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Abstract

Solving the visual symbol grounding prob-

lem has long been a goal of artificial intel-

ligence. The field appears to be advancing

closer to this goal with recent breakthroughs

in deep learning for natural language ground-

ing in static images. In this paper, we propose

to translate videos directly to sentences using

a unified deep neural network with both con-

volutional and recurrent structure. Described

video datasets are scarce, and most existing

methods have been applied to toy domains

with a small vocabulary of possible words.

By transferring knowledge from 1.2M+ im-

ages with category labels and 100,000+ im-

ages with captions, our method is able to

create sentence descriptions of open-domain

videos with large vocabularies. We compare

our approach with recent work using language

generation metrics, subject, verb, and object

prediction accuracy, and a human evaluation.

1 Introduction

For most people, watching a brief video and describ-

ing what happened in words is an easy task. For

machines, extracting the meaning from video pixels

and generating natural-sounding language is a very

complex problem. Solutions have been proposed for

narrow domains with a small set of known actions

and objects, e.g., (Barbu et al., 2012; Rohrbach et

al., 2013), but generating descriptions for “in-the-

wild” videos such as the YouTube domain (Figure 1)

remains an open challenge.

Progress in open-domain video description has

been difficult in part due to large vocabularies and

Input video:

Our output: A cat is playing with a toy.

Humans: A Ferret and cat fighting with each other. / A

cat and a ferret are playing. / A kitten is playing with a

ferret. / A kitten and a ferret are playfully wrestling.

Figure 1: Our system takes a short video as input and out-

puts a natural language description of the main activity in

the video.

very limited training data consisting of videos with

associated descriptive sentences. Another serious

obstacle has been the lack of rich models that can

capture the joint dependencies of a sequence of

frames and a corresponding sequence of words. Pre-

vious work has simplified the problem by detecting

a fixed set of semantic roles, such as subject, verb,

and object (Guadarrama et al., 2013; Thomason et

al., 2014), as an intermediate representation. This

fixed representation is problematic for large vocabu-

laries and also leads to oversimplified rigid sentence

templates which are unable to model the complex

structures of natural language.

In this paper, we propose to translate from video

pixels to natural language with a single deep neu-

ral network. Deep NNs can learn powerful fea-

tures (Donahue et al., 2013; Zeiler and Fergus,

2014), but require a lot of supervised training data.

We address the problem by transferring knowledge

from auxiliary tasks. Each frame of the video is

modeled by a convolutional (spatially-invariant) net-

work pre-trained on 1.2M+ images with category la-
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bels (Krizhevsky et al., 2012). The meaning state

and sequence of words is modeled by a recurrent

(temporally invariant) deep network pre-trained on

100K+ Flickr (Peter Young and Hockenmaier, 2014)

and COCO (Lin et al., 2014) images with associated

sentence captions. We show that such knowledge

transfer significantly improves performance on the

video task.

Our approach is inspired by recent breakthroughs

reported by several research groups in image-to-text

generation, profiled in the popular media,1 2 in par-

ticular, the work by (Donahue et al., 2014). They

also applied a version of their model to video-to-text

generation, but stopped short of proposing an end-

to-end single network, using the intermediate role

representation instead. Also, they showed results

only on the narrow domain of cooking videos with a

small set of pre-defined objects and actors. We also

utilize a Long-Short Term Memory (LSTM) recur-

rent neural network (Hochreiter and Schmidhuber,

1997) to model sequence dynamics, but connect it

directly to a deep convolutional neural network to

process incoming video frames, avoiding supervised

intermediate representations altogether. This model

is similar to their image-to-text model, but we adapt

it for video sequences.

Our proposed approach has several important ad-

vantages over existing video description work. The

LSTM model, which has recently achieved state-of-

the-art results on machine translation tasks (French

and English (Sutskever et al., 2014)), effectively

models the sequence generation task without requir-

ing the use of fixed sentence templates as in previ-

ous work (Guadarrama et al., 2013). Pre-training

on image and text data naturally exploits related

data to supplement the limited amount of descriptive

video currently available. Finally, the deep convnet,

the winner of the ILSVRC2012(Russakovsky et al.,

2014) image classification competition, provides a

strong visual representation of objects, actions and

scenes depicted in the video.

