Translation correlations in anisotropically scattering media
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Controlling light propagation across scattering media by wavefront shaping holds great promise for a
wide range of applications in biomedical imaging. However finding the right wavefront to shape is a
challenge when the scattering transmission matrix is not known. Correlations in transmission matrices,
especially the so-called memory-effect, have been exploited to address this limitation. However, the
traditional memory-effect applies to thin scattering layers at a distance from the target, which precludes its
use within thick scattering media. Here, we report on analogous transmission matrix correlations within
thick anisotropically scattering media, with wide-ranging implications for biomedical imaging. We use a
simple conceptual framework to explain these findings and relate them to the traditional memory effect.

1. INTRODUCTION

Focusing light through strongly scattering media is an
important goal of biomedical optics. Long considered
impossible, recent advances in the field of wavefront-
shaping [1,2] changed this view in demonstrating that
diffuse light can be focused through inhomogeneous media
— as long as the correct input wavefront is used. With direct
optical access to the target plane, the correct wavefront can
be obtained by iterative optimization [2], phase-conjugation
[3], or by measuring the transmission matrix [4,5]. In many
imaging scenarios, however, there is no direct access to the
target plane. In those cases, nonlinear [6], fluorescent [7],
acousto-optic [8-10] and photo-acoustic [11-13] guide-stars
can be used as reference beacons. However, these
techniques only provide wavefront information for one
target location at a time. While transmission matrices can
be sampled quickly with a photo-acoustic approach [14],
this method requires absorbing samples. As a result, many
samples’ transmission matrices can only be sampled
sparsely. Correlations within a transmission matrix can
compensate for sparse sampling and could enable high-
speed imaging. One of the most widely known transmission
matrix correlations is the so-called “memory effect”
[15,16], which describes the following phenomenon: when
an input wavefront reaching a diffusing sample is tilted
within a certain angular range, the output wavefront is
equally tilted, resulting in the translation of the far-field
speckle pattern at a distance behind the sample (see Fig. 1).

The translation or field-of-view (FOV) within which this
effect holds, is inversely proportional to diffuser thickness ¢
and directly proportional to the distance s of the diffuser

from the screen. It can be approximated by the equation
FOV = sA/mt [17-20].

The memory effect has found numerous applications for
point-scanning [21,22], direct image transfer [18] as well as
for computational image recovery [19,20]. Yet, in all of
these applications, the target plane was at a distance from
the diffuser with free space in between — which has limited
use for imaging inside thick scattering media. Because such
samples are neither thin nor at a distance from the target
area of interest, the correlations predicted by the
“traditional” memory effect should be minimal [23]. Here,
we set out to ask whether there are other correlations that
apply to such samples. We show that significant
transmission correlations can exist in thick scattering media
at zero distance, as long as scattering is directional.
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FIG. 1 The traditional memory effect. (a) the traditional memory effect
as described for light propagating through thin diffusing slabs. Tilting the
input wavefront (plane A) reaching the slab tilts the scattered wavefront at
the output (plane B), which shifts the far-field intensity speckle pattern
projected on a screen (plane C). (b) when the input wavefront is shaped to
converge at a spot on the screen, tilting the input wavefront scans the spot
laterally, which can be used for imaging by point scanning. The field-of-
view of this approach is approximated by the equation FOV ~s 4/ = t.



FIG. 2 Correlations within transmission matrices (simulated). (a) the traditional (tilt/tilt) memory effect explained in terms of transmission matrix
correlations. A pencil beam illuminating a thin slab, will cause a diffuse spot at the output surface, whose diameter dx is on the order of the slab thickness.
The profile of the spot will be apparent in the (ordered) X/X transmission matrix, and results in strong near-diagonal components. The corresponding K/K
transmission matrix is diagonally smeared (since X/X and K/K transmission matrices are related by the 2D Fourier transform). Hence, a tilt (k-shift) at the
input plane, results in a corresponding tilt (k-shift) at the output plane. (b) in anisotropically scattering media of finite thickness the directionality of the input
light may be preserved. A result, a plane wavefront illuminating the sample results in a limited angular range dx of output wavefronts. This suggests that the
K/K transmission matrix of such samples has elements of higher amplitude near the diagonal. This would results in a diagonally smeared X/X transmission
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2. TRADITIONAL MEMORY EFFECT

While the memory effect has been extensively derived
from first principles [16], these derivations relied upon
assuming perfectly diffuse scattering — which does not
apply to many biological samples. Here we will take a more
heuristic approach using amplitude transmission matrices.
Specifically, we are interested in the matrix T, = T (x4, x5)
which maps input spatial modes to output spatial modes.
For simplicity of graphical representation, we assume
propagation of 1D wavefronts in a 2D geometry, but all
conclusions will be generalizable to 2D wavefronts in a 3D
geometry. Due to its discrete nature, the transmission
matrix is especially amenable to experimental observation.
We will first use our framework to analyze the traditional
memory effect, and then calculate the speckle correlations
in thick anisotropic media.

