wiwi.uni-
augsburg.de

Guido Wirtz
Distributed and Mobile Systems Group

University of Bamberg
Bamberg, Germany

guido.wirtz@uni-bamberg.de

ABSTRACT
Business-to-Business integration (B2Bi) as a core concept of
Supply Chain Management (SCM) is a key success factor for
enterprises today. Frequently, choreography models are used
for agreeing about the overall message exchanges among in-
tegration partners while executable orchestration models de-
rived from the choreography govern the local message flow
of each individual participant. Today, ebXML BPSS (ebBP)
as a dedicated B2Bi choreography language and WS-BPEL
as the de-facto standard for Web service based orchestra-
tion modeling provide the technological basis for integrating
choreographies and orchestrations in the B2Bi domain.
This paper introduces the concept of partner-shared states
into ebXML BPSS (ebBP) choreography modeling in order
to enable complex integration scenarios and shows how to
implement these using Web services and WS-BPEL technol-
ogy. Shared states explicitly represent the effect of business
document exchanges, provide natural synchronization points
for attaching admissible message exchange actions, and al-
low for controlling distributed timeouts as well as compre-
hensibly communicating the interaction’s progress. We pro-
vide a workaround for modeling shared states in an ebBP
schema compliant way as well as an ebBP schema extension
that enables intuitive and straightforward models. A formal-
ization of shared state-based ebBP models is introduced as
concise basis for automatically translating extension-based
ebBP models into workaround-based ebBP models. An op-
erational semantics for shared state-based ebBP models us-
ing this formalization is utilized for comprehensibility be-
cause ebBP itself does not define clear semantics.
A prototypic realization of this semantics has been imple-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
iiWAS 2009 Kuala Lumpur - Special Issue
Copyright 2009 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

mented by means of a translation tool generating a dis-
tributed WS-BPEL implementation of shared state-based
ebBP models. The overall approach is evaluated using a
RosettaNet PIP based use case.

Keywords
B2Bi, ebXML BPSS, WS-BPEL, state based modeling, trans-
lation

1. INTRODUCTION
In today’s competitive world, the success of an enterprise

heavily depends upon effective integration along the enter-
prise’s supply chain (cf. [19]). B2Bi as a core task of SCM
(cf. [23]) therefore deserves special attention by industry
and academia. [11] even find that “The risk of not having
IT-enabled SCM is enormous both in terms of survival and
productivity of an organization”. B2Bi particularly addresses
the integration of processes crossing enterprise boundaries
where central IT infrastructure for integration partners fre-
quently is not available. Further, personnel from different
enterprises with differing background and terminology is
participating. According to [42], challenging requirements
concerning various forms of consistency result from this sit-
uation, among others:

1. Heterogeneity between communication systems imple-
menting message exchanges has to be overcome.

2. The state of each integration partner’s systems has to
be aligned in a transactional way at runtime.

3. Integration partners have to agree upon the type and
order of business document exchanges.

4. Integration partners’ local process definitions have to
be compatible with respect to type and order of busi-
ness document exchanges.

Requirements 1 and 2 frequently are implemented by us-
ing dedicated integration technologies, such as Web services,
and by leveraging distributed computing standards like WS-
ReliableMessaging [32] or WS-AtomicTransaction [30]. Re-
quirements 3 and 4 can be addressed by introducing the

1

schoenberger
Schreibmaschinentext
This paper is a preliminary version of the following article:Schönberger, A.; Pflügler, C. & Wirtz, G. Translating Shared State Based ebXML BPSS models to WS-BPEL, (to appear in) International Journal of Business Intelligence and Data Mining - Special Issue: 11th International Conference on Information Integration and Web-Based Applications and Services in December 2009, 2010, 5This copy is NOT identical to the original journal article, neither in content nor in format.This copy is provided for non-commercial, academic use.

dichotomy of choreography and orchestration to the B2Bi
domain (cf. [34]). While a choreography model of a B2Bi
collaboration can be used to capture the publicly visible mes-
sage exchanges from a global perspective, an orchestration
model specifies the types and sequence of the messages a sin-
gle integration partner is supposed to receive and send. This
separation of concerns allows to concentrate on the purpose
of collaborations at the choreography level (requirement 3)
and to apply tooling for either generating choreography-
compliant orchestrations or analyzing the compliance of ex-
isting orchestrations to the choreography model afterwards.
According approaches have been proposed using different
combinations of choreography and orchestration languages,
e.g., Petri Nets for both, choreography and orchestration
[45], Let’s Dance and WS-BPEL [49], WS-CDL and BPEL
[37], BPMN and BPEL4Chor [9] or BPMN, WS-CDL and
BPEL [21].
In the B2Bi domain, the combination of ebXML BPSS (ebBP)
[27] as choreography language and WS-BPEL (BPEL) [31]
as orchestration language is particularly promising. ebBP
offers domain-specific concepts in a declarative, technology-
agnostic way (cf. section 2). For example, so-called Busi-
nessTransactions can be used for specifying the exchange of
a business document and an optional response document.
Several parameters can be defined for BusinessTransactions
such as so-called business signals for informing the sender
of the message about the state of processing at the message
receiver, or B2Bi-related Quality-of-Service (QoS) parame-
ters like integrity or privacy. While ebBP can be used to
demand the implementation of such features at the orches-
tration level, the details of implementation are deliberately
left unspecified. This allows for a broader range of imple-
mentation technologies at the orchestration level than Web
services only. In practice, technologies like ebMS [26, 29],
AS2 [24] and others are used as well. Still, Web services as
a dedicated interface technology are highly advantageous in
terms of overcoming platform heterogeneity and loose cou-
pling. While Web services once emerged as a stateless inter-
action paradigm with poor support for QoS, stateful inter-
actions using BPEL and sufficient support of B2Bi-related
QoS is available [39]. In consequence, the combination of
ebBP or ebBP-like choreography models and BPEL as or-
chestration model already has been proposed in literature
([18], [12], [14], [15], [16], [43]).
Until now, the importance of state has not sufficiently been
regarded in these tool chains. In prior work [41], we have
proposed the concept of so-called shared states concertedly
reached/left by integration participants for explicitly model-
ing the state changes realized by performing BusinessTrans-
actions (business document exchanges). Explicit modeling
of shared states is beneficial in different ways:

• Shared states explicitly capture the effect of
performing BusinessTransactions.
This is helpful for communication and agreement among
personnel of different enterprises. For example, the se-
quences of BusinessTransaction executions that lead
to a valid contract document can be deduced from an-
alyzing the execution paths that lead to an explicitly
modeled shared state Contract.

• Shared states enable intelligible communication
of progress.
Monitoring of B2Bi processes requires intelligible com-

munication of progress. An executive overview of prog-
ress can be achieved more easily by signaling the cur-
rent shared state, e.g., whether a Quote or Contract
state has been reached, than by signaling the sequence
of BusinessTransaction executions together with the
business documents exchanged and the business docu-
ment evaluation rules for assessing the implications of
a business document’s content.

• Shared states allow for the specification of dis-
tributed timeouts.
B2Bi is the connection of business processes that run
on scarce resources. Consistently, resource reserva-
tions frequently have a limited time horizon. Release
of resources without requiring successful execution of
BusinessTransactions can be specified by attaching time-
outs to shared states. For example, a shared state
Quote could be specified to be left after 3 days if no
BusinessTransactions lead to a follow-on state.

• Shared states provide natural synchronization
points for specifying control flow.
The selection of BusinessTransactions that are admis-
sible at a particular point in time typically depend on
the integration partners’ systems states, e.g., whether
a valid contract document is available or not. It is
easier to control the execution paths that emerge from
an explicitly modeled shared state than controlling all
execution paths that continue all possible execution
paths that lead to a particular state.

This paper’s research topic is the applicability of shared
states to the ebBP-BPEL tool chain. As shared states are
not naturally supported by ebBP, a workaround for repre-
senting shared states in an ebBP compliant way is presented
first. In order to allow for more straightforward and in-
tuitive modeling, an ebBP schema extension for modeling
shared states is described as well. Based on the concept of
shared states, a modeling approach for a restricted set of
ebBP collaborations that enable real-world size B2Bi pro-
cesses is developed. The class of collaborations that comply
with our approach is concisely characterized by a formal-
ization of shared state based ebBP models. This formal-
ization also lays the foundation for describing the conver-
sion of shared states modeled by means of our ebBP schema
extension into ebBP compliant models, for precisely cap-
turing the meaning of shared state based collaborations by
means of an operational semantics, and for specifying a dis-
tributed BPEL-based implementation of ebBP models. The
main characteristics of an integration architecture that al-
lows for performing BPEL-based ebBP implementations are
discussed and a prototypic translation engine that gener-
ates BPEL implementations from ebBP choreographies is
presented. This prototype proves the realizability of the op-
erational semantics defined and a real-world sized use case
is applied for evaluating practical relevance.
This paper is an extended version of [35] and the main new
material is the following:

• A formalization of shared-state based ebBP collabora-
tions that precisely captures the set of valid models.

• An ebBP schema extension that allows for more straight-
forward and intuitive modeling of shared states than
the workaround presented in [35].

2

• An algorithm for converting shared state-based collab-
orations modeled by means of the ebBP extension into
ebBP compliant models.

• An operational semantics for shared-state based ebBP
collaborations that facilitates comprehensibility and
model interchange.

• A refined description of the algorithm for deriving BPEL
implementations from ebBP collaborations.

The rest of the paper is organized as follows. A short in-
troduction into ebBP and BPEL as the core technologies
of this approach is given in section 2. Section 3 presents
the use case for evaluating the work at hand and exempli-
fies the benefits of shared state based modeling. An ebBP
schema compliant XML model of shared states as well as
the according schema extension based model is presented
in section 4. Also, an intuitive description of valid shared
state-based collaborations is given that is formalized in sec-
tion 5. The formalization is accompanied by an algorithm
for converting shared state-based collaborations modeled by
means of the ebBP extension into ebBP compliant models
as well as the operational semantics of shared state-based
collaborations. Section 6 describes an integration architec-
ture for performing ebBP choreographies using distributed
BPEL processes and section 7 shows how to automatically
generate those BPEL processes. The evaluation of our ap-
proach is presented in section 8 by discussing the results of
implementing the proposed integration architecture and an
ebBP2BPEL translator, by analyzing the complexity of the
algorithms presented, and by investigating the complexity
reduction achieved by using our ebBP schema extension for
shared states instead of the ebBP compliant workaround.
Subsequently, section 9 discusses related work and section
10 concludes and points out directions for future work.

2. BASICS
ebBP and WS-BPEL are core to our approach and thus

explained in more detail in this section. ebBP[27] is part
of the modular ebXML standard suite aiming at creating
a single global electronic market1. It allows for a modular,
XML-based specification of choreographies based on the con-
cept of BusinessTransactions (BT) exchanging business doc-
uments and respective signals. A typical ebBP choreography
consists of declarations of BusinessDocuments and Signals
(a) a specification of different BusinessTransaction types
(b) which incorporate the declared business documents and
signals and BusinessCollaborations (c) defining the actual
choreography incorporating the previously defined transac-
tion types.

(a) Business Documents and Signals: ebBP allows for
the incorporation of XML-based business documents
and signals specified using different technologies such
as Document Type Definition, XML Schema Defini-
tion, or Schematron. It also allows for appending doc-
ument specific information using, e.g., XPath expres-
sions.

(b) Business Transactions: The ebBP specification of-
fers several transactions patterns which have to be cus-
tomized in order to meet specific needs. This cus-
tomization consists of assigning business documents

1http://www.ebxml.org/

and signals, as well as the specification of quality of
service (QoS) parameters. ebBP further provides fa-
cilities allowing for the definition of additional trans-
action patterns, which we take advantage of in our
approach. Further, ebBP statically defines the Re-
questingRole and RespondingRole for BusinessTrans-
actions. The RequestingRole always is the sender of a
BusinessTransaction’s first business document whereas
the RespondingRole always is the receiver of that doc-
ument.

(c) Business Collaborations: BusinessCollaborations
(BC) with at least two roles (integration partners)
are used to build complex processes using constructs
like Decision, Join or Fork which link so-called Busi-
nessTransactionActivities (BTA) or BusinessCollabo-
rationActivities (CA). BTAs and CAs add execution
parameters such as timeouts to BTs or BCs, and map
the roles of the performing BusinessCollaboration to
the roles of the performed activity.

WS-BPEL[31] is an XML-based, standardized workflow
language used for the definition of executable (or abstract)
processes composed by a series of incoming or outgoing Web
Service calls. It allows for synchronous as well as asyn-
chronous interactions using constructs like invoke, receive
or onMessage. Constructs like sequence, if or while are
used to specify the control flow between these interactions.
WS-BPEL, usually along with extensions, has been incor-
porated into the middleware products of almost all major
software vendors.