Our main contributions are as follows:

• We present the first end-to-end deep model for

video-to-text generation that simultaneously

1http://www.nytimes.com/2014/11/18/science/researchers-

announce-breakthrough-in-content-recognition-software.html
2http://www.pcworld.com/article/2849838/microsoft-five-

other-groups-race-toward-automated-image-captioning.html

learns a latent “meaning” state, and a fluent

grammatical model of the associated language.

• We leverage still image classification and cap-

tion data and transfer deep networks learned on

such data to the video domain.

• We provide a detailed evaluation of our model

on the popular YouTube corpus (Chen and

Dolan, 2011) and demonstrate a significant im-

provement over the state of the art.

2 Related Work

Most of the existing research in video description

has focused on narrow domains with limited vocab-

ularies of objects and activities (Kojima et al., 2002;

Lee et al., 2008; Khan and Gotoh, 2012; Barbu et

al., 2012; Ding et al., 2012; Khan and Gotoh, 2012;

Das et al., 2013b; Das et al., 2013a; Rohrbach et

al., 2013; Yu and Siskind, 2013). For example,

(Rohrbach et al., 2013; Rohrbach et al., 2014) pro-

duce descriptions for videos of several people cook-

ing in the same kitchen. These approaches generate

sentences by first predicting a semantic role repre-

sentation, e.g., modeled with a CRF, of high-level

concepts such as the actor, action and object. Then

they use a template or statistical machine transla-

tion to translate the semantic representation to a sen-

tence.

Most work on “in-the-wild” online video has fo-

cused on retrieval and predicting event tags rather

than generating descriptive sentences; examples are

tagging YouTube (Aradhye et al., 2009) and retriev-

ing online video in the TRECVID competition (Over

et al., 2012). Work on TRECVID has also included

clustering both video and text features for use in

video retrieval, e.g., (Wei et al., 2010; Huang et al.,

2013).

The previous work on the YouTube corpus we em-

ploy (Motwani and Mooney, 2012; Krishnamoorthy

et al., 2013; Guadarrama et al., 2013; Thomason et

al., 2014) used a two-step semantic role approach,

first detecting a fixed tuple of role words, such as

subject, verb, object, and scene, and then using a

template to generate a grammatical sentence. They

also utilize language models learned from large text

corpora to aid visual interpretation as well as sen-

tence generation. We compare our method to the

best-performing method of (Thomason et al., 2014).



A recent paper by (Xu et al., 2015) extracts deep fea-

tures from video and a continuous vector from lan-

guage, and projects both to a joint semantic space.

They apply their joint embedding to SVO prediction

and generation, but do not provide quantitative gen-

eration results. Our network also learns a joint state

vector implicitly, but also models sequence dynam-

ics of the language, and can be extended to model se-

quence dynamics of video frames, although we did

not evaluate this due to limited training data.

Predicting a natural language desription of still

images has received considerable attention, with

some of the earliest works by (Kulkarni et al., 2011;

Yao et al., 2010). Propelled by successes of deep

learning, several groups released record breaking re-

sults in just the past year (Donahue et al., 2014; Mao

et al., 2014; Karpathy et al., 2014; Fang et al., 2014;

Kiros et al., 2014; Vinyals et al., 2014; Kuznetsova

et al., 2014).

In this work, we use deep recurrent nets (RNNs),

which have recently demonstrated strong results for

machine translation tasks using Long Short Term

Memory (LSTM) RNNs (Sutskever et al., 2014; Cho

et al., 2014). In contrast to traditional statistical

MT (Koehn, 2010), RNNs naturally combine with

vector-based representations, such as those for im-

ages and video. (Donahue et al., 2014; Vinyals et al.,

2014) simultaneously proposed a multimodal analog

of this model, with an architecture which uses a vi-

sual convnet to encode a deep state vector, and an

LSTM to decode the vector into a natural language

string.