When assuming highly randomizing transmission, but
incomplete measurement of input and output channels, the
transmission matrix is often modeled as a random matrix
with complex Gaussian elements. However, in the case of a
thin scattering slab, the transmission matrix will have an
additional macroscopic structure: a point-source on the
input plane of the slab would spread to a bell-shaped
diffuse spot at the output plane (whose diameter would be
on the order of t for slabs whose thickness t is larger than
the transport mean free path — as predicted by the diffusion
approximation). As a result, even though individual
transmission matrix elements may not be known, a bell-
shaped profile will be represented in the envelope of
transmission matrix columns (see Figure 2a).

To recognize tilt correlations, we are interested in the
effect of this macroscopic structure on the spatial frequency
domain (k-space) representation. Every spatial-domain
transmission matrix T, can the transformed into the
corresponding  frequency-domain transmission matrix
T, = T(kg, kp,) by the following operation: T, = F™IT,F,
where F is a discrete Fourier transform (DFT) matrix. Due
to the Fourier Inversion Theorem, we can express the
inverse Fourier transform of T, as the Fourier transform of
T,, horizontally flipped: F~1TyF = (FTy)“F = (FTxF)*,
where < denotes the horizontal flip operator. This is
analogous to performing the 2D Fourier transform of T, and
flipping it horizontally:

Ty = (TZDTX)H (1

Expressing Tj, in terms of the 2D Fourier transform of T,
provides a straightforward explanation of how the
macroscopic structure of T, influences correlations in Tj: a
macroscopic  envelope with strong near-diagonal
components in T, acts as low pass filter along the diagonal
of Tj,. This convolution of matrix elements along the
diagonal of T}, corresponds to the traditional memory effect,
in which a tilt of the input wavefront (shift in k-space)
causes a tilt of the output wavefront, resulting in a shifted
speckle pattern at a distant screen. For this reason, and to
distinguish the traditional memory effect from further
correlations described below, we also refer to the traditional
memory effect as “tilt/tilt correlation”.

More exactly, we can define the intensity propagator
P.(xq,xp) = {IT (x4 x,)|?) and use the cross-correlation
theorem to write
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with C(4kg, Aky) the tilt/tilt correlation function. Since,
generally, P, only depends on the difference between the
coordinates, this equation reduces to

Cy(dkgy, Aky) 6Aka,Akb~(FAx_)Akax(Ax)' 3)

which is the well known memory effect [24].

These considerations reconfirm our expectation that the
traditional memory effect may be minimal in thick
biological media: First, sample thickness would lead to an
increased spread of the input light, reducing tilt/tilt
correlations between input and output plane. Second, the
plane of interest would not be at a distance from the
sample, which means that the tilt at the output plane would
not translate into a shift at the plane of interest.

3. CORRELATIONS IN ANISOTROPIC
MEDIA

We therefore asked whether there may be other types of
transmission matrix correlations in thick samples,
especially biological media. We started by recognizing that
in many samples scattering is anisotropic and occurs
primarily in the forward direction. Scattering is particularly
anisotropic in biological media, where the anisotropy
parameter g (the average cosine of the scattering angle)
typically ranges from 0.9 to 0.98 [25,26]. This means that
after a limited number of scattering events, the
directionality of an input beam will be preserved to some
extent as it reaches the output plane. In other words, one
input plane wave (one mode in k-space) will result in a
limited angular span of output waves.

As a result of such preserved directionality,
anisotropically scattering media will have a macroscopic
structure in T), (rather than T, ), with high near-diagonal
amplitudes (see Fig. 2b). By analogy to our prior reasoning
for the traditional memory effect, a macroscopic envelope
in T}, will lead to a diagonally convolved T,, which means
that a shift at the input plane will cause a shift at the output
plane (this is in contrast to the traditional memory effect, in
which a tilt at the input plane causes a tilt at the output
plane).

