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Abstract

The N-methyl-D-aspartate receptor (NMDAR) antagonists, phencyclidine (PCP), dizocilpine (MK-801), or keta-
mine, given subchronically (sc) to rodents and primates, produce prolonged deficits in cognitive function, includ-
ing novel object recognition (NOR), an analog of human declarative memory, one of the cognitive domains
impaired in schizophrenia. Atypical antipsychotic drugs (AAPDs) have been reported to improve declarative
memory in some patients with schizophrenia, as well as to ameliorate and prevent the NOR deficit in rodents
following scNMDAR antagonist treatment. While the efficacy of AAPDs to improve cognitive impairment in
schizophrenia (CIS) is limited, at best, and controversial, single doses of all currently available AAPDs so far
tested transiently restore NOR in rodents following scNMDAR antagonist treatment. Typical antipsychotic
drugs (APDs), e.g. haloperidol and perphenazine, are ineffective in this rodent model, and may be less effective
as treatments of some domains of CIS. Serotonergic mechanisms, including, but not limited to serotonin (5-HT)2A
and 5-HT7 antagonism, 5-HT1A, and GABA(A) agonism, contribute to the efficacy of the AAPDs in the
scNMDAR antagonist rodent models, which are relevant to the loss of GABA interneuron/hyperglutamate
hypothesis of the etiology of CIS. The ability of sub-effective doses of the atypical APDs to ameliorate NOR
in the scNMDAR-treated rodents can be restored by the addition of a sub-effective dose of the 5-HT1A partial
agonist, tandospirone, or the 5-HT7 antagonist, SB269970. The mGluR2/3 agonist, LY379268, which itself is
unable to restore NOR in the scNMDAR-treated rodents, can also restore NOR when given with lurasidone,
an AAPD. Enhancing cortical and hippocampal dopamine and acetylcholine efflux, or both, may contribute to
the restoration of NOR by the atypical APDs. Importantly, co-administration of lurasidone, tandospirone, or
SB269970, with PCP, to rodents, at doses 5–10 fold greater than those acutely effective to restore NOR following
scNMDAR treatment, prevents the effect of scPCP to produce an enduring deficit in NOR. This difference in
dosage may be relevant to utilizing AAPDs to prevent the onset of CIS in individuals at high risk for developing
schizophrenia. The scNMDAR paradigm may be useful for identifying possible means to treat and prevent CIS.

Received 17 April 2013; Reviewed 17 May 2013; Revised 17 July 2013; Accepted 17 July 2013

Key words: Antipsychotic, declarative memory, dopamine, GABA, glutamate, object recognition, phencyclidine,
schizophrenia, serotonin.

Introduction

Improving cognitive impairment in schizophrenia (CIS) is
critically important for improving functional outcome in
schizophrenia. An understanding of the main features
of CIS is essential to develop therapies which can prevent
or treat CIS. CIS is the product of neurodevelopmental
abnormalities, based upon genetic predispositions and
experiential factors, which may affect gene expression
(Faludi and Mirnics, 2011). CIS begins in early childhood

and adolescence, increases markedly during the pro-
dromal period of schizophrenia, and worsens after the
onset of psychosis (Saykin et al., 1991; Kremen et al.,
1994; Waddington et al., 1998; Niendam et al., 2006;
Kalkstein et al., 2010), and is a major contributor to poor
functional outcome in schizophrenia (Green et al., 2004).
Which cognitive domains are most affected and contri-
bute the most to poor outcome varies among patients
(Kenny and Meltzer, 1991; Saykin et al., 1991; Meltzer
and McGurk, 1999). It has been suggested that there is
a generalized cognitive factor which underlies CIS
(Dickinson et al., 2004). However, efforts to develop treat-
ments for a general cognitive factor underlying CIS have
usually been unsuccessful and would seem difficult to
reconcile with the marked variation in types and severity
of cognitive deficits seen in schizophrenia. Thus, a variety
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of mechanisms might be suspected as being responsible
for different components of CIS, requiring different
pharmacologic treatments. Indeed, some treatments for
some domains of cognition may impair other domains,
e.g. over stimulation of dopamine (DA) D1 receptors
(Horiguchi et al., 2011a).

It has been concluded, based mainly on the cognitive
data from the influential US-based CATIE clinical trial
(Keefe et al., 2007), that the typical and atypical APDs
(TAPDs, AAPDs), as well as a variety of drugs which
have been tested as augmenting agents to improve CIS,
e.g. glycine, D-serine, cholinesterase inhibitors, etc,
produce inconsequential effects for CIS (Buchanan et al.,
2007; Ibrahim and Tamminga, 2012; see Keefe and
Harvey, 2012 for review). This conclusion rejects the
evidence that both TAPDS and AAPDs produce clinically
significant cognitive benefits in some domains of cog-
nition, especially semantic memory, declarative memory
and speed of processing, in 25–50% of schizophrenia
patients, while improvements in working memory and
executive function deficits are less common, but do
occur (Meltzer and McGurk, 1999; Harvey and Keefe,
2001; Bilder et al., 2002; Wagner et al., 2005; Woodward
et al., 2005). The extent of this improvement is greater
for AAPDs than TAPDS. Appreciation of the variable
but still significant benefits for some types of cognition
focuses the effort on finding treatments that may be effec-
tive for only one or a few of the cognitive domains, par-
ticularly those only rarely improved by AAPDs. In
addition, the use of AAPDs is favoured over TAPDs
because of their more limited ability to cause motor side
effects and prolactin elevations (Meltzer, 2013). It is
accepted that TAPDs and AAPDs do not differ in overall
efficacy for treating positive symptoms in non-treatment
resistant schizophrenia patients. However, as with cogni-
tion, individual patients may respond better to specific
antipsychotic drugs (Ramsey et al., 2011).