Our approach to video to text generation is in-

spired by the work of (Donahue et al., 2014), who

also applied a variant of their model to video-to-

text generation, but stopped short of training an end-

to-end model. Instead they converted the video to

an intermediate role representation using a CRF,

then decoded that representation into the language

string. In contrast, we bypass detection of high-

level roles and use the output of a deep convolu-

tional network directly as the state vector that is de-

coded into a sentence. This avoids the need for la-

beling semantic roles, which can be difficult to de-

tect in the case of very large vocabularies. It also al-

lows us to first pre-train the model on a large image

and caption database, and transfer the knowledge to

the video domain where the corpus size is smaller.
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Figure 2: The structure of our video description network.

While (Donahue et al., 2014) only showed results

on a narrow domain of cooking videos with a small

set of pre-defined objects and actors, we generate

sentences for open-domain YouTube videos with a

vocabulary of thousands of words.

3 Approach

Figure 2 depicts our model for sentence generation

from videos. Our framework is based on recent deep

image description models in (Donahue et al., 2014;

Vinyals et al., 2014) and extends them to generate

sentences describing events in videos. These mod-

els work by first applying a feature transformation

on an image to generate a fixed dimensional vec-

tor representation. They then use a sequence model,

specifically a Recurrent Neural Network (RNN), to

“decode” the vector into a sentence (i.e. a sequence

of words). In this work, we apply the same princi-

ple of “translating” a visual vector into an English

sentence and show that it works well for describing

dynamic videos as well as static images.

We identify the most likely description for a given

video by training a model to maximize the log like-

lihood of the sentence S, given the corresponding

video V and the model parameters θ,

θ∗ = argmax
θ

∑

(V,S)

log p(S|V ; θ) (1)

Assuming a generative model of S that produces

each word in the sequence in order, the log proba-

bility of the sentence is given by the sum of the log

probabilities over the words and can be expressed

as:

log p(S|V ) =
N∑

t=0

log p(Swt
|V, Sw1

, . . . , Swt−1
)



where Swi
represents the ith word in the sentence

and N is the total number of words. Note that we

have dropped θ for convenience.

A sequence model, such as an RNN is a natu-

ral choice to model p(Swt
|V, Sw1

, . . . , Swt−1
). An

RNN, parameterized by θ, maps an input xt, and the

previously seen words expressed as a hidden state or

memory, ht−1 to an output zt and an updated state

ht using a non-linear function f :

ht = fθ(xt, ht−1)

where (h0 = 0). In our work we use the highly

successful Long Short-Term Memory (LSTM) net

as the sequence model, since it has shown supe-

rior performance on tasks such as speech recogni-

tion (Graves and Jaitly, 2014), machine translation

(Vinyals et al., 2014; Cho et al., 2014) and the more

related task of generating sentence descriptions of

images (Donahue et al., 2014; Vinyals et al., 2014).

To be specific, we use two layers of LSTMs (one

LSTM stacked atop another) as shown in Figure 2.

We present details of the network in Section 3.1.

To convert videos to a fixed length representation

(input xt), we use a Convolutional Neural Network

(CNN). In particular, we use the publicly available

Caffe (Jia et al., 2014) reference model, a minor vari-

ant of AlexNet (Krizhevsky et al., 2012). The net is

pre-trained on the 1.2M image ILSVRC-2012 object

classification subset of the ImageNet dataset (Rus-

sakovsky et al., 2014) and hence provides a robust

initialization for recognizing objects and thereby ex-

pedites training. We present details of how we apply

the CNN model to videos in Section 3.2

3.1 LSTMs for sequence generation

A Recurrent Neural Network (RNN) is a gener-

alization of feed forward neural networks to se-

quences. Standard RNNs learn to map a sequence

of inputs (x1, . . . , xt) to a sequence of hidden states

(h1, . . . , ht), and from the hidden states to a se-

quence of outputs (z1, . . . , zt) based on the follow-

ing recurrences:

ht = f(Wxhxt +Whhht−1)

zt = g(Wzhht)

where f and g are element-wise non-linear functions

such as a sigmoid or hyperbolic tangent, xt is a fixed

xt

hl
t-1

xt
hl

t-1
xt hl

t-1

xt hl
t-1

ht
l(=zt)

Cell

Output 
Gate

Input 
Gate

Forget 
Gate

Input 
Modulation
Gate

LSTM Unit

Figure 3: The LSTM unit replicated from (Donahue et

al., 2014). The memory cell is at the core of the LSTM

unit and it is modulated by the input, output and forget

gates controlling how much knowledge is transferred at

each time step.

length vector representation of the input, ht ∈ R
N

is the hidden state with N units, Wij are the weights

connecting the layers of neurons, and zt the output

vector.