The range of correlations in T, will depend on the
envelope of the columns in Tj. Equivalent to Eq. 2 we
define Py (kg kp,) = (|Ty (kg kp,)|?) and find
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Here, the k-space propagator P; includes anisotropy's
effects, and reduces to

Cx(Axa'Axb) x SAxa.AbeAk_mbek(Ak)' (5)

when only dependent upon difference coordinates. This
result is the exact Fourier conjugate of the traditional
(tilt/tilt) memory effect. This result also suggests that the
correlation function can be predicted by a simple
experiment, namely by illuminating the sample with a plane
wave E,(x,) =1 and measuring the output wavefront
E, (xp) = T4E,(x,) . The electric field correlation between

the transmitted outputs of two spatially shifted inputs can
then be approximated by

Le(k) = |F45~KE, (x,) | (6)

which, in effect, means that the shape of the shift/shift
correlation function equals the autocorrelation of E, (xp).

A more detailed derivation of Eq. (1)-(6) may be found in
the Supplementary Material

4. EXPERIMENTAL VALIDATION

The shift/shift correlations apply to any input field,
including fields that are shaped to converge to a sharp
focus. To demonstrate the use of these correlations for
scanning a point focus, we first used digital optical phase
conjugation [3] to focus light (532 nm DPSS laser) through
500 pm to 1 mm thick slices of chicken muscle tissue
(reduced scattering coefficient 1: 1-2 mm, anisotropy factor
g: ~0.97), employing off-axis holography for wavefront
measurement and a spatial-light-modulator (SLM) for
wavefront shaping (Fig. 3a) [10,27]. We projected a point-
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FIG. 3 Measured shift/shift correlations (a) Experimental setup (b) the
time-reversed spot (middle) and shifted foci resulting from laterally
shifting the phase conjugated wavefront at the sample. (c) line scan
(intensity profile) along the blue dotted line in b while shifting the input
wavefront, d and e: focus peak intensity as a function of shifted location
for 1000/500 um (d/e) slices. Black curve: prediction based on the speckle
autocorrelation measured during plane-wave illumination (Eq. 2).



source at one surface of the tissue slice (surface A) and
detected the scattered wavefront propagating from this
point through the tissue (exiting at surface B) to the SLM-
plane. In the next step, we displayed the phase-conjugate of
the detected wavefront, which travelled back through the
tissue and formed a focus on surface A.

To validate the predicted shift/shift correlations, we then
shifted the phase-conjugated wavefront laterally at surface
B, testing whether the focus at surface A would be
preserved and whether it moved.

As expected, we noticed that motion of the shaped
wavefront resulted in concurrent movement of the focus
(Figure 3b-c), while the focus intensity decreased with
distance from the original position, following a bell-shaped
curve (Figure 3d-e). For the 500 um slice the full width at
half of the maximum (FWHM) was 5 um, while the full-
width at tenth of the maximum (FWTM) was 10 pm. In the
case of the 1000 pum slice, the FWHM was 3 and the
FWTM was 6 um.

Next, we illuminated the sample with a plane wavefront
and asked whether the shape of the spatial autocorrelation
of the resulting amplitude speckle pattern (E, ) followed
the profile of the shift/shift correlations (C,), as derived in
Eq 6. Indeed, Figure 3d-e shows that both profiles are in
good experimental agreement.

S. DISCUSSION

The traditional (tilt/tilt) memory effect has recently
enabled the development of several modalities to image
through scattering ‘walls’ [18-22]. Intriguing as these
methods are, they suffer from two limitations: the sample
should be thin, and the object should be placed at a distance
behind the sample.

Here, we demonstrated a complementary type of memory
effect that suffers from neither limitation: the correlations
are present even inside thick scattering media, as long as
scattering is anisotropic and the mapping between input and
output wavefronts preserves any level of directionality.
This is the case up to a depth of one transport mean free
path.

We showed that the shift/shift memory effect is the
Fourier complement analog of the traditional (tilt/tilt)
memory effect, and that the extent of correlations can be
directly determined from the spatial speckle autocorrelation
function during plane-wave illumination.

Our results pave the way for extending memory-effect-
based imaging methods [18-22] to also work inside
biological tissue. Based on our measurements, we expect
such methods to achieve diffraction-limited resolution at a
depth of 1 mm inside muscle tissue, albeit at a limited field-
of-view of <10 pm initially.

We foresee several possibilities to further increase the
field-of-view of our method, including tiling neighboring
fields-of-view using multiple corrections. Also, our results
suggest that the extent of correlations will be largest for
those photons which have undergone few scattering events
and little angular deviation — also called snake-photons.
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FIG. 4 Comparison between correlations and relation to adaptive
optics (a) the traditional memory effect, in which a tilt at the input leads to
a tilt at the output face of the sample. (b) shift/shift correlations, in which a
point can be scanned by shifting the corrected input wavefront. (c) typical
setup in adaptive optics microscopy, where corrected wavefronts are tilted
in the Fourier-plane. This leads to a shift at the sample surface, analogous
to the correlations described here.