3. USE CASE
The use case for evaluating the work at hand is based on

RosettaNet Partner Interface Processes (PIPs). RosettaNet
is a non-profit standards organization dedicated to support-
ing B2B integration and endorsed by over 500 companies
worldwide. RosettaNet defines business messages and rules
for its electronic exchange. PIPs, classified in clusters like
cluster 3 Order Management and segments like segment 3A
Quote and Order Entry, describe the application context,
the content and the parameters for the electronic exchange
of one or two business documents. A use case consisting of
nine shared states and nine PIPs has been created exempli-
fying shared state-based modeling. The RosettaNet docu-
ment type definitions have been imported by means of ebBP
BusinessDocuments and their flow has been remodeled us-
ing ebBP BusinessTransactions. The use case is taken from
RosettaNet PIP segment 3A (Quote and Order Entry) and
models a process for negotiating a contract. The size of stan-
dard processes as defined by the Northern European Subset2

(NES) is comparable to our use case, so the use case’s size
can be considered to be realistic.
The use case represents a binary collaboration. The two
business partners take the roles of buyer and seller through-
out the whole collaboration. The overall goal of the composi-
tion is the negotiation of a contract and of contract changes.
The collaboration terminates as soon as the buyer has re-
ceived the goods and services he requested. The description
of the use case starts with explaining the usage of the se-
lected PIPs.
PIP 3A1: Request Quote

2http://www.nesubl.eu/

3

http://www.nesubl.eu/

Figure 1: Use case for evaluating the work at hand

This PIP is used to start the collaboration. The buyer re-
quests a quote for some particular goods and services. The
seller answers with a response document either representing
a BusinessSuccess or a BusinessFailure. (ebBP allows for
associating the BusinessSuccess or BusinessFailure result
values with types of response documents). In the former
case the seller may reserve resources for the buyer, but the
buyer is not obliged to accept the quote. In the latter case
the collaboration is terminated immediately.
PIP 3A10: Notify of Quote Acknowledgement
If the buyer has received a valid quote she is obliged to use
this PIP to inform the seller whether the quote is generally
acceptable or not. If not, the collaboration is terminated
immediately. Otherwise the seller extends the reservation
of resources and waits for an order. The buyer is still not
obliged to accept the quote.
PIP 3A4: Request Purchase Order
This PIP can either be used to start the collaboration or to

sign a contract after having confirmed a quote to be accept-
able with the help of PIP 3A10. The buyer sends a quote
to the seller that can be answered with either an Accepted,
a Rejected or a Pending message in corresponding ebBP
DocumentEnvelopes (ebBP allows for capturing the result
of a BTA by referring to the DocumentEnvelope types of
the exchanged messages). If the answer is Accepted the par-
ties have signed a legally binding contract. If the answer
is Rejected the collaboration terminates immediately. If the
answer is Pending, the buyer waits until the seller notifies
her about the decision using PIP 3A7 or the buyer queries
the decision with PIP 3A5.
PIP 3A5: Query Order Status
The buyer can use this PIP either if there is a valid contract,
or if the decision of the seller about a quote (PIP 3A4) is
still pending or if the decision of the seller about a contract
change request (PIP 3A8) is still pending. The answer of
the seller has to be evaluated depending on which of these

4

situations applies.
In the first case, the seller can either provide new informa-
tion about order progress or just tell that no progress has
been achieved. In case of the other two situations the seller
can either send an Accepted, a Rejected or a Pending mes-
sage. If an order has not yet been decided upon, a new con-
tract is signed (Accepted), the collaboration is terminated
immediately (Rejected) or the decision is further postponed
(Pending). If a contract change request has not yet been
decided upon, either the current contract is replaced by a
new one (Accepted), the current contract remains valid (Re-
jected) or the decision is further postponed (Pending).
PIP 3A6: Distribute Order Status If there is a valid
contract, the seller can use this PIP to communicate infor-
mation about order progress to the buyer.
PIP 3A7: Notify of Purchase Order Update The seller
must trigger this PIP if she has sent a Pending message in
PIP 3A4 or 3A8 before. The seller may reply using an Ac-
cepted or a Rejected message. Analogously to PIP 3A5, a
new contract is then signed (Accepted) or the collaboration
is terminated/the current contract remains valid (Rejected).
Further, the seller can use PIP 3A7 to request contract
changes. As PIP 3A7 is a Single-Action Activity, i.e., only
one business message can be exchanged, the buyer cannot
directly answer such a request. To answer a contract change
request, the buyer must either use PIP 3A8 or PIP 3A9.
PIP 3A8: Request Purchase Order Change. This PIP
is usually used by the buyer to request a contract change.
The seller can then either send Accepted to confirm the
change, Rejected to keep the current contract or Pending
to postpone the decision.
Further, this PIP is used to answer a contract change request
initiated by the seller with PIP 3A7. If the buyer wants to re-
ject the change request, she sends a Purchase Order Change
Request message that exactly contains the data of the cur-
rent contract. The current contract then remains valid no
matter what the seller answers. To be concise, the seller
should send a Rejected message. If the buyer is about to
accept the change request of the seller (with modifications)
then she sends a Purchase Order Change Request message
(with modifications). The seller may then only respond with
an Accepted message to sign a new contract or with a Re-
jected message to keep the current contract.
PIP 3A9: Request Purchase Order Cancellation
This PIP is usually used by the buyer to cancel a current
contract. Moreover, the buyer can offer the cancellation of a
contract instead of a contract change requested by the seller
(PIP 3A7).
In both cases the seller can only send an Accepted message
to rescind the contract or a Rejected message to keep the
current contract.
PIP 3A13: Notify of Purchase Order Information
The buyer uses this PIP to notify the seller about processing
updates or the fulfillment of the contract.

The use case is visualized in a state machine-like manner
in figure 1. The start of the collaboration is represented
by the unique start element. Each shared state is repre-
sented as a state and the executions of PIPs as BTAs are
represented as transitions. The event part of a transition
is used to name the BTA (PIP) to be executed and the
guard part of a transition is used to capture the outcome
of BTAs. As decisions are not explicitly visualized, there

may be multiple transitions for the same shared state that
are triggered by the same event. The condition guards of
the particular transitions, however, are mutually exclusive.
The permissible ebBP guard values for the use case are
AnyProtocolFailure (denoted TF), BusinessFailure or Busi-
nessSuccess. AnyProtocolFailure captures arbitrary techni-
cal problems during performing BTAs. If no such problems
occur, BusinessSuccess indicates that integration partners
did achieve their goals from a business point of view whereas
BusinessFailure indicates they didn’t. Finally, guard values
based on DocumentEnvelopes (denoted with a leading DE:)
that relate to the content of the latest business document
exchanged using suitable XPath expressions are allowed as
well. Two final states are used to represent an ebBP Fail-
ure state (on the left-hand side) and an ebBP Success state
(on the right-hand side). Although the execution of PIP_3A9
in state PendingContractChangeSI(SellerInitiated) may
terminate with a BusinessSuccess guard value, it still repre-
sents a failure from the overall collaboration perspective.

Using this use case the benefits of shared state based mod-
eling can easily be demonstrated:
Shared states explicitly capture the effect of per-
forming BusinessTransactions.
Obviously, the business contents exchanged in BTAs govern
the state alignment actions to be performed in participat-
ing integration systems. Shared states can be used to rep-
resent the result achieved by having exchanged particular
content. For example, PIP 3A4’s request document may be
answered by different DocumentEnvelopes inidicating Pend-
ing, Accepted or Rejected. Using shared states, collaboration
partners can express that a Pending message results in a
PendingOrder state that does not automatically result in a
Contract.
Shared states allow for intelligible communication of
progress.
Process visibility and analysis necessitate communication of
progress information about active business processes. As
the effect of BTAs may depend on the actions taken previ-
ously, communicating the type and content of a BTA is not
necessarily sufficient for uniquely determining progress. In
the use case scenario, having performed PIP 3A5 with re-
sult DE:Pending may lead to shared states PendingOrder or
PendingContractChangeBI depending on the previous state.
Shared states allow for the specification of distributed
timeouts.
B2Bi collaborations may necessitate the reservation of re-
sources, e.g., in shared states Quote and AcceptableQuote of
the use case. By attaching timeout values to these shared
states, a time limit for resource release may be defined in
case collaboration partners do not trigger BTAs in a timely
manner.
Shared states provide natural synchronization points
for specifying control flow.
As BTAs depend on and modify system state, shared states
are a natural way for specifying control flow, i.e., the se-
quences of business document exchanges that lead to the
same state and the business document exchanges that re-
quire the same state as precondition. For example, assume
that the collaboration depicted in figure 1 has progressed to
state Contract. Then the sequence of PIP 3A8 and PIP 3A5
(change initiated by the buyer role) may lead to a new con-
tract as well as the sequence of PIP 3A7 and 3A8 (change

5

Figure 2: Alternative Modeling of an Excerpt of the Use Case Demonstrating Control Flow Explosion

initiated by the seller role). Conversely, PIP 3A5 is only
admissible in state PendingContractChangeBI but not in
PendingContractChangeSI.
In case such commonalities need to be expressed, alterna-
tive modeling approaches without constructs for joining/s-
plitting control flow may lead to far more complex mod-
els. Figure 2 depicts an alternative model for the states
StartWith3A1, Quote, AcceptableQuote and PendingOrder
of figure 1 only. In figure 2, control flow is specified only
by connecting BTAs (rounded boxes) and decision nodes
(diamonds) and attaching guards to the transitions. The
complexity explosion due to removing shared states can be
explained by the fact that an extra transition must be intro-
duced for each BTA that is allowed in a particular shared
state. For example, BTAs 3A10 and 3A4 are admissible in
AcceptableQuote. Therefore, after having performed 3A10
successfully (in shared state Quote), two paths have to be

specified for allowing both 3A10 AND 3A4. Note that extra
control flow links also are a result of different possible BTA
results and BTAs that are applicable in different states. For
example, there are two links from BTA 3A4 to a 3A7 node in
figure 2. This is due to the fact that 3A7 may be performed
in state PendingOrder (i.e., result Pending for 3A4) and in
state Contract (i.e., result Accepted for 3A4).
An obvious way for working around this situation without
shared states is using pure control flow pseudo-nodes like
ebBP Join for merging alternative paths or ebBP Fork for
splitting up alternative paths. Therefore, one would only
have to create transitions from the ebBP Decision nodes
to the matching Join nodes and then using Fork nodes as
needed for splitting up control flow again. Unfortunately,
this is not permitted by ebBP because transitions may only
reference BTAs or CAs (cf. toBusinessStateRef/fromBusi-
nessStateRef constraints in [27] sec. 3.8.2).

6

4. INFORMAL ebBP MODELS
A shared state of a B2Bi collaboration as introduced in

[41] is a synchronization point that represents alignment of
information items among integration partners and captures
the progress of a collaboration. Integration partners use
BTAs to consistently align information and thus concertedly
leave and reach shared states. While the preceding sections
motivated the use of shared states, this section discusses the
modeling of shared states using ebBP.

4.1 ebBP Compliant Shared State Model
There is no ebBP construct that directly matches the con-

cept of a shared state so these have to be emulated. Gen-
erally speaking, a state can be modeled with an ebBP Join
construct followed by a Fork construct. However, ebBP pro-
hibits directly linking Joins and Forks as the corresponding
fromBusinessStateRef and toBusinessStateRef attributes may
only reference BTAs or CAs (cf. [27] sec. 3.8.2). To over-
come this constraint in a standard compliant manner, a
workaround can be used. The concept of an EmptyBTA
based on the extensible ebBP transaction type DataExchange
is introduced that serves as a target for linking to a shared
state and for connecting the Join and Fork of a shared state.

Listing 1 shows the ebBP representation of the shared
state Quote (cf. above and figure 1). The EmptyBTA before
the shared state’s Join is used as target of ebBP Decisions
that are not allowed to directly link to Joins (cf. [27] sec.
3.8.2). The shared state’s Join links to another EmptyBTA
that is connected to the shared state’s Fork. This Fork then
specifies a ToLink for every BTA that is permissible to be
performed from this shared state. Shared state timeouts,
i.e., the point in time when shared states should be left with-
out performing a BTA, can also be specified on this Fork.
In case such a timeout occurs, it has to be switched to the
EmptyBTA defined in the ToLink that carries the according
timeout ConditionExpression.

Employing two EmptyBTAs allows for different semantics
when linking to a shared state with respect to timeouts: In
case of linking to the EmptyBTA before a shared state, its
timeout is reset whereas linking to the EmptyBTA within
the shared state does not have this effect. The latter case is
particularly useful if protocol failures occur during perform-
ing a subsequent BTA which means that the shared state
actually has not been left. Note that ebBP Joins and Forks
are only used for modeling states and are not allowed else-
where in the collaboration description.

Listing 1: ebBP Compliant Model of a Shared State
1

2 <!-- State Quote -->
3 <BusinessTransactionActivity

businessTransactionRef="empty"
4 nameID="empty_before_Quote">
5 <TimeToPerform ></TimeToPerform >
6 <Performs currentRoleRef="Buyer"

performsRoleRef="empty1"/>
7 <Performs currentRoleRef="Seller"

performsRoleRef="empty2"/>
8 </BusinessTransactionActivity >
9

10 <Join waitForAll="false" nameID="Quote">
11 <FromLink fromBusinessStateRef="

empty_before_Quote"/>
12 <FromLink fromBusinessStateRef="

empty_before_Quote"/>
13 <ToLink toBusinessStateRef="
14 empty_in_Quote"/>

15 </Join>
16

17 <BusinessTransactionActivity
businessTransactionRef="empty"

18 nameID="empty_in_Quote">
19 <TimeToPerform ></TimeToPerform >
20 <Performs currentRoleRef="Buyer"

performsRoleRef="empty1"/>
21 <Performs currentRoleRef="Seller"

performsRoleRef="empty2"/>
22 </BusinessTransactionActivity >
23

24 <Fork nameID="fork_Quote" type="XOR">
25 <TimeToPerform duration="P3D"/>
26 <FromLink fromBusinessStateRef="

empty_in_Quote"/>
27 <ToLink toBusinessStateRef="

BTA_3A10_NotifyOfQuoteAck"/>
28 <ToLink toBusinessStateRef="

BTA_3A10_NotifyOfQuoteAck"/>
29 <ToLink toBusinessStateRef="

empty_before_FAILURE">
30 <ConditionExpression
31 expressionLanguage="XPath1"
32 expression="timeout"/>
33 </ToLink >
34 </Fork>

4.2 ebBP Extension for Shared States
The motivation of providing an ebBP extension and hence

dropping compliance is complexity reduction. In the work-
around presented in section 4.1, four different control flow
nodes have to be used for specifying a shared state and
its outgoing transitions. Using the proposed extension, the
same information can be represented by only one node. The
new SharedState construct (depicted in listing 2) that has
been defined is similar to an ebBP Fork node with the type
attribute set to XOR.