Were treatment with the AAPDs to produce no
improvement in CIS, then any of the effects of AAPDs
on neurotransmitters, neuromodulators, cortical and hip-
pocampal function, which influence cognitive function, in
rodents and primates, which have been demonstrated
after AAPD treatment (see Meltzer and Huang, 2008;
López-Gil et al., 2010; Yuen et al., 2012; Gacsályi et al.,
2013), would have to be rejected as targets for developing
novel drugs for CIS. This includes enhancing cortical
and hippocampal DA, acetylcholine, (ACh), glutamate
(Glu) and serotonin (5-HT) efflux, enhancing cortical
gamma rhythms and increasing glutamate receptor
currents, to name the most important candidates for
improving cognition which have been reported to result
from AAPD and not TAPD treatment (Meltzer and
Huang, 2008; Yuen et al., 2012).

This review will emphasize the effects of subchronic
(sc) administration of NMDAR non-competitive or
uncompetitive antagonists, particularly PCP, ketamine,
and MK-801, to produce enduring deficits in declarative

memory in rodents. Similar deficits have been noted in
primates (Elsworth et al., 2012). The acute deficits brought
about by single doses of NMDAR antagonists have been
recently reviewed by Gilmour et al. (2012), who concluded
that this manner of utilizing NMDAR antagonists to
model CIS did not correspond well with clinical data
and differed from one NMDAR antagonist to another.
The scNMDAR rodent model has been extensively
utilized to develop treatments for CIS (Nabeshima et al.,
2006; Meltzer et al., 2011; Gilmour et al., 2012) and, as
will be discussed, shows a striking advantage for
AAPDs over TAPDs. Interestingly, studies in transgenic
mouse models (e.g. dominant negative C-terminal trun-
cated DISC1) also show greater efficacy of AAPDs com-
pared to TAPDs to ameliorate the deficit in NOR (Nagai
et al., 2011).

The scNMDAR antagonist model of cognitive
impairment in schizophrenia

Novel object recognition (NOR) in rodents has received
extensive study as a model of the deficits in declarative
memory in schizophrenia and other neuropsychiatric dis-
orders (Neill et al., 2010; Meltzer et al., 2011; Lyon et al.,
2012). Declarative memory in rodents is markedly
impaired by sc treatment with each of the three most fre-
quently studied NMDAR antagonists, PCP, MK-801 and
ketamine (Ennaceur and Delacour, 1988; Nabeshima
et al., 2006; Karasawa et al., 2008; Young et al., 2009;
Snigdha et al., 2010; Horiguchi et al., 2011a,b,c; see Neill
et al., 2010; Meltzer et al., 2011 for review). Deficits in
executive function and working memory have also been
shown to result from 7–10 d consecutive treatment with
an NMDAR antagonist (Neill et al., 2010; Bado et al.,
2011; Li et al., 2011). The doses of PCP, ketamine and
MK-801 needed to establish these deficits are in the
same range as those that increase locomotor activity, a
surrogate for their psychotomimetic effects (Meltzer
et al., 2011). However, they are lower than the doses
which produce neurodegeneration (Kim et al., 1999).

Supporting the validity of the NMDAR antagonist
model of CIS, acute administration of the NMDAR
non-competitive antagonist, ketamine, impairs some
domains of cognition and provokes psychotic symptoms
in both normal subjects and patients with schizophrenia.
Clozapine, the prototypical AAPD, diminished ketamine-
induced cognitive impairment in patients with schizo-
phrenia (see Kantrowitz and Javitt, 2010 for review).
Newcomer et al. (1999) reported that an intravenous
infusion of ketamine at sub-anesthetic doses, to male nor-
mal volunteers, produced deficits in declarative memory
without impairing selective or sustained attention or ver-
bal fluency.

Declarative memory and NOR

Almost all patients with schizophrenia perform 1–2 S.D.
below normal on declarative memory tasks (Saykin
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et al., 1991). They also show deficits in two-dimensional
object recognition tasks (Heckers et al., 2000; Sehatpour
et al., 2010). Recognition memory, as well as long term
verbal memory, is known to involve the hippocampus,
the retrosplenial and perirhinal cortex and the prefrontal
cortex (PFC) (Ullman, 2001). High doses of PCP have
been shown to produce maximal neurodegeneration in
the retrosplenial cortex (Kim et al., 1999), but the doses
used in CIS studies spare the retrosplenial cortex
(Rajagapol and Meltzerl, in preparation). It is likely that
the relatively low dose scNMDAR treatment used in
CIS studies in rodents produce functional disruption
only, since a variety of acute treatments readily reverse
the scNMDAR antagonist deficits in cognition in both
rats and mice (Neill et al., 2010; Meltzer et al., 2011;
Rajagopal and Meltzer, in preparation), similar to their
ability to block the effects of acute doses of NMDAR
antagonists on cognition (Neill et al., 2010; Meltzer
et al., 2011). Thus, it is possible that the failure of the
AAPDs to improve CIS in some patients with schizo-
phrenia is due to more irreversible structural damage.