Hence, selective measurement and correction of snake-
photons (e.g. by temporal gating, coherence gating or
spatial filtering) may considerably increase the extent of
correlations and the imaging field-of-view.

Finally, we note that tilt/tilt and shift/shift correlations
are not mutually exclusive. For instance, we assumed that
the average T, matrix is translationally invariant, which is a
pessimistic assumption even in thick biological tissue.
Furthermore, we anticipate that there may be additional
correlations present in biological media. Future work
measuring complete transmission matrices in the adaptive
optics and the complex wavefront shaping regime will shed
light on spectral, temporal and spatial correlations. They
may ultimately be utilized in combination with the
shift/shift correlations reported here.

We note that the described shift/shift correlations are
consistent with the setup geometry of adaptive optics
microscopy (Fig 4), where wavefronts are corrected in the
conjugate Fourier plane of the microscope objective. Tilting
the incoming wavefront in the Fourier plane (e.g. in a laser
scanning microscope) leads to a shift of the wavefront
reaching the sample with a resulting shift of the focus [28].
In other words, adaptive optics microscopy implicitly
already takes advantage of shift/shift correlations, albeit in
the ballistic regime —as such it can be interpreted as a
special case of the general shift/shift correlations derived
here.

With further study of spatial spectral and temporal
transmission matrix correlations, these advances may lead
to a unified understanding of adaptive optics and complex
wavefront shaping and extend their use in thick biological
tissues, enabling versatile imaging and photostimulation in
a wide range of biologically relevant media.
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Supplementary material for: Translation correlations in
anisotropically scattering media

Appendix A: The traditional memory effect as a diagonal envelope

Here, we connect our experimentally driven explanation of the “traditional” memory
effect to previous theoretical derivations. By “traditional” memory effect, we refer to the
commonly observed [Feng et al. 1988, Li and Genack 1994, Bertolotti et al. 2012] distance
over which a speckle pattern can shift on a screen placed a distance behind a scatterer,
when light incident upon the scatterer is tilted in angle. Our goal is to show that under
appropriate conditions, this correlative effect is linked to a diagonally enveloped real
space transmission matrix.

To begin, we will first define an intensity transmission matrix in k-space suitable for our
scenario of a widely-illuminated scattering slab (K/K matrix, Fig. 2(a) middle). We will
then transform this matrix into a matrix containing the complex field transmission
coefficients in real space (X/X matrix, Fig. 2(a) right). This transformation will reveal a
diagonal multiplicative envelope whose width is defined by the average intensity
distribution across the scatterer’s output (back) surface caused by a point source placed
at the input (front) surface.

We assume a scattering slab containing disordered material of thickness L, width W (on
both input and output surface, and scattering mean free path . Following prior work
[Feng et al. 1988], we assume a linear optical medium kl > 1 (weak disorder) and L > I
(multiple scattering). These assumptions are not necessary to show the memory effect
(either traditional or anisotropic) exists in general, but help connect our approach to this
prior work. A more rigorous derivation performed without such assumptions is in
Appendix C. We start by describing this slab with a transmission matrix T;(kg, kp),
containing the intensity transmission coefficients of wavevector k, on its input surface
scattering into wavevector kj, on its output surface, under illumination of coherent light
of wavelength 1. The “resolution” of each matrix element is set at §k, = 6k, = 2NA/2,
where the numerical aperture NA is a function of the maximum acceptance angle of
light on the input surface, typically set by the illumination/detection optics. For example,
in our experiment we have the approximate valuesA =532nm,l~1—-2mm, L = 0.5
mm, NA =0.75.

The correlation of this matrix T; with itself, considering many different random scatterer
configurations, takes the form,

Crgiepkgriy = ((Tilka, kp) = u)(T(ks', kp") — ui")), (A1)

where u; = (T[(kg, kp)), the average coefficient value. Prior work expresses Eq. (Al) as
three unique correlations [Feng et al. 1988, Li and Genack 1994]:
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The first “memory effect” term, C M is the dominant term and traditionally takes the
form,
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where Ak, = kq — k,' and Aky, = kj, — k;," are shifts in input and output wavevector,
respectively, the §-function indicates that the correlation is not present unless both shifts
are examined simultaneously, and A% is a constant. Eq. (A3)’s correlations define T;’s
diagonal “smearing” as depicted in Fig. 2(a), middle. Its §-function holds valid so long
as the beam exiting the scatterer remains wide (I'(xp) » L), which is satisfied in our
current consideration of plane-wave input illumination. Given a narrow illumination
beam, we may replace Eq. (A3)’s delta function with a finite-width function |g(Ak, —
Akp)|?, which may be interpreted as finite-width speckle (in k-space) at the input and
output surface [Li and Genack 1994, Bertolotti et al. 2013]. Sampling conditions may
easily be redefined to reduce g(-) to a discrete §-function, thus removing off-diagonal
matrix correlations from the following analysis.