Listing 2: Extension-based Model of a Shared State
1

2 <!-- State Quote -->
3 <SharedState nameID="Quote">
4 <TimeToPerform duration="P3D"/>
5 <FromLink
6 fromBusinessStateRef="

DECISION_3A10_NotifyOfQuoteAck"
7 stTimeoutReset="false">
8 <ConditionExpression
9 expressionLanguage="ConditionGuardValue"

10 expression="AnyProtocolFailure" />
11 </FromLink >
12 <ToLink toBusinessStateRef="

BTA_3A10_NotifyOfQuoteAck" />
13 <ToLink toBusinessStateRef="

Collaboration_FAILURE">
14 <ConditionExpression
15 expressionLanguage="XPath1"
16 expression="timeout" />
17 </ToLink >
18 </SharedState >

It reuses the ebBP definitions of TimeToPerform, FromLink
and ToLink, but removes the cardinality constraints on the
number of FromLinks and ToLinks completely. Thus, a log-
ical link between any control flow node and a SharedState

can syntactically either be specified within the SharedState,
within the control flow node under consideration, or using a
separate ebBP Transition element. For enabling the distinc-
tion between resetting a timer when linking to a shared state
or not, the optional boolean flag stTimeoutReset has been
added to FromLinks and ToLinks. Note that the proposed
ebBP schema extension for representing share states does
not render existing ebBP models obsolete. Only the ebBP

7

constraint requiring fromBusinessStateRef and toBusiness-
StateRef attributes to exclusively reference BTAs or CAs
(cf. [27] sec. 3.8.2) has been dropped. ebBP neither de-
scribes the rationale behind that constraint nor defines a
semantics that relies on that constraint. In section 5 we de-
fine a semantics for shared state based ebBP collaborations
that works without that constraint.

4.3 Shared State-based Collaborations
This section informally describes the class of shared state-

based ebBP collaborations we are proposing for B2Bi pro-
cess specification. Basically, a shared state is entered by
reaching the EmptyBTA before the shared state. The Fork
of the shared state then links to all BTAs that are permissi-
ble for the respective shared state. Each of these BTAs (ex-
cept EmptyBTAs) must be followed by an ebBP Decision
that evaluates the outcome of the BTA. Predefined ebBP
ConditionGuardValues and user-defined DocumentEnvelopes
are used for determining the follow-on shared state of a De-
cision. In case an ebBP AnyProtocolFailure is detected, the
Decision must link back to the EmptyBTA within the shared
state the BTA to be evaluated was started from. Otherwise,
it is linked to the EmptyBTA before the (same or another)
shared state.
The restrictions chosen are aligned with two goals. First, a
large part of real-world processes shall be representable in a
straightforward manner. Second, distributed BPEL imple-
mentations shall be automatically derivable from the spec-
ified collaborations. In a multi-case study [36], Reijers and
van der Aalst report the results from an investigation of 16
business processes from six Dutch organizations: “One of
the striking observations was that out of the 16 processes
considered none of these processes incorporated concurrent
behavior, i.e. parallel processing of single cases. Business
processes turned out to be completely sequential structures.
Their routing complexity was only determined by choice con-
structs and iterations.” This finding is further backed by the
B2Bi models created for the eBIZ-TCF project (http://
www.moda-ml.net/moda-ml/repository/ebbp/v2008-1/en/)
that also do specify concurrent behavior. Therefore, the set
of ebBP models that is considered for translation is a sub-
set of the class of multi-transmission interactions as defined
in [3] with the special restriction that only two collabora-
tion partners are allowed. Informally, these restrictions are
summed up as follows:

• A choreography is modeled as a single ebBP Business-
Collaboration. Hierarchical compositions are not sup-
ported.

• Only binary collaborations are supported, i.e., the num-
ber of integration partners within the collaboration is
limited to two.

• A collaboration starts with an ebBP Start that imme-
diately links to the initial shared state of the collabo-
ration.

• ebBP Decisions are only allowed directly after BTAs.

• Alternative paths are realized by ebBP Decisions and
by ebBP Forks used for representing shared states.

• Looping is realized by Decisions that link back to shared
states that have been visited before.

• The only case in which a Decision branch does not
link to a shared state is when process termination is
detected. In this special case a Decision links to an
EmptyBTA before an ebBP Success or Failure state.

• A choreography ends when a final state, i.e., an ebBP
Success or Failure state is reached. Multiple Success
and Failure states are allowed per collaboration. As
multiple instances of BTAs are not allowed for and as
state is synchronized after each BTA (there are only
two participants), a choreography immediately ends
when a final state is reached.

• At any point in time, there is at most one active BTA
(no multiple instances). In order to ensure this, ebBP
Forks have to set the type attribute to XOR and ebBP
Joins must have the waitForAll attribute set to false.

• An EmptyBTA may only link to one single ebBP Join
or Fork element.

This informal class of ebBP models is formalized in the next
section.

5. FORMAL ebBP MODELS
The formalization of the informally defined class of shared

state-based ebBP collaboration serves several purposes. Above
all, it is used for precisely defining the set of valid models
that is accepted for translation into distributed BPEL im-
plementations. Further, it is used as concise basis for de-
scribing the translation of shared states modeled using our
ebBP schema extension into ebBP compliant shared states.
Therefore, the formalization closely reflects the main differ-
ent ebBP element types for specifying BusinessCollabora-
tions. In the following, ‘STBC’ will be used to abbreviate a
shared state based ebBP BusinessCollaboration, and STBCs
that contain shared states modeled by means of our schema
extension will be denoted ESTBC (Extension-type STBC)
whereas STBCs that employ ebBP complaint shared states
will be denoted WSTBC (Workaround-type STBC).
Finally, as ebBP does not provide a formal semantics, an-
other major motivation for providing a formalization is an
unambiguous and comprehensible description of STBC se-
mantics. Section 5.1 introduces the formalization of WST-
BCs and section 5.2 presents the semantics. Section 5.3 then
discusses the formalization of ESTBCs and an algorithm for
translating ESTBCs to WSTBCs.

5.1 WSTBC

Definition 5.1.1 (WSTBC).
A workaround-type shared state-based ebBP BsinessCollab-
oration (WSTBC) is an extension of a directed graph de-
fined as a 5-tuple (R,N,G,φ,θ) consisting of the following
elements:

• R = {r1,r2} is the set of collaboration participant roles
where r1 is statically declared to be the leader of the
collaboration.

• N = {s0}∪FORK∪JOIN∪DEC∪SBTA∪SEBTA∪T
is a set of nodes where the components of the union
are pairwise disjoint.

– s0 is the initial node.

8

http://www.moda-ml.net/moda-ml/repository/ebbp/v2008-1/en/
http://www.moda-ml.net/moda-ml/repository/ebbp/v2008-1/en/

– T being the non-empty set of terminal nodes.

– FORK is a set of ebBP Fork elements with the
type attribute set to ‘XOR’.

– JOIN is a set of ebBP Join elements with the
waitForAll attribute set to ‘false’.

– DEC is a set of ebBP Dec elements.

– SBTA is a set of ebBP BusinessTransactionAci-
tivities.

– SEBTA is a set of EmptyBTAs as described in
section 4.1.

• G = (L×EL)∪{(XPath1, ‘timeout’)}∪{tt} is a set of
guards defined as either a pair of a language l ∈ L and
expression exp ∈ El defined in l, the special purpose
pair (XPath1, ‘timeout’) for specifying a shared state’s
timeout, or the boolean constant true (tt).
Out of the admissible ebBP expression languages we
support ConditionGuardValue (CGV) and DocumentEn-
velope (DE) where ECGV is an enumeration of generic
ebBP protocol outcomes and EDE is the set of ebBP
DocumentEnvelopes defined for the directly preceding
BusinessTransaction.

• The function φ : FORK → N0 ∪ {−1} that assigns
a timeout value to every Fork node. ‘-1’ is used for
denoting an undefined timeout value.

• θ is a transition relation θ : N× 2G × N with the con-
straint that θ is the union of the following components:

– →Start⊆ {s0}× {tt}× SEBTA and
∣∣→Start

∣∣ = 1.

– →ST1⊆ SEBTA× {tt} × JOIN

– →ST2⊆ JOIN× {tt} × SEBTA

– →ST3⊆ SEBTA× {tt} × FORK

– →Terminal⊆ SEBTA× {tt} × T

– →Trigger⊆ FORK× {tt} × SBTA

– →Eval⊆ SBTA× {tt} ×DEC

– →Update⊆ SBTA× {tt} × SEBTA

– →Route⊆ DEC×2G\{(XPath1, timeout)}×SEBTA

– →Timeout⊆ FORK×{(XPath1, timeout)}×SEBTA

Note that all components of θ except for →Trigger are
partial functions N×2G ⇀ N. Further, a workaround-
based shared state (cf. section 4.1) may result in two
identical elements t1 = t2 = (n1,{tt},n2) that would
have to be added to either →ST1 or →Trigger. In that
case, t2 is discarded. 2

Two nodes nk, nl are directly connected in a WSTBC if
there is a triple (nk,g,nl) or (nl,g,nk) ∈ θ. For (nk,g,nl), nk

directly precedes nl and nl directly follows nk. Further, two
nodes nk, nl are connected in a WSTBC if there is a triple
(nk,g,nl) or (nl,g,nk) ∈ θ∗ where θ∗ is the reflexive-transitive
closure of θ. A sequence of nodes [n1, .., nx] is defined such
that for any i, 1 ≤ i < x: ∃(ni, g, ni+1) ∈ θ.

Moreover, we need several functions defined on the com-
ponents of a WSTBC (for later use in the translation algo-
rithms):

• in : N → 2N computes the set of input nodes of
a particular node ni in WSTBC such that in(ni) =
{x|∃(x, g, ni) ∈ θ}.

• out : N → 2N computes the set of output nodes of
a particular node ni in WSTBC such that out(ni) =
{x|∃(ni, g, x) ∈ θ}.

• requestor : SBTA → R determines which of the col-
laboration participant roles takes the ebBP Requestin-
gRole of a particular BTA.

• responder : SBTA → R determines which of the col-
laboration participant roles takes the ebBP Respond-
ingRole of a particular BTA.

In the definitions so far there is no shared state construct.
That is due to the fact that the ebBP elements that make
up a shared state are explicitly emulated. This is necessary
for being able to provide a concise conversion algorithm from
ESTBCs to WSTBCs. The following definition characterizes
shared states within WSTBCs.

Definition 5.1.2 (Shared State).
A shared state (ST) is defined for a WSTBC as 5-tuple
STWSTBC(eb,j,ei,f,θST) such that

• eb ∈ SEBTA

• j ∈ JOIN

• ei ∈ SEBTA

• f ∈ FORK

• θST = {(eb, {tt} , j), (j, {tt} , ei), (ei, {tt} , f)} ⊂ θ

• @(nk, g, nl) ∈ θ \ θST : nk = j ∨ nl = j ∨ nl = f

A WSTBC is said to contain a STWSTBC if it conforms
to the above definition. For dealing with STs, some addi-
tional functions are needed. Let SHWSTBC be the set of all
STWSTBC(eb,j,ei,f,θST) contained in a WSTBC. Then, the
following functions are defined:

• nodeb, nodej, nodei, nodef, trans, nodeset are func-
tions on SHWSTBC× N that compute the first, second,
third, fourth, fifth or union of the first four components
of a given STWSTBC .

• parentST : N → SHWSTBC ∪ {⊥} computes the
STWSTBC for a given node (the existence of such a
function follows from fact 5.1.2).

• ctrlFlow computes the control flow relation ϑ of a
WSTBC such that
ϑ = θ \

⋃
st∈SHW ST BC

trans(st).

• We write (nk, g, ST) if there is a (nk, g, nl) ∈ ϑ ∧ nl ∈
nodeset(ST) and

• (ST, g, nl) if there’s a (nk, g, nl) ∈ ϑ∧nk ∈ nodeset(ST).

We now present the ebBP language restrictions that re-
flect the rationale of ST based modeling. The first restriction
says that EmptyBTAs that link to a Fork or Join always are
part of a shared state ST.

Restriction 5.1.1 (ST linking). From definition 5.1.2
it is already clear that, for a particular st ∈ SHWSTBC , there
are no elements in ϑ that link to nodej(st) or nodef(st) or
from nodej(st). Moreover:

9

• Iff for any ebta ∈ SEBTA,
∃(ebta, tt, j) ∈ θ : j ∈ JOIN ⇒ ∃st ∈ SHWSTBC :
ebta = nodeb(st).

• Iff for any ebta ∈ SEBTA,
∃(ebta, tt, f) ∈ θ : f ∈ FORK ⇒ ∃st ∈ SHWSTBC :
ebta = nodei(st).

The following fact clarifies that Forks and Joins exclu-
sively are used for modeling STs.

Fact 5.1.1 (No Joins/Forks outside STs).
∀n ∈ JOIN ∪ FORK : n ∈

⋃
st∈SHW ST BC

nodeset(st)

Proof 5.1.1. From definition 5.1.1, and in particular the
definition of θ it is clear that for all nodes e that directly
precede a node n ∈ JOIN ∪ FORK, holds: e ∈ SEBTA.
From restriction 5.1.1, we know that for all e ∈ SEBTA
that directly precede a node n ∈ JOIN ∪ FORK:
e ∈

⋃
st∈SHW ST BC

nodeset(st). The fact then follows from the

definition of θ and the definition of STs (def. 5.1.2). 2

The next fact points out that STs in a WSTBC do not
overlap, i.e., a structure as depicted in figure 3 is forbidden.

Figure 3: Invalid: Shared State Overlap

Fact 5.1.2 (Disjoint STs).
For any st1, st2 ∈ SHWSTBC such that st1 6= st2 holds:
nodeset(st1) ∩ nodeset(st2) = {}

Proof 5.1.2. Assume the opposite for st1, st2 ∈ SHWSTBC .
If nodeb(st1) 6= nodeb(st2) then nodeset(st1) ∩ nodeset(st2) =
{} because of the definition of ST (def. 5.1.2) and →ST1

,→ST2 and →ST3 being partial functions.
Similarly, if nodeb(st1) = nodeb(st2) then nodeset(st1) =
nodeset(st2). 2

EmptyBTAs are used for solving ebBP schema constraints
only. This implies that EmptyBTAs shall not contain any
business logic and therefore shall always link to exactly one
successor node.