The NOR paradigm utilized in our rodent studies has
been described in detail elsewhere (Hashimoto et al.,
2005; Horiguchi et al., 2011a). Normal rodents explore
novel objects for greater periods of time than familiar
objects, which is the basis for calculation of a discrimi-
nation index (DI). The DI is the difference between the
time spent exploring the novel object and the time spent
exploring the familiar object, divided by the total explo-
ration time.

Atypical antipsychotic drugs acutely reverse
NOR deficits induced by scNMDAR antagonists:
the role of 5-HT

The deficits in NOR produced by administration of
sc PCP, MK-801, or ketamine, for 7 d produces deficits
in NOR in mice and rats lasting for weeks to months,
if not indefinitely, which indicates the drug treatment
resets circuitry in a potentially permanent manner,
which nevertheless is reversible (see Nabeshima et al.,
2006: Neill et al., 2010; Meltzer et al., 2011 for reviews).
Remarkably, all AAPDs studied to date, including
single doses of amisulpride, aripiprazole, asenapine,
blonanersin, clozapine, N-desmethylclozapine, iloperi-
done, lurasidone, olanzapine, quetiapine, risperidone
and ziprasidone, administered systemically, have been
found to be effective to restore NOR in mice or rats,
when given shortly before the acquistion phase, i.e.
exposure to two identical objects (Nagai et al., 2009; Neill
et al., 2010; Meltzer et al., 2011, Rajagopal and Meltzer, in
preparation). The effective doses of the AAPDs do not
interfere with locomotor activity and are comparable to
the doses which block PCP-induced locomotor activity
(Meltzer et al., 2011), suggesting that they are clinically
relevant. As shown in Fig. 1, sc PCP treatment for 7 d fol-
lowed by withdrawal for 7 d during which the rodents

are habituated to the NOR chamber significantly
impaired NOR in Long–Evans female rats. Pretreatment
with the AAPDs clozapine (0.3 mg/kg), risperidone
(0.1 mg/kg), blonanserin (1.0 mg/kg), and amisulpride
(10mg/kg) restored NOR. To our knowledge, there are
no studies which report that TAPDs ameliorate the
deficit in rodent NOR produced by sc treatment with
NMDAR antagonists (Grayson et al., 2007; Karasawa
et al., 2008; McLean et al., 2009a,b; Nagai et al., 2009;
Snigdha et al., 2010; Idris et al., 2010; Jenkins et al.,
2010; Horiguchi et al., 2011a,b,c; Rajagopal and Meltzer,
in preparation; see Meltzer et al., 2011 for review). By con-
trast, the efficacy of both AAPDs and TAPDs to improve
any domain of cognition in schizophrenia, including
declarative memory, is controversial (Harvey and Keefe,
2001; Woodward et al., 2005; González-Blanch et al.,
2008). Measurement issues and enduring effects of prior
treatment may account for some of the conflicting results
(Stone and Hsi, 2011). What appears to be indisputable is
that the AAPDs substantially improve some domains of
cognition, including declarative memory, in some patients
with schizophrenia (Hagger et al., 1993; see Woodward
et al., 2005 for review), a syndrome whose heterogeneity
in etiology, course and response to treatment of positive
and negative symptoms is well established (Meltzer,
2013).

Role of 5-HT2A receptors in scNMDAR-antagonist
induced deficits in NOR

It has been clearly established that serotonergic mechan-
isms play a central role in learning and memory
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Fig. 1. The effect of sub-chronic (sc) vehicle(0.9% saline),
sc PCP (2mg/kg; i.p.) given twice a day for 7 d followed by a
7 d drug-free period (as previously described in Horiguchi
et al., 2011a); acute clozapine (0.3mg/kg), risperidone
(0.1mg/kg), blonanserin (1mg/kg), and amisulpride (10mg/kg)
on the discrimination index (DI) in female Long–Evans rats.
Data are expressed as mean±S.E.M. (N=7–9 per group). *p<0.05;
significant reduction in DI when compared to vehicle animals.
#p<0.05; significant increase in DI when compared to the PCP
treated animals.
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(Meneses, 1999; Buhot et al., 2000; Codony et al., 2011),
as well as psychosis and motor function (Meltzer and
Huang, 2008). AAPDs achieve many of their effects via
actions on multiple 5-HT receptors, not just via 5-HT2A

receptor antagonism relative to D2 receptor antagonism
(Meltzer and Huang, 2008). These include actions at
5-HT1A, 5-HT2C, 5-HT6, and 5-HT7 receptors (Meltzer
and Huang, 2008). Asenapine and clozapine are the
only AAPDs which act at all of these 5-HT receptors at
doses that are clinically relevant (Meltzer and Huang,
2008; Shahid et al., 2009). The overall efficacy and side
effect profile of each AAPD is influenced by its effects
on those 5-HT receptors which they directly, or as is
the case with the 5-HT1A receptor for some AAPDs,
indirectly modulate (Meltzer and Huang, 2008). All of
the above listed 5-HT receptors have been shown to
participate in specific aspects of cognitive function,
but others may as well, especially the 5-HT3 and 5-HT4

receptor (Meneses, 2007). These receptors are important
for the deficit in NOR in rodents produced by sc treat-
ment with NMDAR antagonists, and the treatments
which can reverse, or even prevent, the effects of the
NMDAR antagonists to produce the deficit (Meltzer
et al., 2012b).