Eq. (A3)’s sinh() fraction originates from the influence of an intensity propagation
function P(x}, — x4) connecting the spatial coordinates of the input surface x, to the
output surface x;, [Berkovitz et al. 1989]. Prior work [Li and Genack 1994] suggests a
more general form of Eq. (A3) based upon the intensity propagator P:

. 2
CD prak, = A25Aka,Akb|Txb Akv [P (xp)]| ", (A4)

where F is a one-dimensional Fourier transform and P(x) connects the average intensity
distribution on the output surface I(x,) to the input surface I(x,) :
I(xp) = Xx, 1(xq) P(xp — x4). We may find P(x) by measuring or deriving the average
output surface intensity envelope I'(x;) due to input illumination from a discrete spatial
§ -function: I'(xp) = P(xp) given I(xy) = 6(0) . Following our matrix sampling
conditions, an input illumination spot of approximate size 1/2NA is sufficiently narrow
to satisfy this discrete delta criterion, as Fig. 2(b) illustrates. Likewise, its relative
position is not critical — our assumption of a spatially homogenous slab requires a
shifted input spot I(x,) = §(d) to create a shifted yet otherwise unchanged output
I'(xp — d). P(x) and this measured or derived I'(x;) are thus easily interchanged.

Next, we transform Eq. (A4) from an intensity correlation into a similar function for a
complex optical field. Following [Goodman 2007, Pnini and Shapiro 1989], we recognize
that the correlation function of a circularly complex Gaussian random process C&) is
connected to the correlation function of the same random process’s intensity C®
through a simple square root relationship:

* ! ! A5
CE e pkariyr = (TE(ka, kp)T(ky', kp")) = ’C(I)ka,kb,kar,kb, (AS)



Here, the ensemble average is over many random complex transmission matrices
Tg(kg kp), we've used ug = (Tg(kgy, kp)) = 0 for a zero-mean complex speckle process,
and we require C® to be real and positive. The symbol E indicates Ty and C® apply to
the complex field. The main text replaces E with subscript x or k for both matrices for
notational clarity. Inserting Eq. (A4) into Eq. (A5) and replacing P(x;) with I'(x;) gives
an expression for the field transmission matrix Tg’s correlation:

CE ppak, = ASak i, FX2 2k [I' (xp)], (A6)

which mirrors Eq. (3) in the main text. Our final step is to show that Eq. (A6)’s memory
effect correlation, when expressed in the spatial domain, appears as a diagonally
enveloped transmission matrix Tg(xg, x). Since the speckle field is a spatially stationary
random process (i.e., whose statistics do not vary with position), we may rewrite Eq.
(Ab) as a discrete autocorrelation:

C® ptgay = ) D Trlka, k) Thkq — B, by — k). (A7)
ka kp

We may then use a Fourier transform to examine Eq. (A7) in the spatial domain. From
the Weiner-Khinchen theorem, we know that a function’s autocorrelation and its power
spectral density (PSD) are Fourier pairs. We may thus write the inverse Fourier
transform F of the two-dimensional autocorrelation C) 5y, as,

f.ZADka—)xa.Akb—»xb [C(E)Aka,Akb] — (lTE(xa' xb) |Z), (A8)

where Tg (x4, xp) is the spatial (XX) optical field transmission matrix described as a 2D
Fourier transform of the KK transmission matrix in Eq. (1): Tg(x4, xp) = Fopl[TE(kq, kp)].
The PSD’s ensemble average is also taken over many possible scatterer configurations.
Applying the same inverse two-dimensional Fourier transform along (Ak,, Aky) to the
right side of Eq. (A6) leads to,

SAkg—-xg,Akp— - ’ /i
By @ O[S i, FE N[ ()] ] = AT (it — x0). (A9)