Fact 5.1.3 (No Logic in EmptyBTAs).
∀e ∈ SEBTA : ∀(e, {tt} , nk), (e, tt, nl) ∈ θ : nk = nl

Proof 5.1.3. Directly follows from the definition of→ST1

,→ST3 and →Terminal 2

The following language restriction highlights that in case
a ST can be left by a timeout then the following EmptyBTA
shall precede a terminal node or be part of a different ST.

Restriction 5.1.2 (Leaving ST by timeout).
∀(f, g, e) ∈ θ, f = nodef(stx), stx ∈ SHWSTBC , f ∈ FORK,
e ∈ SEBTA holds:
g = (XPath1, timeout) ∧ (∃(e, tt, t) ∈→Terminal ∨
(e ∈ nodeset(sty), sty ∈ SHWSTBC ∧ sty 6= stx))

The next language restriction makes clear that a partic-
ular BTA may not be triggered from different STs. If the
same ebBP BusinessTransaction were to be admissible in
different STs then multiple BTAs of that type would have
to be specified. A model that contains a structure like that
depicted in figure 4 is invalid.

Figure 4: Invalid: BTA triggered from different STs

Restriction 5.1.3 (Unique source ST of a BTA).

∀(fk, tt, b), (fl, tt, b) ∈→Trigger : fk = fl

We use the function btaSrc : BTA→ SHWSTBC to compute
the shared state st with (nodef(st), tt, b) ∈→Trigger.

The result of a BTA determines the next ST of a col-
laboration. Consistently, the control flow routing decision
for determining the next ST shall either be explicitly rep-
resented in the ebBP definition or the ST shall not be left.
This is ensured by fact 5.1.4 and 5.1.5 as well as restrictions
5.1.4 and 5.1.5 that follow.

Fact 5.1.4 (Unique BTA result processing).
∀b ∈ BTA : ∀(b, tt, nk), (b, tt, nl) ∈ θ : nk = nl

Proof 5.1.4. Directly follows from the definition of→Eval

and →Update. 2

Restriction 5.1.4 (Unprocessed BTA result).
∀(b, tt, e) ∈→Update: e ∈ nodeset(btaSrc(b))

In order to be clear which BTA’s result a Decision node
processes, the following restriction is defined.

Restriction 5.1.5 (Unique BTA reference).
∀(bk, tt, d), (bl, tt, d) ∈→Eval: bk = bl

Fact 5.1.5 (Unique source ST of a Dec).
∀(fk, tt, bm), (fl, tt, bn) ∈→Trigger and
(bm, tt, d), (bn, tt, d) ∈→Eval holds: fk = fl

10

Proof 5.1.5. Directly follows from restrictions 5.1.3, 5.1.5
and fact 5.1.4. 2

We use the function decSrc : DEC → SHWSTBC to com-
pute the shared state st with (nodef(st), tt, b) ∈→Trigger

and (b, tt, d) ∈→Eval.
Apart from explicit representation of routing rules in col-

laborations, the requirement of state alignment for reaching
new STs is important. The next restriction says that in case
an error is detected during performing a BTA, a new state
may not be reached.

Restriction 5.1.6 (No ST exit without alignment).
∀(d, g, e) ∈→Route holds:
g = (CGV, exp) ∧ exp ‘indicates a protocol failure’ ⇒
e ∈ nodeset(decSrc(d))

Finally, if the result of a BTA has been agreed upon then
there is no room for non-determinism to decide about the
next ST to reach which is highlighted by fact 5.1.6.

Fact 5.1.6 (Unique BTA result).
For any result of a given BTA b with(b, tt, d), d ∈ DEC,
holds:
∀(d, gk, ek), (d, gl, el) ∈→Route: gk = gl ⇒ ek = el

Proof 5.1.6. Directly follows from the definition of→Route

2

Figure 5: Valid Example WSTBC

Figure 5 visualizes the main control flow options for STBCs
when respecting all restrictions. Now that the main syntac-
tical constraints of WSTBCs have been defined, the WSTBC
execution semantics can be made precise.

5.2 WSTBC Execution Semantics
ebBP does not define a formal semantics on its own. So,

the execution of BTAs and CAs has to be defined. The
details of BTA execution are not part of the presented for-
malization and so the assumption is used that performing
a BTA takes some time and eventually either leads to an
agreed-upon result or a protocol failure. The implementa-
tion of a BTA is described in section 6.1 and the following
semantics essentially describes how to iteratively perform
this implementation as defined by the links between shared
states, BTAs and Decisions.
Let C ∈ N ×O×Vt×Vth be the configuration of a WSTBC
where N is the set of nodes as in definition 5.1.1, O is the
set of all possible outcomes of all BTAs of a WSTBC, Vt

represents all possible timer values, and Vth represents all
possible timer threshold values. As t is defined to be a dis-
crete timer, let the domain of Vt and Vth be N0 ∪ {−1}.
Note that although there are multiple timeouts defined (for
different STs), at one point in time, there is at most one
timer active. Let χ be the function that computes the
outcome of a BTA that has just finished. Further, ψ :
2G × N × O × Vt × Vth → {true, false} is the function
that evaluates a given set of guards under a given config-
uration to one of the boolean constants true or false. In
particular, ψ({tt} , C) = true for arbitrary C. Any ele-
ment t = (nk, g, nl) ∈ θ is said to be enabled for a given
C = (nc, o, vt, vth) iff nc = nk ∧ ψ(g, C) = true. It directly
follows that all t = (nk, g, nl) ∈→Start ∪ →ST1 ∪ →ST3

∪ →Terminal ∪ →ST2 ∪ →Trigger ∪ →Eval ∪ →Update are
always enabled once a configuration C contains nk as the
first component.
The semantics is defined operationally by the relation `⊆
(N × O × Vt × Vth) × (N × O × Vt × Vth). The initial
configuration of a WSTBC is C = (s0, {} ,−1,−1), where
−1 for the timer and timer threshold values indicates that
there is neither a current timer nor an according threshold.
All transitions in t = (nk, g, nl) ∈→Start ∪ →ST1 ∪ →ST3

∪ →Terminal ∪ →ST2 immediately fire once they are en-
abled, their processing is assumed to take zero time and the
new configuration C′ differs from the preceding C only in
switching from nk to nl. This kind of ` transitions reflects
the fact that→Start ∪ →ST1 ∪ →ST3 ∪ →Terminal ∪ →ST2

have been introduced for creating ebBP conform models
only and that there is no logic in empty BTAs. The re-
maining elements of ` can be derived using the set of rules

below that represent triggering BTAs (`→
T rigger

), finish-

ing BTAs (`→
Eval

,`→
Update

), evaluating BTAs (`→
Route

),

leaving STs by timeout (`→
T imeout

) and the elapse of time
(`clock).

1: Trigger a BTA

(n, o, vt, vth) `→
T rigger

(n′, o, vt, vth) iff

(n, g, n′) ∈→Trigger ∧
ψ(g, (n, o, vt, vth)) = true ∧
((vth = −1) ∨ (vt < vth))

11

2: Finish a BTA and start result evaluation

(n, o, vt, vth) `→
Eval

(n′, o′, vt, vth) iff

(n, g, n′) ∈→Eval ∧
ψ(g, (n, o, vt, vth)) = true ∧
o′ = χn

3: Finish a BTA and ignore result

(n, o, vt, vth) `→
Update

(n′, o, v′t, v
′
th) iff

(n, g, n′) ∈→Update ∧
ψ(g, (n, o, vt, vth)) = true ∧
((n′ = nodeb(btaSrc(n)) ∧ v′t = 0 ∧
v′th = φ(nodef(btaSrc(n)))) ∨
(n′ = nodei(btaSrc(n)) ∧ v′t = vt ∧ v′th = v′th))

4: Evaluate a BTA result

(n, o, vt, vth) `→
Route

(n′, o′, v′t, v
′
th) iff

(n, g, n′) ∈→Route ∧
ψ(g, (n, o, vt, vth)) = true ∧
o′ = {} ∧
((parentST (n′) = ⊥ ∧ v′t = vt ∧ v′th = −1) ∨
(parentST (n′) 6= ⊥ ∧ n′ = nodei(decSrc(n)) ∧
v′t = vt ∧ v′th = v′th) ∨
(parentST (n′) 6= ⊥ ∧ n′ 6= nodei(decSrc(n)) ∧
v′t = 0 ∧ v′th = φ(nodef(parentST (n′)))))

5: Leave ST by timeout

(n, o, vt, vth) `→
T imeout

(n′, o, v′t, v
′
th) iff

(n, g, n′) ∈→Timeout ∧
ψ(g, (n, o, vt, vth)) = true ∧
((vth > −1) ∧ (vt >= vth)) ∧
((parentST (n′) = ⊥ ∧ v′t = vt ∧ v′th = −1) ∨
((parentST (n′) 6= ⊥) ∧ v′t = 0 ∧
v′th = φ(nodef(parentST (n′)))))

6: Elapse of time

(n, o, vt, vth) `clock

(n, o, v′t, vth) iff

v′t = vt + 1

Finally, we state that a WSTBC is valid if and only if
every node n ∈ N is connected to the initial and one terminal
node and there exists a configuration such that the terminal
node is reachable by a sequence of transition steps as defined
above.

Definition 5.2.1 (Validity).
Let `∗ be the transitive closure of `. A WSTBC is valid iff

(i) Each n ∈ N is connected to both {s0} and at least one
t ∈ T.

(ii) (i) and ∀n ∈ N : ∃C = (n, o, vt, vth) :
(n, o, vt, vth) `∗ (n′, o′, v′t, v

′
th) ∧ n′ ∈ T

5.3 ESTBC
The core idea of the extension-type STBC (ESTBC) model

is replacing the 4 nodes that represent a shared state in the
WSTBC model by a single special-purpose node. This is
a change at the syntactical level and instead of rephrasing
large parts of the WSTBC definitions, we present the core
differences between ESTBC and WSTBC models. Language
restrictions, facts and semantics then hold analogously.
The node set N of an ESTBC is defined as the union {s0}∪
ST ∪ DEC ∪ SBTA ∪ T where ST denotes a set of shared
states as introduced in section 4.1. Compared to the defini-
tion of WSTBC, the node sets FORK, JOIN and SEBTA are
missing as these are needed only for representing a shared
state in an ebBP compliant way. Conflating the WSTBC-

WSTBC ESTBC

→Start →Start⊆ s0 × {tt} × ST and
∣∣→Start

∣∣ = 1

→ST1 No correspondence

→ST3 No correspondence

→Terminal via →Route′
and →Timeout′

→ST2 No correspondence

→Trigger →Trigger⊆ ST× {tt} × SBTA

→Eval Identical

→Update →Update⊆ SBTA× {tt} × F× ST

→Route →Route⊆ DEC× 2G \ gto × F× ST

→Route →Route′
⊆ DEC× 2G \ gto × T

→Timeout →Timeout⊆ ST× gto × ST

→Timeout →Timeout′⊆ ST× gto × T

Table 1: WSTBC/ESTBC Transition Relations

based shared state components to a single element also in-
fluences some other elements. In particular, ebBP’s toBusi-
nessStateRef/fromBusinessStateRef constraint(cf. [27] sec.
3.8.2) has been dropped in order to allow for linking to
shared states. Consistently, empty BTAs are not needed
for linking to final states (T) any more. Instead, terminal
nodes are reached in ESTBCs directly from STs or Deci-
sion nodes. Also, as the reset of timeout values cannot be
deduced any more from whether the first or third node of
a shared state component is the target of a link, this in-
formation is explicitly encoded into the links. Some ele-
ments therefore have an additional flag f ∈ F = {tt, ff}
that indicates whether the final state targeted at shall reset
its timer or not. Table 1 compares WSTBC and ESTBC
transition relations where the left column names WSTBC
relations and the right column describes the correspond-
ing ESTBC definition The relation names have not been
changed for emphasizing the semantic similarity and ‘gto’ is
used as abbreviation for {(XPath1, timeout)}. Finally, the
φ function that maps every shared state to its corresponding
timeout value is now defined on ST→ N0 ∪ {−1} instead of
FORK→ N0 ∪ {−1}.