RNNs can learn to map sequences for which the

alignment between the inputs and outputs is known

ahead of time (Sutskever et al., 2014) however it’s

unclear if they can be applied to problems where the

inputs (xi) and outputs (zi) are of varying lengths.

This problem is solved by learning to map sequences

of inputs to a fixed length vector using one RNN,

and then map the vector to an output sequence using

another RNN. Another known problem with RNNs

is that, it can be difficult to train them to learn long-

range dependencies (Hochreiter et al., 2001). How-

ever, LSTMs (Hochreiter and Schmidhuber, 1997),

which incorporate explicitly controllable memory

units, are known to be able to learn long-range tem-

poral dependencies. In our work we use the LSTM

unit described in (Zaremba and Sutskever, 2014;

Donahue et al., 2014) as shown in Figure 3.

At the core of the LSTM model is a memory cell c

which encodes, at every time step, the knowledge of

the inputs that have been observed up to that step.

The cell is modulated by gates which are all sig-

moidal, having range [0, 1], and are applied multi-

plicatively. The gates determine whether the LSTM

keeps the value from the gate (if the layer evaluates

to 1) or discards it (if it evaluates to 0). The three

gates – input gate (i) controlling whether the LSTM



considers it’s current input (xt), the forget gate (f )

allowing the LSTM to forget it’s previous memory

(ct−1), and the output gate (o) deciding how much

of the memory to transfer to the hidden state (ht),

all enable the LSTM to learn complex long-term de-

pendencies. The recurrences for the LSTM are then

defined as:

it = σ(Wxixt +Whiht−1)

ft = σ(Wxfxt +Whfht−1)

ot = σ(Wxoxt +Whoht−1)

ct = ft ⊙ ct−1 + it ⊙ φ(Wxcxt +Whcht−1)

ht = ot ⊙ φ(ct)

where σ is the sigmoidal non-linearity, φ is the hy-

perbolic tangent non-linearity, and ⊙ represents the

product with the gate value, and the weight matrices

denoted by Wij , the trained parameters.

3.2 CNN-LSTMs for video description

The framework for our two layer LSTM model for

generating descriptions for videos is very similar to

that used for generating image descriptions in (Don-

ahue et al., 2014). We employ the LSTM to “de-

code” a visual feature vector representing the video

to generate textual output. The first step in this pro-

cess is to generate a fixed-length visual input that ef-

fectively summarizes a short video. For this we use a

CNN, specifically a hybrid of the publicly available

Caffe (Jia et al., 2014) reference model. The net is

pre-trained on the 1.2M image ILSVRC-2012 clas-

sification subset of the ImageNet dataset. We extract

the output of the fc7 layer for a set of sample frames

in the video (1 in every 10 frames) and perform a

mean pooling over the frames to generate a single

4,096 dimension vector for each video. The result-

ing visual feature vector forms the input to the first

LSTM layer. We stack another LSTM layer on top

as in Figure 2, and the hidden state of the LSTM in

the first layer is the input to the LSTM unit in the

second layer. A word from the sentence forms the

target of the output LSTM unit. In this work, we

represent words using “one-hot” vectors (i.e 1-of-N

coding).