Here we again use the modified 2D Fourier transform relationship from Eq. (1) and
change coordinates from xj, to x,, — x, via the §-function. After constructing a Toeplitz
mask matrix M(xg,xp) = I'(xp — x4) for all (x4, x,), we may equate Eq. (A8) and Eq.
(A9) to find,

(ITg(xq, xb)|2) =VA M(xg, xp). (A10)

In summary, a K/K transmission matrix Tg(kg, kp,) exhibiting the C @) memory effect
reduces to a Toeplitz diagonal masking matrix when examined in the spatial domain.
This masking effect on a single XX matrix is depicted in Fig. 2(a) left, and is valid given a
relatively wide input illumination beam (I'(x,) > L). The diagonal mask’s shape is set
by the average intensity distribution on the output surface of the scatterer, I'(xp), from a
point source placed on the input surface. Again, we note that all above assumptions
(except the requirement of a linear scattering process) are not necessary to show a finite
memory effect correlation exists for any optical scattering material. The same holds for
the anisotropic memory effect, which we explicitly show in Appendix C.



Appendix B: The anisotropic memory effect

Building upon our model in Appendix A, we now derive our new anisotropic scattering
-based correlation function. Here, we will again connect our derivation to as much prior
work as possible, which will necessitate several assumptions. Appendix C offers a stand-
alone derivation of the anisotropic memory effect that does not require any of the
assumptions noted below, save a linear scattering process.

This “anisotropic” memory effect manifests itself as correlations within the spatial (X/X)
transmission matrix, much the same way as the “traditional” memory effect influences
the k-space (K/K) transmission matrix. Specifically, certain properties of a scattering slab
may cause a spatially invariant, finite angular spread of wavevectors to emerge from its
output surface when we illuminate it with a plane wave. We first connect this finite
wavevector spread to a function modulating the anti-diagonal of this scattering slab’s
average K/K transmission matrix (see sketch in Fig. 2(b), middle). Then, we transform
this modulated K/K transmission matrix into an X/X transmission matrix to reveal our
new anisotropic correlation along its diagonal (Fig. 2(b), right).

We begin by assuming a scattering slab with similar properties as in Appendix A under
near plane-wave illumination, but with two important modifications. First, we now
assume the average intensity spread at the output surface due to a point source extends
nearly the full surface width (I'(x,)~W), leading to a negligible traditional memory
effect:

- ’ 2
Cry ke kegrkyr = C(I)Aka,Akb = A28 pp, aky |FX2 7240 [ (xp)]|” = A28 pk, Onk, (B1)

As in Eq. (A3), we again neglect the higher-order C® and €® correlations and assume a
sufficiently wide I'(x}) to ensure the above Fourier transform reduces to a discrete delta
function (within our 2NA/A sampling rate). C(!) correlations may be added back into
T(kgq, kp) without significantly impacting the following results, but lead to a more
complex analysis.

Second, we assume the scattering process within the slab is anisotropic with parameter g
> 0 (i.e., primarily forward-scattering) and the directionality of multiply scattered
photons is sufficiently preserved, such that when the input surface is illuminated with a

plane wave E'(x,) = e*¥af

across its spatial extent W, only a finite spread of
wavevectors appears at the output surface. Defining the field at the output surface as

E'(xp) from this plane wave input, we may find its spatial frequency power spectrum

via a Fourier transform: |F[E'(x5)]|? = |E’(k3)|2 =I'(kp). This spectrum’s ensemble
average over many random possible anisotropic scatterer configurations will follow a
band-limited curve:

(I'(kp)) = Py (k). (B2)

Py (kp) describes an average radiance distribution, here as a function of wavevector,
emerging from the scatterer output surface when illuminated with a plane wave. In



practice, Py (kg) will be defined by the scattering slab’s anisotropy g, mean-free path I
and thickness L (ignoring boundary effects). P, (kp)’s envelope width will decrease as g
varies from 0 to 1, but may be determined for any anisotropy level and in general any
linear scattering medium either experimentally (via direct intensity measurement),
through simulation (e.g., a Monte Carlo model) or theoretically (e.g. by the diffusion
approximation).