12

The translation of ESTBCs into WSTBCs is presented using
a pseudo-algorithm (algorithm objects 1 and 2). The basic
idea of the algorithm is first translating the input ESTBC’s
shared states and terminal nodes and associating these with
the EmptyBTAs that have been generated during transla-
tion. During translation of the transition relation elements,
references to the input ESTBC’s shared states and terminal
nodes then are mapped accordingly.

input : A valid ESTBC ebc to be transformed
output : A valid WSTBC wbc
// map data structures for already mapped nodes

variables : stMap<ST,SEBTA>; tMap<T,SEBTA>
algorithm:

// copy components that remain unchanged

1 wbc.R = ebc.R;
2 wbc.s0 = ebc.s0;
3 wbc.DEC = ebc.DEC;
4 wbc.SBTA = ebc.SBTA;
5 wbc.T = ebc.T;
6 wbc.G = ebc.G;

7 wbc.→Eval = ebc.→Eval;

// Create empty BTAs before terminal nodes

8 foreach t in ebc.T do
9 et = createEmptyNode();

10 tMap.add(t,et);

11 wbc.→Terminal.add((et,{tt},t));

12 end

// Translate shared states

13 foreach st in ebc.ST do
14 eb = createEmptyNode();
15 ei = createEmptyNode();
16 j = createJoinNode();
17 f = createForkNode();
18 f .th = st.th;
19 wbc.SEBTA.add(eb);
20 wbc.SEBTA.add(ei);
21 wbc.JOIN.add(j);
22 wbc.FORK.add(f);

23 wbc.→ST1.add((eb,{tt},j));

24 wbc.→ST2.add((j,{tt},ei));

25 wbc.→ST3.add((ei,{tt},f));
26 stMap.add(st,eb);

27 end

// Translate Transitions

28 foreach (n1,g,n2) in ebc.→Start do
29 eb = stMap.get(n2);

30 wbc.→Start.add((n1,g,eb));

31 end
// continue...
Algorithm 1: ESTBC to WSTBC Conversion: part 1

6. INTEGRATION ARCHITECTURE
This section describes the proposed integration architec-

ture for realizing B2Bi because it provides a proper basis
for the derivation of BPEL orchestration models from ebBP
choreographies. The application of one BPEL process per
integration partner, as opposed to applying a single central

// ...continue

1 foreach (n1,g,n2) in ebc.→Trigger do
2 f = nodef(parentST(stMap.get(n1)));

3 wbc.→Trigger.add((f ,g,n2));

4 end

5 foreach (n1,g,r,n2) in ebc.→Update do
6 if r == true then
7 e = nodeb(parentST(stMap.get(n2)));
8 else
9 e = nodei(parentST(stMap.get(n2)));

10 end

11 wbc.→Update.add((n1,g,e));

12 end

13 foreach (n1,g,r,n2) in ebc.→Route do
14 if r == true then
15 e = nodeb(parentST(stMap.get(n2)));
16 else
17 e = nodei(parentST(stMap.get(n2)));
18 end

19 wbc.→Route.add((n1,g,e));

20 end

21 foreach (n1,g,n2) in ebc.→Route′
do

22 e = tMap.get(n2);

23 wbc.→Route.add((n1,g,e));

24 end

25 foreach (n1,g,n2) in ebc.→Timeout do
26 f = nodef(parentST(stMap.get(n1)));
27 e = nodeb(parentST(stMap.get(n2)));

28 wbc.→Timeout.add((f ,g,e));

29 end

30 foreach (n1,g,n2) in ebc.→Timeout′ do
31 f = nodef(parentST(stMap.get(n1)));
32 e = tMap.get(n2);

33 wbc.→Timeout.add((f ,g,e));

34 end
35 return wbc;

Algorithm 2: ESTBC to WSTBC Conversion: part 2

BPEL process, is proposed because central IT infrastruc-
ture is assumed not to be available by integration partners
or simply not intended. According to [44] this solution (ap-
parently) scales better than using one single BPEL process
and therefore seems to support a broader range of B2Bi sce-
narios. Further, B2Bi projects usually have to consider the
investments of integration partners in existing IT infrastruc-
ture and therefore have to address the problem of interfacing
with existing systems. If a B2Bi project simply automates
an existing process then there is a high probability that inte-
gration partners already have systems in place for evaluating
business documents, taking business decisions and capturing
real-world events such as “a new order has to be placed”.
Therefore, the application of so-called control processes that
separate the message flow of a collaboration from the ac-
tual business logic is proposed. It is the control processes’
task to ensure that the message flow at runtime conforms to
the choreography defined. The actual business logic is en-
capsulated in so-called backend services that wrap existing
systems. This separation of concerns is also advantageous
in terms of software lifecycle management because the inte-

13

gration partners’ processes can be generated such that they
do not have to be adapted after generation. This approach
is also applicable for an integration partner that does not
yet have systems implementing business logic. Note, that
this work focuses on the message flow among the control
processes and backend services while, clearly, there’s much
more to a B2Bi project, e.g., data mappings and adaptations
of business functions.

6.1 Message Flow
The core task in describing the message flow between con-

trol processes and backend services is the mapping of BTAs.
The flow of BusinessCollaborations can then be derived by
repeating the message flow of the respective BTAs according
to the ebBP choreography.
Figure 6 uses a UML sequence diagram to show an ide-
alized flow of a BTA that exchanges two documents and
employs both ebBP ReceiptAcknowledgements (RA) and
AcceptanceAcknowledgements (AA) as accompanying busi-
ness signals. BTAs that only exchange one business doc-
ument or do not employ business signals can be mapped
analogously. Figure 6 distinguishes between the requesting

Figure 6: Idealized message flow of a BTA

role for the integration partner who sends the first business
document of the BTA and the responding role for the sender
of the reply business document. A WSTBC’s integration
partner roles can be mapped to these stereotypic BTA roles
by means of the requestor and responder functions defined
in section 5 The message flow of the BTA starts out with
the backend of the requesting role capturing the real world
event that a new BTA has to be performed and thus sends
the request BusinessDocument (BD) to the requesting role’s
control process. The latter then passes the Request BD on
to the responding party’s control process that subsequently
sends the BD to the responding party’s backend services for
obtaining a RA and an AA or the corresponding exceptions
(RAE and AAE). These business signals are then sent back

to the requesting role’s control process for indicating that
the request BD is readable and has been accepted for busi-
ness processing (cf. [27]). The same procedure is afterwards
performed for the response BD using exchanged roles.
After having exchanged all business documents and business
signals, both control processes call their backend services for
evaluating the outcome of the BTA according to the mes-
sages exchanged. Clearly, each integration partner has to
apply the same evaluation rules agreed upon in the ebBP
choreography. Therefore, the work at hand employs ebBP
C onditionGuardValues (CGV) and ebBP DocumentEnve-
lopes (DE), though for many business collaborations more
sophisticated means will be necessary. A possible solution
may be the definition of Schematron3 files and thus it is as-
sumed that such an agreement can be made.
Apart from deciding which shared state to switch to after
a BTA, state changes have to be performed. We propose
that such state changes are not performed until the end of a
BTA. In order to perform state changes that are consistent
among integration partners, distributed agreement has to be
achieved. The realization of a BTA makes a step towards
distributed agreement by applying business signals for ex-
cluding some error cases, but some business scenarios may
require true distributed commitment. Though this is not yet
implemented there are solutions to this problem available.
One solution is to simply map the well-known Two-Phase-
Commit protocol (2PC) to Web Services where the subject
of agreement would be that all BTA messages have been ex-
changed (see [40] for details). Alternative solutions could be
based on standards such as WS-ReliableMessaging v1.24 or
Web Services Transaction v1.25.

6.2 BPEL and WSDL Artifacts
As pointed out above, this work proposes the generation

of BPEL processes for implementing control processes and
WSDL interfaces for encapsulating business logic. Espe-
cially the WSDL files for backend services may contain sen-
sitive information, e.g., endpoint references, that should be
hidden from the integration partner. Therefore, the struc-
ture of BPEL and WSDL files as depicted in figure 7 is pro-
posed. Horizontal gray bars represent WSDL file types, the
black squares in such a gray bar represent multiple copies
of the same WSDL file. The vertical bars without filling
show WSDL-files grouped together in sub packages, either
for the purpose of providing a backend interface or a control
process.

An ebBP business collaboration results in one BPEL pro-
cess (RoleX.bpel) per participating party and several WSDL
interfaces. common msg state.wsdl contains the definition
of the collaboration’s shared states and defines a WSDL
message for communicating these. stateReceiverX.wsdl im-
ports common msg state.wsdl and moreover defines the WS
DL portType as well as the service definition and part-
nerLinkType of the Web Service (one per participating
party) used for notifying the backend about the current pro-
cess state. In figure 7, the two grey bars denoted stateRe-
ceiverX.wsdl represent the same WSDL file except for the
port addresses that are used for signaling process states
which are partner specific.
Further, for each BPEL process, RoleX.wsdl and RoleX back

3http://www.iso.org/PubliclyAvailableStandards
4http://www.oasis-open.org/committees/ws-rx/
5http://www.oasis-open.org/committees/ws-tx

14

http://www.iso.org/PubliclyAvailableStandards
http://www.oasis-open.org/committees/ws-rx/
http://www.oasis-open.org/committees/ws-tx

Figure 7: WSDL import relations

end.wsdl are defined. RoleX.wsdl contains all portTypes,
bindings and service definitions required for inter-process
communication, while RoleX backend.wsdl contains compo-
nents for communication that is triggered by the backend
system. Furthermore, these WSDL-files contain all related
partnerLinkTypes, bindings, service definitions and variable
properties. Both import the common message WSDL file
(common msg <BTA-NameID>.wsdl) generated from ev-
ery BTA in the business collaboration to be implemented. If
a participating party never is the initiator of a BTA through-
out a complete collaboration, the RoleX backend.wsdl only
contains the WSDL definitions tag without further con-
tent or document imports.

A BTA results in three different WSDL files. Two RoleX c
ommon <BTA-NameID>.wsdl files that contain portType,
binding, service definition, partnerLinkType and variable
properties and import the aforementioned common msg <B
TA-NameID>.wsdl containing common Types and Messages.
Exactly the same common msg <BTA-NameID>.wsdl file
is distributed over the entire process to ensure seamless
message routing while hiding system internal knowledge like
endpoint references (in RoleX common <BTA-NameID>.w
sdl) from the business partners. Together, RoleX common
<BTA-NameID>.wsdl and common msg <BTA-NameID>

.wsdl form the interface for a role specific backend Web Ser-
vice (per BTA), indicated by vertical bars without filling.

Altogether, each BPEL process imports common msg sta
te.wsdl as well as the party specific WSDL files stateRe-
ceiverX.wsdl, RoleX.wsdl and RoleX backend.wsdl. More-
over, the party specific WSDL interface generated for each
BTA (RoleX common <BTA-NameID>.wsdl, common msg
<BTA-NameID>.wsdl) is imported.

7. ebBP TO BPEL TRANSLATION
A WSTBC is translated into two orchestrated WS-BPEL

processes using a two-stage procedure. Firstly, the control
flow of a WSTBC is translated, whereas a placeholder for
each BTA with its subsequent Decision is inserted. Then,
each of these placeholders is replaced with the respective
WS-PBEL code. The overall procedure is depicted in algo-
rithm 3 and described in more detail in the following para-
graphs. Thereby, each write* function takes the reference
to the file containing the WS-BPEL process of a role r∈R
as first parameter. All other parameters are function spe-
cific. Note that each of the write* functions appends its
WS-BPEL code to the end of the WS-BPEL process defini-
tion file specified in the first parameter.

The translation algorithm begins with the insertion of the
WS-BPEL code required before being able to insert the WS-
BPEL translation of the actual control flow. This code in-
cludes the import of required WSDL interfaces (c.f. sub-
section 6.2), the specification of partnerLinks, the dec-
laration of global variables such as the ones containing
the process state, as well as the specification of a busi-
ness document independent correlationSet. Further, col-
laboration timeouts are handled and the so-called internal
process state is initialized with the nameID of the shared
state which can be reached from the initial state (nameID
of parentST (out(wbc.s0))). Finally, the central while loop
switching over all shared states is prepared. Listing 3 shows
a corresponding WS-BPEL snippet.

Listing 3: BPEL output of writeBPELHeader func-
tion

1 <process ... name="UseCase">
2 <!-- WSDL imports here -->
3 <!-- parterLinks here -->
4 <!-- variables here -->
5 <!-- correlation set here -->
6 <scope name="UseCase">
7 <eventHandlers >
8 <onAlarm >
9 <!-- collaboration timeout handling -->

10 </onAlarm >
11 </eventHandlers >
12 <sequence >
13 <assign >
14 <copy>
15 <from>
16 <literal >
17 <wsdlDoc:stateType >{first state nameID}
18 </wsdlDoc:stateType >
19 </literal >
20 </from>
21 <to>$processState_internal </to>
22 </copy>
23 </assign >
24 <while>
25 <condition >’true’</condition >
26 <sequence >

After initializing the two WS-BPEL processes, the shared
state which can be reached from the initial state is trans-

15

input : A valid WSTBC wbc to be transformed
output : Two orchestrated BPEL processes BPELprocesses<wbc.r1.bpel, wbc.r2.bpel>
algorithm:

1 BPELprocesses<writeBPELHeader(wbc.r1.bpel, parentST(out(wbc.s0))), writeBPELHeader(wbc.r2.bpel, parentST(
out(wbc.s0)))>;

2 BPELprocesses<writeBPELStateProlog(wbc.r1.bpel, parentST(out(wbc.s0)), tt), writeBPELStateProlog(wbc.r2.bpel,
parentST(out(wbc.s0)), tt)>;

3 foreach link in out(nodef(parentST(out(wbc.s0)))) do
4 BPELprocesses<writeBTA+DECplaceholder(wbc.r1.bpel, link, out(link)), writeBTA+DECplaceholder(wbc.r2.bpel,

link, out(link))>;

5 end
6 BPELprocesses<writeBPELStateEpilog(wbc.r1.bpel), writeBPELStateEpilog(wbc.r2.bpel)>;

7 foreach st in wbc.ST | st 6= parentST(out(s0)) do
8 BPELprocesses<writeBPELStateProlog(wbc.r1.bpel, st, ff), writeBPELStateProlog(wbc.r2.bpel, st, ff)>;
9 foreach link in out(nodef(st)) do

10 BPELprocesses<writeBTA+DECplaceholder(wbc.r1.bpel, link, out(link)),
writeBTA+DECplaceholder(wbc.r2.bpel, link, out(link))>;

11 end
12 BPELprocesses<writeBPELStateEpilog(wbc.r1).bpel, writeBPELStateEpilog(wbc.r2.bpel)>;

13 end

14 foreach t in wbc.T |∃(nk, tt, t)∈ctrlFlow(wbc)∧∃(nl, g, nk)∈ctrlFlow(wbc) do
15 BPELprocesses<writeBPELTerminalCode(wbc.r1.bpel, t), writeBPELTerminalCode(wbc.r2.bpel, t)>;
16 end

17 BPELprocesses<writeBPELProcessEpilog(wbc.r1.bpel), writeBPELProcessEpilog(wbc.r2.bpel)>;

18 BPELprocesses<replaceBTA+DECplaceholders(wbc.r1.bpel), replaceBTA+DECplaceholders(wbc.r2.bpel)>;

19 return BPELprocesses<wbc.r1.bpel, wbc.r2.bpel>;
Algorithm 3: WSTBC to WS-BPEL translation algorithm

lated first before translating all remaining ones. The only
difference between the translation of the first and the re-
maining shared states is that the execution of one of the
BTAs admissible from the first shared state creates a new
process instance (createInstance="yes"). The translation
of a shared state is carried out in three steps: Firstly, a
so-called state prolog providing the functionality for state
timeout handling is added (listing 4). Secondly, the place-
holders for all BTAs with attached Decisions (cf. listing
5) admissible from the respective shared state are inserted.
Finally, a so-called state epilog (c.f. listing 6) closes all re-
maining open tags related to the shared state WS-BPEL
code.