We have recently utilized a new mass spectroscopic–
liquid chromatographic method to measure multiple
neurotransmitters in the same sample obtained by
microdialysis in freely moving rats or mice (Song
et al., 2011). As shown in Fig. 2, an acute dose of PCP,
5mg/kg, increased extracellular levels of 5-HT in rat
mPFC and nucleus accumbens. Ketamine, 30mg/kg,
also enhanced efflux of 5-HT in the mPFC and hippo-
campus (Fig. 3; Huang and Meltzer, in preparation). It
is unclear if repeated release of 5-HT during the develop-
ment of the NOR deficit contributes to the emergence of
CIS. Concomitant administration of a selective 5-HT2A

inverse agonist, e.g. M100907, with PCP will not prevent
the development of the NOR deficit in Long–Evans rats
or C57Bl mice given sc PCP (Horiguchi et al., Rajagapol
et al., unpublished data). The basis for this increase
in extracellular 5-HT levels by NMDAR antagonists
may be activation of dorsal and medial raphe 5-HT
neurons as well as inhibition of the reuptake of 5-HT
by a direct effect on the 5-HT transporter (Smith et al.,
1977; Hori et al., 2000). Nabeshima et al. (1988) have
reported that PCP, in vitro, like the 5-HT2A/2C inverse
agonist, ritanserin, protected 5-HT2A/2C receptors
from inactivation by sulfhydryl-modifying-agent,
N-ethylmaleimide, suggesting that PCP due to its ability
to enhance the extracellular concentrations of 5-HT as
shown in Fig. 2. Sub-chronic treatment with PCP
increased 5-HT1A receptor binding in the medial–prefron-
tal and dorsolateral–frontal cortex but had no effect on
the density of cortical 5-HT2A receptors (Choi et al.,
2009). However, Steward et al. (2004) reported that sc
PCP treatment decreased 5-HT2A receptor binding, but
not 5-HT2A mRNA, in the PFC, consistent with previous

reports for post-mortem brain tissue from schizophrenic
patients.

The 5-HT2A receptor is the most abundant 5-HT recep-
tor subtype in the cortex (Jones et al., 2009) and has been
shown to play a key role in the transport and dynamic
regulation of NMDARs in cortical pyramidal neurons
(Yuen et al., 2005). 5-HT2A antagonism, which would
be expected to block the firing of pyramidal neurons,
and 5-HT1A receptor stimulation, produce comparable
effects on the excitability of pyramidal neurons (Yuen
et al., 2008). These authors demonstrated that activation
of 5-HT2A/2C receptors significantly attenuated the effect
of 5-HT1A receptor stimulation on NMDAR currents,
microtubule depolymerization in PFC pyramidal neurons
from intact animals treated with serotonergic drugs, as
well as the inhibitory effect of 5-HT1A receptor stimu-
lation on surface NR2B clusters of NMDAR on dendrites.
This may be the basis for the ability of the 5-HT2A antag-
onist M100907 to promote long term potentiation
(Arvanov and Wang, 1998).

We have reported that a higher ratio of affinities of
AAPDs for 5-HT2A than D2 receptors distinguishes
AAPDs from TAPDs (Meltzer et al., 1989). The import-
ance of limited D2 receptor blockade to the action of the
AAPDs to improve NOR is shown by the ability of
small doses of haloperidol to prevent the effect of risper-
idone, which itself has high affinity for the D2 receptor, to
restore NOR in scPCP-treated rats (Snigdha et al., 2010).
Blonanserin, an AAPD, is a highly selective antagonist
of 5-HT2A and D2 receptors (Oka et al., 1993). The effect
of blonanserin is, nevertheless, blocked by WAY100635,
a selective 5-HT1A antagonist (Horiguchi et al., in
press). The ability of 5-HT2A antagonists such as
M100907, ACP-103 (pimavanserin), and MDL 11939 to
augment the efficacy of sub-effective doses of AAPDs
(Snigdha et al., 2010; Rajagopal and Meltzer, in pre-
paration), also supports the hypothesis that 5-HT2A and
D2 receptor antagonism is an important basis for the
activity of the AAPDs to restore NOR in the scNMDAR
antagonist model. As shown in Fig. 4, the 5- HT2A inverse
agonist, pimavanserin, 3.0 mg/kg, the 5-HT1A partial ago-
nist, tandospirone, 0.2 mg/kg and the 5-HT7 antagonist,
SB269970, 0.6mg/kg, also restored the ability of a sub-
effective dose of lurasidone, 0.03mg/kg, to acutely
reverse the effect of sc PCP administration in rats
(Horiguchi et al., 2011b; Meltzer et al., 2011; Snigdha
et al., 2011). This is consistent with our previous studies
using microdialysis, which demonstrated that excessive
D2 receptor blockade can impair the ability of AAPDs
to increase DA release in the rat. 5-HT2A receptor inverse
agonists M100907 and pimavanserin do not by them-
selves acutely reverse the effects of sc PCP to disrupt rat
NOR (Snigdha et al., 2010). Pimavanserin has been
shown to potentiate the ability of a sub-effective dose of
risperidone to improve psychopathology in acutely psy-
chotic schizophrenia patients (Meltzer et al., 2012a).
It did not enhance the efficacy of haloperidol 2mg/d