Training and Inference: The two-layer LSTM

model is trained to predict the next word Swt
in

the sentence given the visual features and the pre-

vious t − 1 words, p(Swt
|V, Sw1

, . . . , Swt−1
). Dur-

ing training the visual feature, sentence pair (V, S)

is provided to the model, which then optimizes the

log-likelihood (Equation 1) over the entire training

dataset using stochastic gradient descent. At each

time step, the visual feature vector xt is input to

the LSTM along with the previous time step’s hid-

den state ht−1 and the LSTM emits the next hid-

den state vector ht (and a word). Accordingly, in-

ference must also be performed sequentially in the

order h1 = fW (x1, 0), h2 = fW (x2, h1), until the

model emits the end-of-sentence (EOS) token at the

final step T . In our model the output (ht = zt) of the

second layer LSTM unit is used to obtain the emitted

word. We apply the Softmax function, to get a prob-

ability distribution over the words in the vocabulary.

pt(wt) = Softmax (zt) =
exp(Wzczt,c)∑

c′∈C exp(Wzczt,c′)

where C in our case is the finite and discrete space

determined by the vocabulary. Thus, at each step we

sample a word according to pt until we obtain the

EOS token.

3.3 Transfer Learning from Captioned Images

Since the training data available for video descrip-

tion is quite limited (described in Section 4.1) we

also leverage much larger datasets available for im-

age description to train our LSTM model and then

fine tune this initial model on the video dataset. Our

LSTM model for images is the same as the one de-

scribed above for single video frames (in Section

3.1, and 3.2). As with videos, we extract fc7 layer

features (4096 dimensional vector) from the network

(Section 3.2) for the images. This forms the visual

feature that is input to the 2nd layer LSTM descrip-

tion model. After the model is trained on the im-

age dataset, we use the weights of the trained model

to initialize the LSTM model for the video descrip-

tion task. Additionally, we reduce the learning rate

on our LSTM model to allow for it to tune to the

video dataset. This speeds up training and allows

exploiting knowledge previously learned for image

description.

4 Experiments

4.1 Datasets

Video dataset. We perform all our experiments

on the Microsoft Research Video Description Cor-



pus (Chen and Dolan, 2011). This video corpus is

a collection of 1970 YouTube snippets. The dura-

tion of each clip is between 10 seconds to 25 sec-

onds, typically depicting a single activity or a short

sequence. The dataset comes with several human

generated descriptions in a number of languages;

we use the roughly 40 available English descriptions

per video. This dataset (or portions of it) have been

used in several prior works (Motwani and Mooney,

2012; Krishnamoorthy et al., 2013; Guadarrama et

al., 2013; Thomason et al., 2014; Xu et al., 2015) on

action recognition and video description tasks. For

our task we pick 1200 videos to be used as train-

ing data, 100 videos for validation and 670 videos

for testing, as used by the prior works on video de-

scription (Guadarrama et al., 2013; Thomason et al.,

2014; Xu et al., 2015).

Domain adaptation, image description datasets.

Since the number of videos for the description task

is quite small when compared to the size of the

datasets used by LSTM models in other tasks such as

translation (Sutskever et al., 2014) (12M sentences),

we use data from the Flickr30k and COCO2014

datasets for training and learn to adapt to the video

dataset by fine-tuning the image description mod-

els. The Flickr30k (Peter Young and Hockenmaier,

2014) dataset has about 30,000 images, each with

5 or more descriptions. We hold out 1000 im-

ages at random for validation and use the remain-

ing for training. In addition to this, we use the re-

cent COCO2014 (Lin et al., 2014) image descrip-

tion dataset consisting of 82,783 training images

and 40,504 validation images, each with 5 or more

sentence descriptions. We perform ablation exper-

iments by training models on each dataset individ-

ually, and on the combination and report results on

the YouTube video test dataset.

4.2 Models

HVC This is the Highest Vision Confidence

model described in (Thomason et al., 2014). The

model uses strong visual detectors to predict confi-

dence over 45 subjects, 218 verbs and 241 objects.

FGM (Thomason et al., 2014) also propose a fac-

tor graph model (FGM) that combines knowledge

mined from text corpora with visual confidence from

the HVC model using a factor graph and performs

probabilistic inference to determine the most likely

subject, verb, object and scene tuple. They then use

a simple template to generate a sentence from the

tuple. In this work, we compare the output of our

model to the subject, verb, object words predicted by

the HVC and FGM models and the sentences gener-

ated from the SVO triple.