When the input plane wave E'(x,) is traveling at = 0, Py (kp) will describe a single
column of the ensemble-averaged K/K intensity transmission matrix:

(T1(0,kp)) = Pyr(kyp) (B3)

As the illumination angle is tilted, the average distribution of radiance emerging from
the output surface of a homogeneous scattering slab will rotate unchanged (ignoring
refractive effects at extreme angles). In other words, if we tilt the input plane wave
E'(x,) by angle 8, we expect the average radiance spectrum on the output surface will
tilt to form (I'(kg — 0)) = Py (kp — 6). Thus, we may fill each column of the average K/K
intensity transmission matrix with a shifted version of the average radiance distribution
Py:

(T1(ka, kp)) = (|Tg(kq, kp)|?) = Pr(kp — kq). (B4)

Here, we’ve also re-expressed the intensity transmission matrix as the square of the field
matrix, Tg(kg, kp). Eq. (B4) defines the average anisotropic KK transmission matrix with
an envelope Py along its anti-diagonal, as illustrated by Fig. 2(b), middle. (Note Py’s
uniform angular shifting is in no way related to the traditional memory effect, but is
instead directly analogous to Appendix A’s assumption that intensity envelope I' (xp) is
independent of spatial location).

Following Appendix A’s derivation in reverse, we can inverse Fourier transform both
sides of Eq. (B4) to obtain our desired “anisotropic memory effect” correlations in the
spatial domain (i.e., within the XX transmission matrix Tg(x,4, xp,)). We first apply a two-
dimensional Fourier transform to Py (k;, — k,) on Eq. (B4)'s right side to obtain,

Fyg TN P (ke — ka)] = Frem e [Py (B e et ] (B5)
= P (Axp) 8 (Axp — Axg)
where Py is the one-dimensional Fourier transform of Py. In the first step we’ve used the

Fourier shift theorem and in the second we’ve converted the multiplication into a
convolution, as required, using the same directional flip from Eq. (1).

Finally, we perform a two-dimensional Fourier transform on Eq. (B4)’s left side and
apply the Wiener-Khinchin theorem to our stationary speckle process to find,

Foa™X a0 [T L (kg k) 12)] = (Tp(Xa, %) T (Xa' X5")), (B6)

where the ensemble average is over many random configurations of the same
anisotropic  scatterers. Combining Eq. (B5) with Eq. (B6) and renaming
(Tg(xq, xp)TE(x4', x,")) as the complex field correlation function €& gives,



C(E)Axa,Axb = 6(Axp — Axa)pk(Axb)- (B7)

Eq. (B7) is analogous to Eq. (A4) but with a correlation that is now a function in the
spatial instead of angular domain and now depends upon a finite output wavevector
spread instead of a finite spatial intensity spread. Correspondingly, Py plays the Fourier
dual role of the propagator function P from Appendix A, which becomes significant
enough to induce correlations when anisotropy is high. We note the same field-intensity
squaring relationship for correlation from Appendix A will yield,

~ 2
CD px an, = 5Axa,Axb|Pk (Axp)|", (B8)

which shares direct parallels with Eq. (A3)’s “traditional” memory effect, C 0 AkgAky- BY
following Appendix A’s steps, we have tried to explicitly show our new “anisotropic”
memory effect is indeed the “traditional” memory effect’s Fourier dual. We next use an
alternative approach, requiring much fewer assumptions, to construct a more general
anisotropy-based correlation function.

Appendix C: Rigorous derivation of the anisotropic memory effect

Here we present a rigorous derivation of the anisotropic memory effect. We prove that
the anisotropic memory effect is present for all scattering objects, including ordered or
absorbing ones, as long as 1) light propagation is linear, and 2) the directionality of the
incident beam is maintained to any extent (the angular intensity propagator is not
constant across angles).

Wave propagation through any linear medium can be described by a field transmission
matrix Tg(xg, xp) such that,

E(xb) = f TE(xarxb) E(xa)dzxa- (Cl)

Here, E(x,) is the incident field, E (xp) is the transmitted field, and x, and x; are two-
dimensional coordinates in arbitrary planes in front of and behind the sample,
respectively.

We now proceed to define the angular intensity propagator, Py (ky, kg). The angular
intensity propagator gives the transmitted intensity I(kp) when the scatterer is
illuminated by an incident plane wave with unit power. By convention, we define the
intensity as a function of propagation direction k, as, I(kp) = |E (k,)|?.