2184 H. Y. Meltzer et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/ijnp/article/16/10/2181/652712 by guest on 20 August 2022



which was as effective as a full dose of risperidone. No
measures of cognition were obtained in this study, how-
ever, so it remains to be determined if more extensive
blockade of 5-HT2A receptors will enhance cognition in
schizophrenia patients. In summary, 5-HT2A receptor
blockade is a key component of the ability of atypical
APDs such as clozapine which are more potent 5-HT2A

than D2 antagonists to reverse the effect of scNMDAR
antagonists on cognition, but it is not effective on its
own to prevent or ameliorate the impairment of memory
induced by the NMDAR antagonists.

Role of 5-HT1A receptor in NMDAR
antagonist-induced deficits in NOR in rodents

Many AAPDs are themselves 5-HT1A partial agonists or
are indirect 5-HT1A agonists, as indicated by the blockade
of their central actions by WAY100635, a selective 5-HT1A

antagonist (Meltzer and Huang, 2008). The 5-HT1A

partial agonist, tandospirone (Tanaka et al., 1995;
Newman-Tancredi et al., 1998), improved declarative
memory in patients with schizophrenia taking TAPDs
(Sumiyoshi et al., 2000, 2001a,b). There is considerable
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Fig. 2. The effect of PCP (5mg/kg, i.p.) administered following a baseline sample collection (for 2 h) (as previously described in
Huang et al. (2008)) on neurotransmitter efflux in rat mPFC (a) and NAC (b) reported as net area under the curve (AUC). ACH:
acetylcholine; DA: dopamine; 5-HT: serotonin; DOPAC: 3,4-dihydroxyphenylacetic acid; HVA: homovanillic acid; 5-HIAA:
5-hydroxyindole acetic acid, Ser: serine; Gly: glycine; Glu: glutamate; and GABA: gamma-aminobutyric acid, (Huang and Meltzer,
in preparation).
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evidence that 5-HT1A receptor stimulation by itself, and
as augmentation of AAPDs, also enhances NOR in
PCP-treated rats (Horiguchi et al., 2012) as well as social
deficits (Snigdha and Neill, 2008) and impaired reversal
learning (McLean et al., 2009a,b). 5-HT1A partial agonism
contributes to the ability of the atypical AAPD aripipra-
zole to restore NOR and social interaction in aripiprazole-
treated rodents (Snigdha and Neill, 2008; Nagai et al.,
2009). Also, tandospirone and F15599, a selective post-
synaptic 5-HT1A agonist, restored NOR in PCP-treated
rats (Horiguchi and Meltzer, 2012), possibly by inhibiting
fast spiking GABA interneurons, leading to enhanced

activity of pyramidal neurons (Lladó-Pelfort et al.,
2012). Tandospirone had a similar effect in C57Bl/6J
mice (Rajagopal and Meltzer, in preparation). The combi-
nation of sub-effective doses of tandospirone (0.2 mg/kg)
and lurasidone (0.03mg/kg) also reversed the
PCP-induced NOR-deficit (Horiguchi and Meltzer,
2012). WAY100635, a selective 5-HT1A antagonist, also
blocked the ameliorating effects of tandospirone and lur-
asidone, but not amisulpride, in sc PCP-treated rats
(Horiguchi and Meltzer, 2012; Horiguchi et al., unpub-
lished data). Interestingly, haloperidol, 0.1 mg/kg, pre-
vents tandospirone from attenuating the effect of sc PCP

ACH

150

130

110

90

70

50

30

10

–10

–30

DA 5-HT NE DOPAC

mPFC

HVA 5-HIAA Ser Gly Glu GABA Tau

Vehicle Ketamine 30

(a)

150

130

110

90

70

50

30

10

–10

–30

DAACH 5-HT NE DOPAC

HIP

HVA 5-HIAA Ser Gly Glu GABA Tau

Vehicle Ketamine 30

(b)

Fig. 3. The effect of ketamine (30 mg/kg, i.p.) administered following a baseline sample collection (for 2 h) (as previously
described in Huang et al., (2008)) on neurotransmitter efflux in mouse mPFC(A) and HIP(B) reported as net area under the
curve (AUC). ACH: acetylcholine; DA: dopamine; 5-HT: serotonin; NE norepinephrin; DOPAC: 3,4-dihydroxyphenylacetic
acid; HVA: homovanillic acid; 5-HIAA: 5-hydroxyindole acetic acid, Ser: serine; Gly: glycine; Glu: glutamate;
GABA: gamma-aminobutyric acid, Tau: taurine (Huang and Meltzer, in preparation).
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treatment (Horiguchi and Meltzer, 2012), as well as
risperidone and lurasidone (Snigdha et al., 2010;
Horiguchi and Meltzer, 2012).