Listing 4: BPEL output of writeBPELStateProlog
function

1 <if>
2 <condition >$processState_internal = ’{state

nameID}’</condition >
3 <scope name="{state nameID}_Timeout_Scope">
4 <faultHandlers >
5 <catch faultName="StateTimeout">
6 <empty />
7 </catch>
8 </faultHandlers >
9 <scope name="{state nameID}_Scope">

10 <eventHandlers >
11 <onAlarm >
12 <for>’P6D’</for>
13 <scope>
14 <sequence >
15 <assign >
16 <copy>
17 <from>
18 <literal >
19 <wsdlDoc:stateType >{nameID of state

reached in case of state
timeout}</wsdlDoc:stateType >

20 </literal >
21 </from>
22 <to>$processState_internal </to>
23 </copy>
24 </assign >
25 <throw faultName="StateTimeout" />
26 </sequence >
27 </scope>
28 </onAlarm >
29 </eventHandlers >
30 <sequence >
31 <assign >
32 <copy>
33 <from>
34 <literal >
35 <wsdlDoc:stateType >{state inner entry

nameID}</wsdlDoc:stateType >
36 </literal >
37 </from>
38 <to>$processState_internal </to>
39 </copy>
40 </assign >
41 <while>
42 <condition >$processState_internal =
43 ’{state inner entry nameID}’
44 </condition >
45 <sequence >
46 <assign >
47 <copy>
48 <from>
49 <literal >
50 <wsdlDoc:stateType >{state nameID}
51 </wsdlDoc:stateType >
52 </literal >
53 </from>
54 <to>$processState </to>
55 </copy>
56 </assign >
57 <invoke operation="dropProcessState" ..

16

inputVariable="processState" />
58 <!-- createInstance ="yes", if second

parameter of function is true ,
createInstance ="no" otherwise -->

59 <pick createInstance="yes">

In order to implement the shared state timeout behaviour
described in section 5 in a WS-BPEL standard compliant
manner, two distinct variables for the process state are nec-
essary. The processState_internal variable is used for in-
ternal purposes only and governs the execution of the WS-
BPEL processes according to the ebBP process definition.
The second one, processState, is used to communicate the
state of a collaboration instance to the collaboration part-
ners. Note that the state is assigned to processState only
after a WS-BPEL process already is in the respective state.
Besides the nameIDs of all shared states of a business collab-
oration which constitute all possible values of processState,
processState_internal also includes the nameIDs of all
timer-preserving nodei(st) of all shared states st as possible
values. It is important to know that in WS-BPEL, a scope
in which a fault occurred is considered to have completed
unsuccessfully [25]. Throwing a fault terminates all scopes
this fault is thrown in or passed through until it is han-
dled in some scope. Hence, if a state timeout is reached,
the nameID of the state specified in the respective timeout
linkTo is assigned to processState_internal and a fault
terminating all scopes not handling it is thrown. The out-
most scope of the WS-BPEL code for a shared state handles
the fault and subsequently also terminates. Thus, the pro-
cess switches to the shared state specified in the timeout
linkTo. If a Decision attached to an admissible BTA of a
shared state links to nodei(st) of that shared state st, the
process remains in that state without resetting the timer
due to the while-loop. In contrary, if that Decision links
to nodej(st) of the shared state st, the next iteration of the
while-loop switching over all shared states is triggered, and
the timer of the shared state is reset consequently.

Listing 5: BPEL output of
writeBTA+DECplaceholder function

1 <empty name="{BTA nameID }###{ DECISION NameID}"
/>

Once the state prolog for a state is appended, a place-
holder for each BTA with attached Decision admissible from
the respective shared state is added. These placeholders are
replaced by WS-BPEL code later in the translation proce-
dure. The state epilog finally closes all open WS-BPEL tags
corresponding to the translation of a shared state.

Listing 6: BPEL output of writeBPELStateEpilog
function

1 </pick>
2 </sequence >
3 </while>
4 </sequence >
5 </scope>
6 </scope>
7 </if>

After translating all shared states, all terminal states need
to be translated as well. Thereby, the WS-BPEL code de-
picted in listing 7 is inserted for each terminal state refer-
enced by a Decision or a timeout linkTo of a shared state.
As in every shared state, the process state is pushed to the
backend system using the invoke construct.

Listing 7: BPEL output of writeBPELTerminalCode
function

1 <if>
2 <condition >$processState_internal = ’{

terminal state nameID}’</condition >
3 <sequence >
4 <assign >
5 <copy>
6 <from>
7 <literal >
8 <wsdlDoc:stateType >{terminal state

nameID}<wsdlDoc:stateType >
9 </literal >

10 </from>
11 <to>$processState </to>
12 </copy>
13 </assign >
14 <invoke operation="dropProcessState" ..

inputVariable="processState" />
15 <exit/>
16 </sequence >
17 </if>

In the next step, all open WS-BPEL tags of the entire
process (c.f. listing 8) need to be closed.

Listing 8: BPEL output of writeBPELProcessEpilog
function

1 </sequence >
2 </while>
3 </sequence >
4 </scope>
5 </process >

Before ending the translation procedure, all placeholders
for BTAs and attached Decisions need to be replaced by the
respective WS-BPEL code. As the work at hand focuses
on the introduction of shared states in modeling ebBP busi-
ness collaborations, the translation of BTAs and Decisions
is depicted more briefly in the rest of this section.

Role BPEL Process Elements
- enclosing onMessage, receiving a

Initiator triggering message from integration
partner or backend system

+ - enclosing scope for complete BTA
- all variables required for the ebBP

Responder Requesting-/RespondingBA and the ebBP
Decision

- catch blocks for all ebBP failure types
containing the corresponding reaction as
specified in the ebBP
BusinessCollaboration

- catchAll block containing reaction as
specified in ebBP BusinessCollaboration
for AnyProtocolFailure

- onAlarm to implement the
T imeToPerform parameter specified for
the BTA

- sequence containing the BPEL code
for the ebBP constructs (in this order):
RequestingBA, RespondingBA, Decision.
For the respective production rules see
tables 3/4 and 5.

Table 2: BPEL production rules for ebBP Busi-
nessTransactionActivity

Tables 3/4 and 5 give an overview of the most important
WS-BPEL elements used to translate a BTA with an at-

17

tached Decision and indicate the purpose of their particular
usage. The elements are listed in the order of their occur-
rence in the WS-BPEL process. The table content corre-
sponds to a BTA that contains a ReceiptAcknowledgement
as well as an AcceptanceAcknowledgement signal. Further,
all timing parameters offered for a BTA by the ebBP specifi-
cation [27] are set. If only some or none of the signals for and
parameters of a BTA are specified, the BPEL translation is a
corresponding subset of the depicted one. As the mapping of
a RespondingBusinessActivity is analogous to a Requesting-
BusinessActivity, only a RequestingBusinessActivity is de-
scribed here. An occurrence of an onAlarm based timeout in
combination with throwing a fault terminates the BTA and
is handled by the faultHandlers of the scope enclosing the
BPEL code of a BTA. ReceiptAcknowledgement/-Exception
(RA/RAE) and AcceptanceAcknowledgement/-Exception (AA
/AAE) are processed concurrently as suggested by the ebBP
specification ([27], sec. 3.4.9.3.3). A process tries to get

Role BPEL Process Elements
Initiator - enclosing scope

+ - enclosing flow for concurrent processing
Responder of RA/RAE and AA/AAE

RA / RAE
Initiator - enclosing while for trying to get a valid

RA/RAE until ebBP retryCount is exceeded
- scope to encapsulate RA/RAE handling
- catch block for RAE handling
- invoke to check RAE validity using the

backend system
- throw to throw ebBP AnyProtocolFailure

in case no valid RAE was received and
ebBP retryCount is exceeded

- throw to throw ebBP RequestReceiptFailure
in case of a valid RAE

- catchAll block for technical failure (TF)
handling

- rethrow to forward TF to enclosing scope
if ebBP retryCount is exceeded

- onAlarm to implement ebBP
t imeToAcknowledgeReceipt

- throw ebBP AnyProtocolFailure if ebBP
retryCount is exceeded

- invoke to forward Business Document
(BD) to and get a RA/RAE from Responder

- invoke to check RA validity using the
backend system

Responder - enclosing scope
- catch block for RAE handling
- reply construct to forward RAE to Initiator
- throw ebBP RequestReceiptFailure in case

of a RAE
- onAlarm to implement ebBP

t imeToAcknowledgeReceipt
- invoke to forward BD to and get a

RA/RAE from backend system
- reply to forward RA to Initiator

Table 3: BPEL production rules for ebBP Request-
ingBusinessActivity (1)

a valid RA/RAE by sending the corresponding BD to the
process of the integration partner until the specified ebBP

Role BPEL Process Elements
AA / AAE

Initiator - enclosing while to wait for valid AA/AAE
- scope to encapsulate AA/AAE handling
- catch block to forward ebBP

RequestAcceptanceFailure faults to
enclosing scopes

- catchAll block to handle TF
- empty to wait for an AA/AAE despite of TFs
- onAlarm to implement ebBP

t imeToAcknowledgeAcceptance
- pick to receive either AA or AAE
- invoke to check AA/AAE validity using

the backend system
- throw ebBP RequestAcceptanceFailure in

case of a valid AAE
Responder - enclosing scope

- catch block for handling AAE
- invoke to forward AAE to Initiator
- throw ebBP RequestAcceptanceFailure in

case of an AAE
- onAlarm to implement ebBP

t imeToAcknowledgeAcceptance
- invoke to get AA/AAE from backend system
- invoke to forward AA to Initiator

Table 4: BPEL production rules for ebBP Request-
ingBusinessActivity (2)

retryCount is exceeded or a timeout occurs. Further, if both
signal types are used, it waits to receive a valid AA/AAE un-
til the occurrence of a timeout. At the end of the BTA map-
ping, an ebBP Decision is realized by using an invoke for
querying the backend services for the evaluation of the lat-
est business document exchanged, the processState internal
variable is then set accordingly. As described earlier, this
may lead to a switch to another shared state within the
next iteration of the use case’s while loop.

Role BPEL Process Elements
Initiator - invoke to send BD of RespondingBA to

+ backend system in order to get an
evaluation

Responder - if no RespondingBA exists, BD of
RequestingBA is used

- if and assign statements to determine
and switch to next process state

Note that C onditionGuardValues are
evaluated before DocumentEnvelopes.

Table 5: BPEL production rules for ebBP Decision

8. EVALUATION
The evaluation of this work concerns three main areas.

Most important is the practical feasibility of the ebBP-2-
BPEL translation algorithm assuming the integration archi-
tecture introduced in section 6. Further, the computational
complexity of the ESTBC-WSTBC conversion and ebBP-2-
BPEL translation algorithms is analyzed. Finally, the pos-
sible reduction of extensional complexity using ESTBCs in-
stead of WSTBCs is discussed.

18

For evaluating the feasibility of the proposed ST-based
ebBP-BPEL translation approach a translator has been writ-
ten in the Java language; the main API used for that was
the Streaming API for XML (StAX6). StAX does not re-
quire to load the complete XML document to be processed
into memory and therefore it is theoretically possible to pro-
cess arbitrarily large ebBP choreographies. In practice, this
is only helpful in case the generated BPEL processes can
still be executed on BPEL engines. On the other hand,
the application of StAX is more laborious than using DOM
based APIs like JAXB7. Approximately 14000 method lines
of code have been written to implement the translator. Less
code may have been needed using other libraries like DOM
or other technologies like XSLT. For the approach presented
here, the choice of technology for implementing the transla-
tor is of minor importance.
As regards the feasibility of translating arbitrary valid WST-
BCs, please note that directed graphs without concurrency
basically are state machines with multiple types of nodes.
A valid WSTBC only contains Fork nodes of type ‘XOR’
and therefore is a directed graph without concurrency. The
implementing BPEL processes use a global while loop for
switching across a WSTBC’s STs using a global variable for
determining the current ST. Once a timeout occurs or a BTA
has been performed that results in a ST change, this global
variable is assigned accordingly and the new ST is reached
in the next iteration of the global while loop. Such a BPEL
process essentially amounts to the implementation of a state
machine. The use case of this work (section 3) can be trans-
lated in full and produces fully BPEL compliant process
descriptions. Translating the use case takes approximately
45 seconds using a Centrino duo 1,8GHz and 2GB RAM.
Note that the produced BPEL processes are immediately
ready for deployment as the incorporation of business logic
is allowed for by predefined interfaces (cf. section 6.1). The
BPEL processes created have been tested using the Apache
ODE 1.2 BPEL engine and the Apache Axis2 1.4 Web Ser-
vice stack. For the backend services described above dummy
Web Services have been implemented that emulate business
logic by forwarding decisions to the user. Figure 8 shows
the Seller role deciding whether to accept an order in full
(Accepted) or to defer its decision (Pending). Accordingly,
figure 9 shows the notification that ST Contract has been
entered after the user selected the Accepted option. The

Figure 8: Seller deciding upon quote request

use case from section 3 could not be performed on the se-
lected platform in full due to an ODE bug in handling whiles
in combination with picks which resulted in the situation
that a shared state’s while element can only be entered once.
Thus, though every shared state of the use case could be