Our LSTM models We present four main mod-

els. LSTM-YT is our base two-layer LSTM model

trained on the YouTube video dataset. LSTM-

YTflickr is the model trained on the Flickr30k (Pe-

ter Young and Hockenmaier, 2014) dataset, and fine

tuned on the YouTube dataset as descibed in Section

3.3. LSTM-YTcoco is first trained on the COCO2014

(Lin et al., 2014) dataset and then fine-tuned on the

video dataset. Our final model, LSTM-YTcocoflickr

is trained on the combined data of both the Flickr

and COCO models and is tuned on YouTube. To

compare the overlap in content between the im-

age dataset and YouTube dataset, we use the model

trained on just the Flickr images (LSTMflickr) and

just the COCO images (LSTMcoco) and evaluate

their performance on the videos.

4.3 Evaluation Metrics and Results

SVO accuracy. Early works (Krishnamoorthy et

al., 2013; Guadarrama et al., 2013) that reported re-

sults on the YouTube dataset compared their method

based on how well their model could predict the sub-

ject, verb, and object (SVO) depicted in the video.

Since these models first predicted the content (SVO

triples) and then generated the sentences, the S,V,O

accuracy captured the quality of the content gener-

ated by the models. However, in our case our se-

quential LSTM directly outputs the sentence itself

(without an explicit surface realization phase); so

we extract the S,V,O from the dependency parse of

the generated sentence. We present, in Table 1 and

Table 2, the accuracy of S,V,O words comparing the

performance of our model against any valid ground

truth triple and the most frequent triple found in hu-

man description for each video. The latter evalua-

tion was also reported by (Xu et al., 2015), so we

include it here for comparison.

3They evaluate against a filtered set of groundtruth SVO

words which provides a tiny boost to their scores.



Model S% V% O%

HVC (Thomason et al., 2014) 86.87 38.66 22.09

FGM (Thomason et al., 2014) 88.27 37.16 24.63

LSTMflickr 79.95 15.47 13.94

LSTMcoco 56.3 6.9 14.86

LSTM-YT 79.4 35.52 20.59

LSTM-YTflickr 84.92 38.66 21.64

LSTM-YTcoco 86.58 42.23 26.69

LSTM-YTcoco+flickr 87.27 42.79 24.23

Table 1: SVO accuracy: Binary SVO accuracy compared

against any valid S,V,O triple in the ground truth descrip-

tions. We extract S,V,O values from sentences output by

our model using a dependency parser.

Model S% V% O%

HVC (Thomason et al., 2014) 76.57 22.24 11.94

FGM (Thomason et al., 2014) 76.42 21.34 12.39

JointEmbed3
(Xu et al., 2015) 78.25 24.45 11.95

LSTMflickr 70.8 10.02 7.84

LSTMcoco 47.44 2.85 7.05

LSTM-YT 71.19 19.4 9.7

LSTM-YTflickr 75.37 21.94 10.74

LSTM-YTcoco 76.01 23.38 14.03

LSTM-YTcoco+flickr 75.61 25.31 12.42

Table 2: SVO accuracy: Binary SVO accuracy compared

against most frequent S,V,O triple in the ground truth de-

scriptions. We extract S,V,O values from parses of sen-

tences output by our model using a dependency parser.

Sentence Generation. To evaluate the generated

sentences we use the BLEU (Papineni et al., 2002)

and METEOR (Banerjee and Lavie, 2005) scores

against all ground truth sentences. BLEU is the met-

ric that is seen more commonly in image description

literature, but a more recent study (Elliott and Keller,

2014) has shown METEOR to be a better evaluation

metric. Since both metrics have been shown to cor-

relate well with human evaluations, we compare the

generated sentences using both and present our re-

sults in Table 3.

Human Evaluation. We used Amazon Mechan-

ical Turk to also collect human judgements. We

created a task which employed three Turk workers

to watch each video, and rank sentences generated

by the different models from “Most Relevant” (1)

to “Least Relevant” (5). We also evaluate sentences

Model BLEU METEOR

FGM (Thomason et al., 2014) 13.68 23.9

LSTM-YT 31.19 26.87

LSTM-YTflickr 32.03 27.87

LSTM-YTcoco 33.29 29.07

LSTM-YTcoco+flickr 33.29 28.88

Table 3: Scores for BLEU at 4 (combined n-gram 1-4),

and METEOR scores from automated evalutation metrics

comparing the quality of the generation. All values are

reported as percentage (%).