Stimulation of 5-HT1A receptors may also prevent the
development of the NMDAR-antagonist induced deficit
in cognition. WAY100635 (1.0 mg/kg) blocked the ability
of sc treatment (14 d) with the AAPD, perospirone
(1.0, 3.0, or 10mg/kg), to attenuate subchronic PCP
(10mg/kg)-induced cognitive deficits in mice (Hagiwara
et al., 2008). We have found that lurasidone (1.0 mg/kg),
or tandospirone, 5.0 mg/kg, but not lower doses of these
drugs which ameliorate the PCP-induced deficit in
NOR, nor pimavanserin or haloperidol, significantly
prevented the PCP-induced NOR deficit. The preventive
effect of lurasidone was blocked by WAY100635, indicat-
ing the protective effects was based upon its 5-HT1A par-
tial agonism (Horiguchi et al., 2012).

As previously mentioned, sc treatment with
PCP increases 5-HT1A receptor binding in the medial–
prefrontal and dorsolateral–frontal cortex (Choi et al.,
2009). An increase in 5-HT1A receptor density has been
reported in post-mortem tissue from the frontal and
temporal cortices of schizophrenia patients (Hashimoto
et al., 1991; Burnet et al., 1996, 1997; Sumiyoshi et al.,
1996). The upregulation of 5-HT1A receptors may be a
compensatory mechanism to stabilize pyramidal neurons
which are hyperpolarized by 5-HT1A receptor stimulation
(Andrade and Nicoll, 1987). Increased inhibitory influ-
ence on pyramidal neurons would be beneficial after sc
PCP administration because of the loss of GABAergic

interneurons (Abdul-Monim et al., 2007; Thomsen et al.,
2009) which regulate the firing of pyramidal neurons in
the hippocampus and cortex. This loss of parvalbumin-
containing GABA neurons parallels the decrease in
GABAergic interneurons in the brains of patients with
schizophrenia (Bennett, 2011). The α7 nicotinic ACh
receptor partial agonist, SSR180711 dose-dependently
reversed the deficit in a modified Y-maze test in mice
treated with PCP 10mg/kg for 10 d followed by a wash-
out. Co-administration of SSR 180711 with PCP pre-
vented the decrease in parvalbumin-containing GABA
neurons noted above, further supporting the relevance
of the PCP model of CIS (Thomsen et al., 2009). Taken
together, these results suggest 5-HT1A partial agonism is
important to the ability of AAPDs to prevent or amelio-
rate the NMDAR-antagonist model of CIS.

Role of 5-HT7 receptor in NMDAR
antagonist-induced deficits

The 5-HT7 receptor is a G-protein coupled receptor
positively coupled to adenylate cyclase. It is expressed
in brain regions, including the thalamus, limbic regions,
hippocampal formation, and frontal cortex, that are
involved in psychosis, learning and memory (To et al.,
1995; Hedlund, 2009; Roberts and Hedlund, 2012).
Some TAPDs and AAPDs, including amisulpride,
clozapine, lurasidone and risperidone, have low nano-
molar affinity for the 5-HT7 receptor (Roth et al., 1994;
Horiguchi et al., 2011b). 5-HT7 receptor mRNA
expression levels are significantly decreased in brain tis-
sue from schizophrenia patients (Dean et al., 2006).
Evidence for both a procognitive and memory impairing
role for 5-HT7 receptors has been obtained from studies
using 5-HT7 knock out mice and specific 5-HT7 antagon-
ists in rodents. There is evidence that blockade of 5-HT7

receptors may have a procognitive effect in rodents sub-
chronically treated with NMDA receptor antagonists.
The ability of amisulpride and lurasidone to ameliorate
the deficit in NOR produced by sc PCP administration
is blocked by the 5-HT7 agonist, AS19 (Horiguchi et al.,
2011b). SB269970 also potentiated sub-effective doses of
lurasidone and amisulpride, but not haloperidol, to
restore NOR in PCP-treated rats (Horiguchi et al.,
2011b; Oyamada et al., in preparation). We have also
found that SB269970, 1mg/kg, acutely reversed PCP-
and MK-801-induced NOR deficits in C57/BL male mice
(Rajagopal and Meltzer, in preparation). Mice lacking
pituitary adenlate cyclase-activating polypeptide
(PACAP), a transgenic mouse model of relevance to
schizophrenia and depression, have deficits in working
memory in the spontaneous alternation in the Y-maze
task. SB 269970, 1 mg/kg, reversed this deficit (Tajiri
et al., 2012). The beneficial effects of SB 269970 on cog-
nition might be the result of enhanced release of GABA
(Tokarski et al., 2011). In agreement with this suggestion,
SB269970, 3.0mg.kg, significantly increased cortical DA,
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Fig. 4. The effect of sc vehicle (0.9% saline), sc PCP (2mg/kg;
i.p.) given twice a day for 7 d followed by a 7 d drug-free period
(as previously described in Horiguchi et al., 2011a); acute
sub-effective(S.E.) lurasidone (0.03mg/kg), S.E. lurasidone+S.E.
pimavanserin (3mg/kg); S.E. lurasidone+S.E. tandospirone
(0.2mg/kg), and S.E. lurasidone+SB269970 (0.1mg/kg), on the DI
in female Long–Evans rats. Data are expressed as mean±S.E.M.
(N=7–9 per group). ***p<0.001; significant reduction in DI when
compared to vehicle animals. #p<0.05; ##p<0.01; significant
increase in DI when compared to the PCP treated animals.
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glutamate, and GABA efflux in C57BL/6J mice (Huang
and Meltzer, in preparation).

