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TRANSLATION HOPF ALGEBRAS AND HOPF HEAPS
TOMASZ BRZEZINSKI AND MALGORZATA HRYNIEWICKA

ABSTRACT. To every Hopf heap or quantum cotorsor of Grunspan a Hopf algebra
of translations is associated. This translation Hopf algebra acts on the Hopf heap
making it a Hopf-Galois co-object. Conversely, any Hopf-Galois co-object has the
natural structure of a Hopf heap with the translation Hopf algebra isomorphic
to the acting Hopf algebra. It is then shown that this assignment establishes an
equivalence between categories of Hopf heaps and Hopf-Galois co-objects.

1. INTRODUCTION

Introduced in the 1920s by Priifer [7] and Baer [I] heaps are simple algebraic
systems comprising a set X and a ternary operation [—, —, —] on X. The axioms
(see (2.)) below) ensure that any non-empty heap can be retracted to a family of
isomorphic groups, one for each element of X, and — conversely — any group can be
given a heap operation by the suitable combination of the group binary operation and
the inverses. The latter assignment constitutes a functor from the category of groups
to that of heaps. In the opposite direction, one can functorially assign to a non-empty
heap a group of translations, denoted Tn(X), i.e. all maps 7°: X — X, ¢+ [c, a, b],
a,b € X. The group Tn(X) acts on X freely and transitively, thus making X into a
Tn(X)-torsor. The functor (X, [—,—, —]) — (Tn(X), X) establishes an equivalence
between the category of heaps and torsors (see [2] for a recent discussion).

This note is concerned with the linearisation of heaps proposed by Grunspan in [4],
termed quantum cotorsors there and referred to as Hopf heaps in the present text.
Adopting the results of [10] and [4] (see also [12]) we assign to each Hopf heap C' two

o~

Hopf algebras Tn(C') and Tn(C') that act on C' turning it into a bimodule coalgebra
and make C' into a bi-Galois co-object (a notion dual to that of a bi-Galois object
introduced in [§])). This assignment establishes an equivalence between the categories
of Hopf heaps and bi-Galois co-objects and also, dually to [I1] gives a construction
and thus the proof of the existence of the Grunspan map, which was assumed as a
part of the original definition of a quantum cotorsor.

The main novelty of this paper does not reside in bringing the results of Grunspan
[4] and Schauenburg [10] and [I1] to the dual situation, which rightly in our opinion
might be considered as a formulaic exercise, but rather in giving an alternative de-
scription of the correspondence between bi-Galois co-objects and Hopf heaps which
does not seem to be available in the original setup of quantum torsors. This charac-
terisation in terms of linear endomorphisms of C' is similar to the functor assigning
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the group of translations to a heap evoked earlier, and thus closer to that encountered
in the classical geometric or set-theoretic set-up.

We work over a field F. All coalgebras, typically denoted by C' (or H if a Hopf alge-
bra) are over F, coassociative, counital and of dimension at least one. The coproduct
in C' is denoted by A and counit by . We use the Sweedler notation to denote the
coproducts in the form A(c) = > ¢, ® ¢, (A®id) o Ac) = c1)®c(2)@c), ete.
The coalgebra co-opposite to C, i.e. with the comultiplication ¢ +— > Coy ® €y 18 de-
noted by C°. The set of group-like elements of C' is recorded as G(C). All algebras
are associative and with identity. The algebra opposite to A is denoted by A°P. In
any Hopf algebra S stands for the antipode.

2. HOPF HEAPS AND TRANSLATION HOPF ALGEBRA

A heap is a set X together with a ternary operation [—, —, —] : X — X such that,
for all z1,...,25 € X,
(2.1) [21, 29, [23, 24, 5]] = [[71, T2, T3], W4, T3], 21, 21, 2] = 22, [21, Ta, Ta] = 71

The category of sets is a monoidal category with the monoidal product given by the
Cartesian product and the singleton set as the monoidal unit. Every set is then
a comonoid (coalgebra) in the unique way with the comultiplication given by the
diagonal map = — (x,z) and the counit the unique map from X to the (fixed)
singleton set. Both these maps clearly feature in the second and third equations
(27). Extending the definition of a heap to the monoidal category of vector spaces
one thus needs to consider a general coassociative and counital coalgebra as the
underlying object and use comultiplication and counit as appropriate replacements
in (2.I). This leads to the following definition which is dual to that of a quantum
torsor in [4] or quantum heap in [14].