Model Relevance Grammar

FGM (Thomason et al., 2014) 3.20 3.99

LSTM-YT 2.88 3.84

LSTM-YTcoco 2.83 3.46

LSTM-YTcoco+flickr - 3.64

GroundTruth 1.10 4.61

Table 4: Human evaluation mean scores. Sentences were

ranked based on relevance (lower is better) and were rated

for grammatical correctness (higher is better).

on grammatical correctness. We created a different

task which required workers to rate sentences based

on grammar. This task displayed only the sentences

and did not show any video. Here, workers had

to choose a rating between 1-5 for each sentence.

We discard responses from workers who fail gold-

standard items and report the mean ranking/rating

for each of the evaluated models in Table 4.

5 Discussion

Image only models. The models trained purely

on the image description data LSTMflickr and

LSTMcoco achieve lower accuracy on the verbs and

objects (Tables 1, 2) since the YouTube videos en-

compass a wider domain and a variety of actions not

detectable from static images.

Base LSTM model. We note that in the SVO

binary accuracy metrics (Tables 1 and 2), the base

LSTM model (LSTM-YT) achieves a slightly lower

accuracy compared to prior work. This is likely due

to the fact that previous work explicitly optimizes to

identify the best subject, verb and object for a video;

whereas the LSTM model is trained on objects and

actions jointly in a sentence and needs to learn to in-



terpret these in different contexts. However, with re-

gard to the generation metrics BLEU and METEOR,

training based on the full sentence helps the LSTM

model develop fluency and vocabulary similar to that

seen in the training descriptions and allows it to out-

perform the template based generation.

Transferring helps. From our experiments, it is

clear that learning from the image description data

improves the performance of the model in all criteria

of evaluation. We present a few examples demon-

strating this in Figure 4. The model that was pre-

trained on COCO2014 shows a larger performance

improvement, indicating that our model can effec-

tively leverage a large auxiliary source of training

data to improve its object and verb predictions. The

model pre-trained on the combined data of Flickr30k

and COCO2014 shows only a marginal improve-

ment, perhaps due to overfitting. Adding dropout

as in (Vinyals et al., 2014) is likely to help prevent

overfitting and improve performance.

From the automated evaluation in Table 3 it is

clear that the fully deep video-to-text generation

models outperform previous work. As mentioned

previously, training on the full sentences is probably

the main reason for the improvements.

Human evaluation. We note that the sentences

generated by our model have been ranked more rel-

evant (Table 4) to the content in the video than previ-

ous models. However, there is still a significant gap

between the human ground truth sentence and the

ones generated by the LSTM models. Additionally,

when we ask Turkers to rate sentences (no video) on

grammatical correctness, the template based FGM

(Thomason et al., 2014) achieves the highest ratings.

This can be explained by the fact that their work

use a template technique to generate sentences from

content, and is hence grammatically well formed.

Our model sometimes predicts prepositions and ar-

ticles more frequently, resulting in duplicates and

hence incorrect grammar.

6 Conclusion

In this paper we have proposed a model for video

description which uses neural networks for the en-

tire pipeline from pixels to sentences. In an exten-

sive experimental evaluation, we showed that our

approach generates better sentences than related ap-

proaches. We also showed that exploiting image

Figure 4: Examples to demonstrate effectiveness of trans-

ferring from the image description domain. YT refer to

the LSTM YT, YT C to the LSTM-YTcoco, and YT CF

to the LSTM-YTcoco+flickr models. GT is a random

human description in the ground truth. Bottom two ex-

amples show how transfer can overfit. Thus, while base

LSTM YT model detects water and monkey, the YT C

and YT CF models fail to describe the event completely.

description data improves performance compared to

relying only on video description data. We will re-



lease our Caffe-based implementation upon publica-

tion, as well as the model and generated sentences.
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