Prenatal, perinatal and adolescent administration of
NMDAR antagonists as models of CIS

Schizophrenia as a syndrome, and CIS in particular, have
been considered to be due, in part, to abnormalities in
neurodevelopment (Faludi and Mirnics, 2011). This does
not exclude neurodegenerative processes exacerbating
CIS at any stage of its evolution, especially during periods
of stress (Piper et al., 2012). PCP, MK-801 and ketamine
have been administered during gestational, neonatal,
perinatal and juvenile periods to induce cognitive impair-
ment later in development (Schwabe et al., 2006; Dong
et al., 2012; see Powell, 2010 for review). Such studies
can contribute to knowledge about the role of hypogluta-
matergic function in the development of CIS and to deter-
mining whether such models can be helpful to develop
treatments that might prevent the development of CIS
(Beneyto and Lewis, 2011). Nakatani-Pawlak et al.
(2009) reported that the impairment of social interaction
behaviour following neonatal PCP was significantly
reversed by administration of clozapine. Neonatal admin-
istration of PCP or MK-801 in rodents has been reported
to decrease parvalbumin-positive cells and spine density,
(Wang and Johnson, 2005; Nakatani-Pawlak et al., 2009),
both of which have been reported in schizophrenia
(Beneyto and Lewis, 2011). Neonatal NMDAR antagon-
ists have been shown to cause deficits in attentional set
shifting (Broberg et al., 2008), novelty discrimination
(Terranova et al., 2005; Harich et al., 2007; Pichat
et al., 2007; Boulay et al., 2008), reversal and spatial
working memory tasks in the Morris water maze, and
in the delayed-non-match-to-position task (Kawabe and
Miyamoto, 2008). There is a need for identification of
drugs and other treatments which prevent the effects of
NMDAR on neurodevelopment and which might be tol-
erable for individuals at high risk for schizophrenia
who might be willing to test neuroprotective treatments.

There is no evidence, as of yet, that AAPDs are effec-
tive in preventing the development of cognitive impair-
ment when administered to individuals thought to be at
high risk for developing schizophrenia (Fleischhacker
and Simma, 2012). This may be because drugs, including
AAPDs, which might be effective to treat components of
CIS once it has developed, may or may not be useful to
prevent the aberrant neurodevelopmental processes
which lead to CIS. However, the dosage and duration
of treatment necessary to achieve prevention vs. ameliora-
tion of an established deficit may differ, or, as suggested
by Thomases et al. (2013), there may only be certain
periods during development when prevention strategies
will be effective, or optimally so. The very high doses of
a variety of agents needed to prevent the effects of sc
PCP to produce deficits in NOR and reversal learning,
compared to the doses needed to acutely ameliorate the

effects of scNMDAR antagonists noted previously,
suggests the need for studies with high doses of very tol-
erable drugs at various periods during development.

Cortical and hippocampal DA release and NOR

A candidate for the shared effect of 5-HT2A/D2 AAPDs
and amisulpride which might mediate the reversal of
the effects of sc PCP treatment, is their ability to enhance
DA, ACh or glutamate release, or both, in cortex and
other brain regions (Ichikawa and Meltzer, 1999; Kuroki
et al., 1999). As shown in Fig. 5, lurasidone significantly
increases cortical DA, ACh and glutamate efflux, but
not that of the inhibitory neurotransmitter, GABA.
5-HT1A agonism also contributes to the ability of
AAPDs to increase cortical DA efflux, regardless of their
intrinsic 5-HT1A activity, since AAPDs such as olanzapine
and risperidone lack intrinsic 5-HT1A receptor agonist
activity, but their ability to enhance DA efflux in cortex,
or to reverse the effects of sc PCP is also blocked by
WAY100635 (Ichikawa et al., 2001). Clozapine, olanza-
pine and ziprasidone, but not haloperidol, enhanced
DA efflux in the PFC of wild-type but not 5-HT1A knock-
out mice after both systemic and local administration
(Diaz-Mataix et al., 2005; Bortolozzi et al., 2010). Local
administration of clozapine, olanzapine and risperidone
by reverse dialysis increased cortical DA efflux equally
in wild-type and 5-HT2AR knockout mice. Sulpiride,
which shares D2, D3, but not 5-HT7 antagonist properties
with amisulpride, enhances cortical DA efflux (Kuroki
et al., 1999). Haloperidol, which does not ameliorate the
deficit in rats due to sc PCP treatment, had no effect on
cortical efflux of any of these four neurotransmitters at
the dose studied here, which produces plasma levels
comparable to clinical doses (Fig. 5). Tandospirone also
enhanced cortical DA, but not ACh, glutamate or
GABA release (Fig. 5). WAY 100635, a 5-HT1A antagonist,
partially blocked the DA efflux induced by lurasidone
and other AAPDs (Ichikawa et al., 2002c; Li et al., 2005;
Huang et al., 2012). Other 5-HT1A agonists have also
been shown to preferentially augment the release of DA
in the PFC (Rasmusson et al., 1994; Wedzony et al.,
1996), and increase the bursting activity of DA neurons
innervating the PFC (Arborelius et al., 1993; Pessia
et al., 1994; Lejeune and Millan, 1998). SB269970 increased
DA and 5-HT efflux in the rat PFC (Wesołowska and
Kowalska, 2008). Studies of the effect of these agents in
rodents which have received sc treatment with PCP, fol-
lowed by a washout, are in progress.