First, we construct a truncated plane wave with unit power:

{ 1 for x, inside area A (C2)

, Hy(xq) 0 .
E'(xa) = e, Hyxo) = 0 otherwise

VA
Here, we have [ |E'(xq)|?d*x, = 1. Note that while Eq. (C2)’s wave is truncated to a

square area A, we will take the limit of A — oo below. Following Eq. (C1), the incident
field E'(x4) will generate the following transmitted field:



, 1 - C3
E'(xp) = o [ oo, x)HaCxa)e o ©

The resulting angular intensity propagator is thus defined as,
Pk(kblka) = |f e_ikblxb E'(xb) dszlz (C4)

1 , .
= I e Ty, %) Ha(xa)e e ad’xad%x,

x ff e_ikb'xb’ TE*(xa’:xb’) HA(xal)eika'xa’ dzxa'dsz'

Next, we apply the coordinate transform x,» = x, — Ax, , X,y = x, — Ax}, and reorder Eq.
(C4) to find,

1
Pi(kp, ka) = = [l TeCxa, xp)TE (ta = Axq, xp — Axp)Ha(xa) Ha(xa = Axq)
(C5)

x e~kaBxapikpAxp 42y d2x, d?Ax, d2Ax,,.
We now define our shift-shift correlation function C, in the limit A - oo:

1
Ce(Bq, A) = lim — I HaCra)Ha(xa — A%0) (o)

X Tg(xq, xp) Tg"(Xq — Axq, xp, — Axp) d*xg d*xp,

A—o00

1
= lim ZJ. J.TE(xa,xb) Tg (xg — Axg, xp — Axp) d?x, d2x,,.
ala

Note that Eq. (C6)’s correlation function can always be defined. However, defining it
only makes sense when the medium is statistically invariant to translations over the area
of interest. When the medium is ergodic, spatial averaging can be replaced by ensemble
averaging, although this is not a requirement for the current derivation. We may now
insert Eq. (C6) into Eq. (C5) to find,

Pe(kp, ko) = [] C(Axgy, Axp) eo2%be=tkaBxa G2 Ax, d%Ax,,. (C7)
Inverting this Fourier transform gives,

C,(Axg, Axp) = [[ P (kp, kg) e "o B%beikaAxa 42k  d%k,, (C8)

which is the continuous equivalent to Eq. (4) in the main manuscript and connects to Eq.
(B5)-(B7) above. For convenience, we can change the coordinates of P to k = k, and
Ak = ky, — k, and write,

Cy(Dxg, Axp) = [ PL(k; Ak) e~ i8k-Axp pik-(Axa=AXp) 2] d2 Ak, (C9)

which is still a general expression. Note that in most circumstances C,(Axg,, Axp) # 0,
even for Ax, # Axy.

Interpretation

In its most general form, Eq. (C9)’s shift-shift correlation function depends on both Ax,
and Ax,. If we want to calculate the magnitude of the anisotropic memory effect, we



evaluate the correlation function at Ax, = Ax;, = Ax to find that it is simply the Fourier
transform of an angle-averaged angular intensity propagator:

Co(Ax) = [ Po(Ak) e HAKAX q2AL, (C10)

Here, Py is an angle-averaged angular intensity propagator that we define as, Py (Ak) =
[ Pi(k; Ak) d®k. The width of P, (Ak) depends on the scattering object’s mean free path,
anisotropy coefficient, thickness, reflections at the object surface, and possibly other
parameters. If a disordered scattering object’s width L is much thicker than the transport
mean free path for light [, all directionality is lost and Py (Ak) will be a constant function
across Ak. In this case, the width of P, (Ak) will still be limited to 2k, with kg = 2m/A.
This finite support of P gives rise to trivial correlations on the scale of half a
wavelength.

If a disordered scattering object’s width L is thinner than one transport mean free path [,
any level of directionality is preserved and Py (Ak) will be narrower than for case when
L > . The narrower the angular intensity propagator’s support, the larger the distance
over which the sample can be translated while preserving correlations in the speckle at
the scatterer’s back surface.

Special case: P is separable

If Eq. (C9)’s intensity propagator Py (k; Ak) is separable into PY(k) and Pf (Ak), we may
rewrite it in the form,

Cy(Dxg, Axp) = [ PR(Ak) e B2 q2Ak [ PO (k)ek (Axp=A%a) g2, (C11)

which is the product of the Fourier transform of PA with the inverse Fourier transform of
P?. In the special case where Py only depends on the difference between the incident and
transmitted wave angle Ak, we find that P is constant. Under this condition, Eq. (C11)
simplifies to,

Cy(Axg, Axp) = 8§(Axp, — Axg) [ P (Ak)e™AkA%b d2 A, (C12)

In Eq. (C12)’s final form, it is immediately clear that the anisotropic memory effect is the
real-space analogy to the traditional memory effect.

Conclusion

The anisotropic memory effect exists for any linear medium, as long as any level of
directionality is maintained. The effect of shifting the medium is always robustly
defined as the Fourier transform of the angular spread function P, (Ak). In the C;
approximation, the intensity-intensity correlation function can simply be obtained by
taking the absolute square of the field-field correlation function C, defined above.