6http://jcp.org/en/jsr/detail?id=173
7http://jcp.org/en/jsr/detail?id=222

Figure 9: Seller entering state Contract

reached there were two states that could not be followed-on
with a “normal” termination of the process.
In practice, an important question is the validity of the de-
fined assumption that performing a BTA “either leads to
an agreed-upon result or an protocol failure” defined in sec-
tion 5. This is problematic because integration partners
are assumed to perform BTAs collaboratively using sepa-
rate BPEL processes. This introduces the problem of com-
munication over unreliable media. Even worse, BTAs may
require the realization of several B2Bi-related security fea-
tures. Clearly, this issue could be attacked at the application
level by applying distributed commit protocols and using
digital encryption/signature facilities, but leveraging com-
munication infrastructure facilities is more desirable. In the
Web services arena, a set of QoS add-ons has emerged that
frequently is denoted as WS-*. In [1] and [5], it has been
proved that the combination of WS-ReliableMessaging [32]
and WS-Security [28] (and some more related standards) can
be used to implement fundamental security and reliability
features in a mutual way, i.e., that both integration partners
determine the same result of message exchanges. Agreement
on BTA results then can be derived from that.
For the selected platform, the use of WS-ReliableMessaging
(using Apache Sandesha28) and WS-Security (using Apache
Rampart9) has been considered for implementing QoS fea-
tures. Though it was possible to offer BPEL processes as se-
cure and reliable Web Services, invoking other Web Services
from BPEL processes in a reliable and secure manner was
not possible. So the application of these standards has been
canceled. In different work, the application of WS-* to simi-
lar use cases has successfully been tested using the available
WS-* implementations for GlassFish10 [39]. In particular
it has been shown, that the use of WS-* standards can be
integrated into the ebBP-BPEL translation approach. In so
far, the assumption of mutually agreed upon BTA results
using Web services can be assumed to be realistic.
The main algorithms proposed in this work are the ESTBC-
WSTBC (section 5.3) conversion algorithm and the ebBP-
BPEL translation algorithm (section 7). As regards the
ESTBC-WSTBC algorithm, the computational complexity
is fairly low. If a hash-map data structure which provides
linear time access can be used and the number of nodes of
a ESTBC is n then the complexity of translating a ESTBC
into a WSTBC is linear, i.e., O(n). In practice the complex-
ity of parsing an input XML file and writing an output XML
file must be considered as well. The first one can easily be
done using standard tools. The second one is trivial as well
because the ebBP schema does not impose any restrictions

8http://ws.apache.org/sandesha/sandesha2/
9http://ws.apache.org/rampart/

10https://wsit.dev.java.net/

19

http://jcp.org/en/jsr/detail?id=173
http://jcp.org/en/jsr/detail?id=222
http://ws.apache.org/sandesha/sandesha2/
http://ws.apache.org/rampart/
https://wsit.dev.java.net/

on the ordering of Forks, Joins, BTAs, Decisions and ter-
minal nodes. The ebBP-BPEL translation algorithm also
scales well. As Joins and Forks are used for the representa-
tion of shared states only, the identification of shared states
takes at most one iteration across a WSTBC’s nodes. For
creating each resulting BPEL’s global while loop (lines 2-13
of algorithm 3) each ST is then visited once. Afterwards, the
placeholders for BTAs and the according Decisions can be
processed in the order they have been written to the BPEL
output processes and looking up the matching BTAs and
Decisions of the input WSTBC takes linear time as well if
these have been stored in the first iteration in a hashmap-
like data structure. This means that algorithm 3 also has
linear time complexity O(n) in terms of the number of nodes
n.
Finally, the complexity reduction achievable by using our
ebBP schema extension is assessed. At first sight, replacing
the ebBP schema compliant representation of a ST with the
more compact extension-based model as described in section
4.2 obviously leads to much more compact XML code. Ta-
ble 6 summarizes the reduction of extensional complexity for
this work’s use case. The lines of code (LOC) metric refers
to the representation of the ebBP BusinessCollaboration el-
ement and disregards the declaration of DocumentEnvelope
definitions as well as BusinessTransaction type definitions
that is the same for both types of ST representation. A more
valid approach to measure complexity that is not as depen-
dent on formatting is counting the ebBP elements needed
for representing nodes and transitions. The first column of
table 6 names the complexity metric/ebBP element consid-
ered and the other columns contain the measured values for
this work’s use case as well as the ratio of reduction. Note

Metric WSTBC ESTBC Reduction

LOC 787 591 ∼ 0.249

BTA 31 15 ∼ 0.516

Fork 7 0 1

Join 7 0 1

Decision 13 13 0

Success 1 1 0

Failure 1 1 0

ST 0 7 undefined

Sum of nodes 60 37 ∼ 0.383

ToLink 67 58 ∼ 0.134

FromLink 38 15 ∼ 0.605

Sum of links 105 73 ∼ 0.305

Table 6: WSTBC/ESTBC Complexity Comparison
(Use Case)

that the element reduction ratio depends on the collabora-
tion’s process structure. Considering the selected elements
above, the node reduction ratio can exactly be calculated
in terms of node sets via (3*|SHWSTBC | + |T|) / (|SBTA|
+ |SEBTA| + 2*|SHWSTBC | + |T| + |DEC|). In conse-
quence, the reduction ratio depends on the ratio of |SBTA|
to |SHWSTBC |. In the worst case, if there is only one ST
component and a very high number of BTAs that all are

admissible for that ST and either link back to that ST or
to a terminal node then the reduction ratio tends to 0. In
the best case, if there is only one BTA for some initializa-
tion and a very high number of STs that are reachable via
timeouts then the reduction ratio tends to (3*|SHWSTBC |)
/ (|SEBTA| + 2*|SHWSTBC |).
The reduction ratio of ToLinks/FromLinks cannot exactly
be calculated in terms of node sets because Decisions may
have a varying number of branches and a ST may or may not
have a timeout configured. Also, for STs without timeout
and with only one admissible BTA the ToLink to the fol-
lowing BTA must be configured twice to conform with ebBP
schema restrictions. Removable links can be calculated as
(4*|SHWSTBC | + |T|). For the calculation of the overall
number of links assume that every ST has a timeout con-
figured and that each Decision has three branches. Due to
ebBP’s toBusinessStateRef/fromBusinessStateRef restriction
every ToLink/FromLink must reference a BTA for WST-
BCs. The number of FromLinks then is (|SBTA| + |SEBTA|
+ |SHWSTBC |) because in every ST the first component is
connected twice. The number of ToLinks can be derived by
considering the different types of elements that link to BTAs
or EmptyBTAs, i.e., (1 + |SHWSTBC | + |JOIN| + |SBTA|
+ 3*|DEC| + (|BTA|-|DEC|)). The number of ToLinks in
Fork elements is captured by |SBTA| and (|SBTA|-|DEC|)
captures the number of BTAs that directly link back to the
source ST. Considering the relation between STs and its
components, the link reduction ratio can be calculated as
(4*|SHWSTBC | + |T|) / (1 + 3*|SBTA| + 5*|SHWSTBC |
+ T + 2*|DEC|). The best case/worst case analysis then is
similar as for the node reduction ratio.

9. RELATED WORK
In general, this work is about implementing B2Bi using in-

teracting partner processes. In so far, the work of standard-
ization institutions that specify how to perform BusinessTrans-
actions or similar concepts at runtime is related to our work.
For example, the so-called RosettaNet Implementation Frame-
work [38] specifies rules which define how to perform PIPs.
These standards, however, frequently do not allow for mod-
eling complex processes and typically do not offer the gener-
ation of executable implementations of control processes as
we do with our translator.
Modeling, analyzing and executing complex processes is a
core issue of workflow research. Frequently, analysis is per-
formed based on directed graphs or variants thereof. These
results are relevant because ebBP BusinessCollaborations
can be interpreted as directed graphs. Executing arbitrary
directed graphs is not easy as unsound models may lead
to deadlocks (e.g. an OR-Fork followed by an AND-Join) or
may not be executable by process engines that frequently do
not accept arbitrary graphs (e.g. BPEL is a block-structured
language). One way to attack this problem is imposing re-
strictions on directed graphs. In [17] so-called structured
workflows are described that are composed from pair-wise
matching control nodes, e.g., an AND-Fork with two branches
is matched by an AND-JOIN and control flow does not cross
the control flow branches. Similar approaches are also taken
by different research projects such as ADEPT [8]. Imposing
restrictions on graphs ensures soundness properties like ab-
sence of deadlocks and enables straightforward execution by
many process engines. If such restrictions are not accept-
able, analysis algorithms must be employed to decompose

20

graphs. [33] and [46] both target at identifying a hierar-
chy of components within (almost) arbitrary graphs. While
[33] identify components by looking for unique entry and
exit edges, [46] do so by searching for unique entry and exit
nodes. If all elements of a graph can be associated with
structured components, the mapping to BPEL (which is con-
sidered in both publications) is straightforward. Things be-
come more complex when a component’s structure cannot
be decomposed strictly hierarchically. For mapping such
unstructured components to BPEL, [33] suggests the use of
event-action rules that allow for directly representing arbi-
trary graphs by means of performing calls of a BPEL process
instance to itself that then are processed by BPEL event
handlers.
The work at hand follows the approach of imposing limi-
tations on the graphs that can be processed, most notably
concurrency is not supported. While this may be a signif-
icant limitation from a theoretic point of view, it enables
us to directly translate a large set of real-world processes
(cf. section 4) to our BPEL-based interaction architecture.
Further, banning concurrency may have a positive effect on
comprehensibility and agreement in the face of B2Bi sce-
narios with typically different personnel from different in-
tegration partners. This research question still has to be
investigated. Further, the work at hand is different by not
targeting at arbitrary workflows but B2Bi processes that
are to be implemented by local partner processes respecting
B2Bi QoS requirements like reliability and encryption.
The issue of using partner local processes for realizing col-
laborative processes also has been investigated in workflow
research. Issues like the conformance of local processes to
global process descriptions have been analyzed, among oth-
ers, in [45] from a conceptual point of view. While van der
Aalst and Weske [45] use Petri net technology to perform
analysis, other researchers like Bultan, Xu and Fu or Be-
natallah, Casati and Toumani use state machines [7] [4] or
collaboration diagrams [6].
In recent years, researchers also adopt more and more the di-
chotomy of choreography and orchestration to describe and
analyze collaborative processes. For example, Zaha et al.
[50] propose Let’s Dance as a language for modeling both,
choreographies and orchestrations. These more conceptual
approaches differ from our work in not using dedicated B2Bi
standards like ebBP and BPEL.
Several more technology driven approaches like [40] and [16]
derive BPEL from compositions of BTA-like interactions but
do not offer a B2Bi standards based choreography model.
As regards the use of standards for representing choreogra-
phies and orchestrations, there are several proposals for map-
ping WS-CDL choreographies to BPEL, e.g., [22] and [47].
These approaches differ from ours in using WS-CDL instead
of ebBP. While WS-CDL may be a good choice for many
choreographies due to its tight relationship with WSDL as
opposed to ebBP, we claim that ebBP is particularly useful
for B2Bi due to its better support for specifying QoS fea-
tures.
In [10], Decker et al. motivate the use of BPEL4Chor for
describing choreographies. In particular, 10 requirements
to be fulfilled by choreography languages are postulated.
These requirements mainly target at control flow definition
concepts, e.g., multi-lateral interactions. ebBP is blamed of
supporting bi-lateral interactions only. While this is true for
single BusinessTransactions, ebBP BusinessCollaborations

allow for defining more than two integration partners and
therefore ebBP supports multi-lateral interactions. ebBP is
also criticized for missing integration with orchestration lan-
guages. For a restricted class of ebBP choreographies, inte-
gration with BPEL is presented in the work at hand. Apart
from that, BPEL4Chor and ebBP are not directly compa-
rable. Both languages enable choreography definitions, but
while BPEL4Chor assumes service-based interactions ebBP
is a dedicated B2Bi standard based on the concept of Busi-
nessTransactions. BPEL4Chor is tightly related to BPEL
and thus ties a choreography definition to BPEL-based ex-
ecution. We consider BPEL to be a major implementation
technology for implementing BusinessCollaborations but at
the level of BusinessTransactions there should be a choice
among different implementation technologies like AS2 [24]
or ebMS [26, 29]. In practice, business document exchanges
are not always based on BPEL and Web services due to im-
plementation restrictions (existing implementations and in-
tegration partner systems) as well as legal restrictions (e.g.,
some customs authorities require the use of EDI). Tying a
B2Bi choreography to BPEL-based execution therefore is
not acceptable in many B2Bi scenarios. Moreover, ebBP al-
lows for the definition of B2Bi related QoS attributes. All
in all, we consider BPEL4Chor to be a promising proposal
for service-based choreographies and service-based B2Bi in-
teractions. For B2Bi interactions in general, ebBP seems to
be better suited.
Analyzing compatibility of interacting BPEL processes is re-
lated to the work at hand as automatically deriving BPEL
processes from common ebBP choreographies is one way
of ensuring compatibility. While this is a constructive ap-
proach, the problem may be tackled in an analytical way as
well, e.g., [20] analyze compatibility by means of defining
a BPEL semantics in terms of Petri nets. Related to this
are approaches like [48] and [2] that focus on analyzing con-
formance of orchestration models to choreography models
in an analytical way. Note that more general findings from
workflow research in general (cf. [45]) apply as well.
There are several contributions that translate dedicated B2Bi
or Web service choreography languages to BPEL as we do.
Most notably, Huemer and Hofreiter investigated this re-
search area. [18] also propose the translation of ebXML
BPSS to BPEL. Apart from being designed for BPSS 1.1,
[18] is different from our work in not applying a shared state
based modeling approach to ebBP and in not reporting on
a fully working translator. In [14], UMM BusinessTrans-
actions which are tightly related to ebBP BusinessTransac-
tions are translated into BPEL and in [15] state machines
for performing UMM BusinessTransaction are specified. In
both contributions, support for BusinessCollaborations is
not available. An interesting approach is presented in [13]
that proposes an UML profile for modeling the orchestra-
tion of multiple UMM BusinessTransactions of one integra-
tion partner. Such a model can then be transformed to
BPEL processes. This differs from the work at hand in ac-
tually transforming a UML orchestration (sometimes also
denoted as local choreography) into a BPEL orchestration.
The UML orchestration, in turn, is derived from one (or
more) UMM choreographies. Thereby, more partner-specific
logic is added to the UML orchestrations. In contrast to our
work, this constitutes an extra step in deriving BPEL pro-
cesses from choreographies. Interestingly, [13] also captures
collaboration state for routing the choreography but incor-

21

porates it in the model by using transition guards. Last, [13]
assumes UMM and consequently UML for modeling chore-
ographies whereas we expect the textual format ebBP. We do
not consider ebBP to be an alternative to visually modeling
business collaborations but rather as a common interchange
format that may be derived from various visual languages
and seems to be more suitable for further handling by anal-
ysis, transformation and execution machinery.