Increased cortical DA release.has been demonstrated
during a variety of cognitive behaviours in rodents,
including cognitive behaviours (Giovannini et al., 1998;
Phillips et al., 2004; Ihalainen et al., 2010; Guzmán-
Ramos et al., 2012; Stanley et al., 2012) and in primates
in a working memory task (Watanabe et al., 1997).
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D1 DA receptor stimulation

The effect of increased dopaminergic activity in the mPFC
and the HIP to restore NOR in the NMDAR-treated
rodents is likely mediated by D1 DA receptor stimulation
(Hotte et al., 2005; McLean et al., 2009a, b; Horiguchi
et al., 2011a). D1 DA receptors are abundant in the
mPFC, other cortical regions, and HIP. We have demon-
strated that the selective D1 agonist, SKF38393 (0.5–40
mg/kg), is able to reverse the deficit in NOR produced
by sc treatment with PCP in an inverted U-shape dose
response manner in rats and in C57BL/6J male mice
(Horiguchi and Meltzer, 2013; Rajagopal and Meltzer in
preparation). The ameliorating effect of SKF38393 on the
PCP-induced NOR deficit was blocked by the D1 antag-
onist, SCH23390, supporting D1 receptor stimulation as
the basis for the effect of SKF38393 (Horiguchi et al.,
2011a). An inverted U-shape dose response curve was
found for SKF38393, as has been observed with other pro-
cognitive effects of D1 agonists (Goldman-Rakic et al.,
2004). Also, the attenuating effects of the AAPD, asena-
pine, which has been shown to be a D1 partial agonist,

and aripiprazole, which is not a direct acting D1 agonist
(Nagai et al., 2009), were also blocked by the D1 antagon-
ist, SCH23390 (Snigdha et al., 2011). Our results suggest
that excessive D1 receptor stimulation may have an
adverse effect on declarative memory and possibly
other types of cognition in patients with schizophrenia,
particularly if a hypoglutamatergic state is present in
the brain regions required for declarative memory.
Excessive enhancement of DA efflux in the cortex or
HIP by AAPDs may be one reason why the AAPDs do
not produce a more robust improvement in cognition.
Pharmacogenetic studies focused on genes affecting
dopamine synthesis, metabolism and signaling may
help to guide treatment with these agents (Scharfetter,
2001). Neurotransmitters other than DA are, of course,
involved in NOR and other cognitive behaviours. In the
NOR test, regardless of object familiarity, object explo-
ration has been found to be accompanied by an increase
in hippocampal ACh efflux (Ihalajnen et al., 2010;
Stanley et al., 2012). Moreover, glutamate efflux is signifi-
cantly enhanced on exposure to a novel object (Stanley
et al., 2012).
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Fig. 5. The effect of lurasidone (0.5mg/kg, i.p.), tandospirone (5mg/kg) and haloperidol (0.1mg/kg) (see Huang et al., 2008 for
description of sample collection) on acetylcholine (ACh, A), dopamine (DA, B), glutamate (Glu, C) efflux in the rat mPFC (Huang
and Meltzer, in preparation).
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Conclusions

The major goals of an animal model for CIS are to test
hypotheses to increase understanding of the pathophysiol-
ogy of CIS and to develop novel treatments for CIS. An
effective model would also provide information that
could lead to rejection of claims for effective treatments
for CIS that are, or will prove, ineffective. The scNMDAR
model of CIS faresmoderatelywell on the first two criteria.
If, indeed, schizophrenia is associatedwith ahypoglutama-
tergic state and that this provides direction for developing
treatments (Coyle et al., 2012), suggesting the need to com-
pensate for the loss of GABAergic interneurons leading to
hyperactive glutamatergic pyramidal neurons, the results
presented here based upon this model are largely consist-
ent with this line of reasoning. Similarly, the ability of
5-HT1A partial agonists and AAPDs which are direct or
indirect 5-HT1A agonists to diminish the activity of pyrami-
dal neurons is supportive of the model developed from
the observations of the cognitive disrupting effects of the
NMDAR antagonists in healthy individuals and patients
with schizophrenia. The consistent superiority of AAPDs
over TAPDs to improve cognition in theNMDARantagon-
ist model, as well as the DISC1 transgenic mouse, suggests
that AAPD effects on cognition in schizophrenia provide a
powerful test of the utility of these models for identifying
potential treatments for CIS for some patients with schizo-
phrenia. At the same time, they indicate that othermechan-
isms and other animal models will be needed to treat the
majority of patients with CIS. However, that should not
diminish the importance of the achievement to assist
some patients in a clinically meaningful manner.
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