10. CONCLUSION AND FUTURE WORK
The main goal of this paper, i.e., showing that shared state

based ebBP models can be created in a standard compliant
manner and subsequently translated into BPEL orchestra-
tions has been achieved by describing a suitable modeling
concept and by implementing a prototypic ebBP to BPEL
translator. For usability, an ebBP schema extension for
shared states as well as a formalization of valid shared state-
based ebBP collaborations and their semantics has been de-
veloped. Shared states support the agreement function of
choreography models and allow for the definition of state
specific timeouts. They are beneficial for creating choreog-
raphy as well as orchestration models by offering natural
synchronization points and, finally, define the basis for sig-
naling the collaboration’s progress to process stakeholders.
Apart from introducing shared states into ebBP to BPEL
translations, an integration architecture for using the gen-
erated BPEL processes has been proposed which does not
require BPEL processes to be edited after generation. Com-
paring the size of the use case to the NES standard processes
it can further be stated that even collaborations of real-
world size can be processed. Tests using the BPEL engine
Apache ODE showed that the generated BPEL processes
can be executed to a large extent. Though BPEL engines
and Web Service standards addressing QoS features have not
yet reached their full potential, tests are promising that the
approach proposed may be applicable for real world B2Bis
in the future.
Nonetheless, there are limitations to the approach presented.
Extended control flow capabilities for multi-party interac-
tions, concurrency and hierarchical decomposition are desir-
able from a theoretic point of view. Future work therefore
comprises combining shared states with these concepts as
well as the assessment of what kind of models better suits
user needs. Also, modularization of resulting BPEL pro-
cesses for better maintainability and integration of non Web
service communication technologies as described in [43] is
needed. The same holds true for supporting QoS features
like reliability or security which are indispensable in the
B2Bi area. Results from [39] already have shown that this
is possible. Furthermore, a process model for applying the
approach within B2Bi projects should be defined, in partic-
ular when it comes to handling changes in the choreography.
As the practical findings of this work encourage the use of
ebBP to BPEL translations, more formal analysis and val-
idation features should be applied. In particular, the con-
formance of BPEL orchestrations to ebBP choreographies
and the compatibility between interacting BPEL processes
are to be investigated. Existing semantics for BPEL and
the ebBP semantics defined in this work provide the formal
basis for rigorous analysis.

11. REFERENCES

[1] M. Backes, S. Moedersheim, B. Pfitzmann, and
L. Vigano. Symbolic and cryptographic analysis of the
secure WS-ReliableMessaging scenario. In Proceedings
of Foundations of Software Science and Computational
Structures (FOSSACS), volume 3921 of Lecture Notes
in Computer Science, pages 428–445. Springer, March
2006.

[2] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and
C. Schifanella. Verifying the conformance of web
services to global interaction protocols: A first step. In
M. Bravetti, L. Kloul, and G. Zavattaro, editors,
EPEW/WS-FM, volume 3670 of Lecture Notes in
Computer Science, pages 257–271. Springer, 2005.

[3] A. Barros, M. Dumas, and A. H. M. T. Hofstede.
Service interaction patterns. In Proceedings of the 3rd
International Conference on Business Process
Management (BPM), Nancy, France, pages 302–318.
Springer Verlag, 2005.

[4] B. Benatallah, F. Casati, and F. Toumani.
Representing, analysing and managing web service
protocols. Data Knowl. Eng., 58(3):327–357, 2006.

[5] K. Bhargavan, R. Corin, C. Fournet, and A. D.
Gordon. Secure sessions for web services. ACM Trans.
Inf. Syst. Secur., 10(2):8, 2007.

[6] T. Bultan and X. Fu. Specification of realizable service
conversations using collaboration diagrams. Service
Oriented Computing and Applications, 2(1):27–39,
2008.

[7] T. Bultan, J. Su, and X. Fu. Analyzing conversations
of web services. IEEE Internet Computing,
10(1):18–25, 2006.

[8] P. Dadam and M. Reichert. The ADEPT project: a
decade of research and development for robust and
flexible process support. Computer Science - Research
and Development, 23(2):81–97, 2009.

[9] G. Decker, O. Kopp, F. Leymann, K. Pfitzner, and
M. Weske. Modeling service choreographies using
BPMN and BPEL4Chor. In CAiSE ’08: Proceedings
of the 20th international conference on Advanced
Information Systems Engineering, pages 79–93, Berlin,
Heidelberg, 2008. Springer-Verlag.

[10] G. Decker, O. Kopp, F. Leymann, and M. Weske.
Interacting services: From specification to execution.
Data & Knowledge Engineering, 68(10):946 – 972,
2009.

[11] A. Gunasekaran and E. W. T. Ngai. Information
systems in supply chain integration and management.
European Journal of Operational Research,
159(2):269–295, December 2004.

[12] B. Hofreiter and C. Huemer. Transforming UMM
Business Collaboration Models to BPEL. In
Proceedings of the OTM Workshop on Modeling
Inter-Organizational Systems (MIOS 2004), pages
507–519, Volume 3292 of Lecture Notes in Computer
Science, October 2004. Springer.

[13] B. Hofreiter and C. Huemer. A model-driven top-down
approach to inter-organizational systems: From global
choreography models to executable BPEL. In Joint
Conference on E-Commerce Technology (CEC’08) and
Enterprise Computing, E-Commerce, and E-Services

22

(EEE’008), Crystal City, Washington D.C., USA, 7
2008. IEEE.

[14] B. Hofreiter, C. Huemer, P. Liegl, R. Schuster, and
M. Zapletal. Deriving executable BPEL from UMM
business transactions. In IEEE SCC, pages 178–186.
IEEE Computer Society, 2007.

[15] C. Huemer and M. Zapletal. A state machine
executing UMM business transactions. In Proceedings
of the 2007 Inaugural IEEE International Conference
on Digital Ecosystems and Technologies (IEEE DEST
2007), Cairns (Australia), 2007. IEEE Computer
Society, IEEE Computer Society.

[16] R. Khalaf. From RosettaNet PIPs to BPEL processes:
A three level approach for business protocols. Data &
Knowlegde Engineering, 61(1):23–38, 2007.

[17] B. Kiepuszewski, A. H. M. ter Hofstede, and
C. Bussler. On structured workflow modelling. In
CAiSE ’00: Proceedings of the 12th International
Conference on Advanced Information Systems
Engineering, pages 431–445, London, UK, 2000.
Springer-Verlag.

[18] J.-H. Kim and C. Huemer. From an ebXML BPSS
choreography to a BPEL-based implementation.
SIGecom Exch., 5(2):1–11, 2004.

[19] D. M. Lambert and M. C. Cooper. Issues in supply
chain management. Industrial Marketing Management,
29(1):65 – 83, 2000.

[20] N. Lohmann, P. Massuthe, C. Stahl, and D. Weinberg.
Analyzing interacting WS-BPEL processes using
flexible model generation. Data Knowl. Eng.,
64(1):38–54, 2008.

[21] M. Madiesh and G. Wirtz. A top-down method for
B2B process design using SOA. In Proceedings of the
2008 International Conference on Software
Engineering Research & Practice, SERP 2008, July
14-17, 2008, Las Vegas Nevada, USA, pages 444–450,
2008.

[22] J. Mendling and M. Hafner. From WS-CDL
choreography to BPEL process orchestration. Journal
of Enterprise Information Management (JEIM).
Special Issue on MIOS Best Papers, 2006.

[23] J. T. Mentzer, W. DeWitt, J. S. Keebler, S. Min,
N. W. Nix, C. D. Smith, and Z. G. Zacharia. Defining
supply chain management. JOURNAL OF BUSINESS
LOGISTICS, 22(2):1–26, 2001.

[24] D. Moberg and R. Drummond. MIME-Based Secure
Peer-to-Peer Business Data Interchange Using HTTP,
Applicability Statement 2 (AS2). The Internet
Engineering Task Force (IETF), July 2005.

[25] OASIS. Web services business process execution
language (wsbpel).

[26] OASIS. ebXML Message Service Specification. OASIS,
2.0 edition, April 2002.

[27] OASIS. ebXML Business Process Specification Schema
Technical Specification. OASIS, 2.0.4 edition,
December 2006.

[28] OASIS. Web Services Security v1.1, February 2006.

[29] OASIS. ebXML Messaging Services Version 3.0: Part
1, Core Features. OASIS, October 2007.

[30] OASIS. Web Services Atomic Transaction
(WS-AtomicTransaction) version 1.1, July 2007.

[31] OASIS. Web Services Business Process Execution
Language, 2.0 edition, April 2007.

[32] OASIS. Web Services Reliable Messaging
(WS-ReliableMessaging) Version 1.2. OASIS,
February 2009.

[33] C. Ouyang, M. Dumas, A. H. M. ter Hofstede, and
W. M. P. van der Aalst. From BPMN process models
to BPEL web services. In ICWS ’06: Proceedings of
the IEEE International Conference on Web Services,
pages 285–292, Washington, DC, USA, 2006. IEEE
Computer Society.

[34] C. Peltz. Web services orchestration and
choreography. Computer, 36(10):46–52, 2003.

[35] C. Pflügler, A. Schönberger, and G. Wirtz. Introducing
partner shared states into ebBP to WS-BPEL
translations. In Proc. iiWAS2009, 11th International
Conference on Information Integration and Web-based
Applications & Services, 14.-16. December 2009,
Kuala Lumpur (Malaysia). ACM, December 2009.

[36] H. A. Reijers and W. M. van der Aalst. The
effectiveness of workflow management systems:
Predictions and lessons learned. International Journal
of Information Management, 25(5):458 – 472, 2005.

[37] F. Rosenberg, C. Enzi, A. Michlmayr, C. Platzer, and
S. Dustdar. Integrating quality of service aspects in
top-down business process development using
WS-CDL and WS-BPEL. In EDOC ’07: Proceedings
of the 11th IEEE International Enterprise Distributed
Object Computing Conference, page 15, Washington,
DC, USA, 2007. IEEE Computer Society.

[38] RosettaNet, www.rosettanet.org. RosettaNet
Implementation Framework: Core Specification,
v02.00.01 edition, March 2002.

[39] A. Schönberger, T. Benker, S. Fritzemeier, M. Geiger,
S. Harrer, T. Kessner, J. Schwalb, and G. Wirtz.
QoS-enabled business-to-business integration using
ebBP to WS-BPEL translations. In Proceedings of the
IEEE SCC 2009 International Conference on Services
Computing, Bangalore, India. IEEE, September 2009.

[40] A. Schönberger and G. Wirtz. Realising RosettaNet
PIP Compositions as Web Service Orchestrations - A
Case Study. In The 2006 International Conference on
e-Learning, e-Business, Enterprise Information
Systems, e-Government, & Outsourcing (EEE’06),
June 26-29 2006.

[41] A. Schönberger and G. Wirtz. Using Webservice
Choreography and Orchestration Perspectives to
Model and Evaluate B2B Interactions. In The 2006
International Conference on Software Engineering
Research and Practice (SERP’06), June 26-29 2006.

[42] A. Schönberger and G. Wirtz. Taxonomy on
consistency requirements in the business process
integration context. In Proceedings of 2008 Conf. on
Software Engineering and Knowledge Engineering
(SEKE’2008), Redwood City, California, USA, 1.-3.
July 2008. Knowledge Systems Institute.

[43] A. Schönberger and G. Wirtz. Using variable
communication technologies for realizing business
collaborations. In Proceedings of the 5th 2009 World
Congress on Services (SERVICES 2009 PART II),
International Workshop on Services Computing for
B2B (SC4B2B), Bangalore, India. IEEE, September

23

2009.

[44] C. Schroth, T. Janner, and V. Hoyer. Strategies for
cross-organizational service composition. In
MCETECH ’08: Proceedings of the 2008 International
MCETECH Conference on e-Technologies, pages
93–103, Washington, DC, USA, 2008. IEEE Computer
Society.

[45] W. M. P. van der Aalst and M. Weske. The p2p
approach to interorganizational workflows. In CAiSE
’01: Proceedings of the 13th International Conference
on Advanced Information Systems Engineering, pages
140–156, London, UK, 2001. Springer-Verlag.

[46] J. Vanhatalo, H. Völzer, and J. Koehler. The refined
process structure tree. Data Knowl. Eng.,
68(9):793–818, 2009.

[47] I. Weber, J. Haller, and J. A. Mülle. Automated
derivation of executable business processes from
choreograpies in virtual organizations. In In: F.
Lehner, H. Nösekabel, P. Kleinschmidt (eds.):
Multikonferenz Wirtschaftsinformatik 2006 (MKWI
2006), Band 2, XML4BPM Track, GITO-Verlag
Berlin, pages 313–327, Mar. 2006.

[48] W. L. Yeung. A formal basis for cross-checking ebxml
bpss choreography and web service orchestration. In
APSCC ’08: Proceedings of the 2008 IEEE
Asia-Pacific Services Computing Conference, pages
524–529, Washington, DC, USA, 2008. IEEE
Computer Society.

[49] J. Zaha, M. Dumas, A. ter Hofstede, A. Barros, and
G. Decker. Bridging global and local models of
service-oriented systems. Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on, 38(3):302 –318, may 2008.

[50] J. M. Zaha, A. P. Barros, M. Dumas, and A. H. M. ter
Hofstede. Let’s dance: A language for service behavior
modeling. In Proceedings of the 14th international
conference on cooperative information systems
(CoopIS’06), pages 145–162, Montpellier, France, 10
2006.

24

	1 Introduction
	2 Basics
	3 Use Case
	4 Informal ebBP Models
	4.1 ebBP Compliant Shared State Model
	4.2 ebBP Extension for Shared States
	4.3 Shared State-based Collaborations

	5 Formal ebBP models
	5.1 WSTBC
	5.2 WSTBC Execution Semantics
	5.3 ESTBC

	6 Integration Architecture
	6.1 Message Flow
	6.2 BPEL and WSDL Artifacts

	7 ebBP to BPEL translation
	8 Evaluation
	9 Related Work
	10 Conclusion and Future Work
	11 References