Definition 2.1. A Hopf heap is a coalgebra C' together with a coalgebra map
x:CC°®C —C, a®b®cr [a,b, ],

such that for all a,b,c,d,e € C,

(2.2a) [[a,b,c|,d,e] =[a,b,[c,d, e,

(Q.Qb) Z[C(l)’ C(2), a] = Z[a, C@1), C(g)] = z—:(c)a.

A morphism of Hopf heaps (C,xc) and (D, xp) is a coalgebra map f : C — D
rendering commutative the following diagram

(2.3) CRC°0C —2 -
f®f®fl lf
DeDw®D — 2 . D.

Y

on elements,

(2.4) f([a,b,c]) = [f(a), f(D), f(c)], for all a,b,c € C.

A Grunspan map for a Hopf heap (C, x¢) is a coalgebra homomorphism ¢ : C' — C,
such that, for all a,b,c,d,e € C,

(2.5) l[a,b,9(c)], d, €] = [a, [d, ¢, b], €].
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The category of Hopf heaps (over the fixed field F) is denoted by HH.

Remark 2.2. One can easily calculate that, if it exists, the Grunspan map for a Hopf
heap (C, x¢) is given by the formula

(2.6) v:C — C, C— Z C1), )5 €(3) 6(2)], C(5)],

and thus necessarily is unique.
In fact, parallel to the situation described in [11], the forthcoming results will show
that a Hopf heap always admits the (unique) Grunspan map (see Corollary [3.9]).
The formula (2.6) together with the coalgebra map property of homomorphisms
of Hopf heaps and (2.4)) ensure that homomorphisms commute with Grunspan maps,
that is, if f : C' — D is a homomorphism of Hopf heaps with respective Grunspan
maps Y¢ and ¥p, then

(2.7) fode=1pof

Example 2.3. If H is a Hopf algebra, then H is a Hopf heap with the operation
la, b, c] = aS(b)c. The Grunspan map is then the square of the antipode, i.e. = SoS.

Conversely, given a Hopf heap (C, x), for any = € G(C), the coalgebra C' is made
into a Hopf algebra with identity x, and multiplication and antipode,

ab = [a, x, b], S(a) = [z,a,x].

This Hopf algebra is denoted by H,(C'). One easily checks that the Hopf heap asso-
ciated to the Hopf algebra H,(C') is equal to C.
These examples mimic the standard correspondence between groups and heaps.

The key object analysed in this paper is introduced in the following definition.
Definition 2.4. Let (C, x) be a Hopf heap. For all a,b € C, the linear map
™. C—=C, ¢ X(c®a®b) = [c,a, b],

is called a right (a,b)-translation. The space spanned by all right (a, b)-translations
is denoted by Tn(C'), that is,

Tn(C) :== F{(r’ | a,b € O).
Symmetrically, linear maps
op . C — C, c— x(a®b®c) = [a, b, c],
are called left (a,b)-translations and the space spanned by all of them is denoted by
Tn(C).

In what follows we will concentrate on right translations, the corresponding results
for left translations (of which we mention briefly in summary) are obtained by sym-
metric arguments. The following lemma gathers basic properties of (a, b)-translations.

Lemma 2.5. Let (C, X) be a Hopf heap. Then, for all a,b,c,d € C,
(2.8a) =Yl c)@a (ce),

[a(2),b,c] c
(2.8b) Z Tag, = e(a)Ty,
(280) Z 7_5((12)) - 7
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(2.8d) Td o 7‘ = T[bc‘ﬂ
In addition if the Grunspan map ¥ exists, then

(2.92) Tar e o (g)re,

(2.9b) 3 7@ = e(a)id,

(2.9¢) Tcd o Tf(b) = T[[i,b,a]'

Proof. Equation (2.8al) follows immediately from the fact that x is a coalgebra map.
To prove (2.8h), compute

[a 2 7b7c]
Tay (d) = Z[d aqy, [a@), b, c]]
= _lld.agy, ae). by = e(a)ld, b,c] = e(a)7i (),
by equations (2.2). In addition adopting (m) we find
[79(“ 1 )7bvc}
Tag () = Z[d ag), [0(aq), b, ] = Y [ld; a@), I(aq)], b, ]
= [ .00y, ap), d = e(@)[d, b, = e(a)75 (),

which proves (2.9a)).
Equations (2.8d) and (2.9h) follow from (m and (2.9a)), since, first by (2.2b))

E a2 _
Tacy = 8

and thus, second,

= S = Skl < S el 5
by ([2.8D) and (Z9a), and (2.2D)) again.
Finally, equations (2.8d)) and (Z:9d) follow by (22a)) and ([2.H). O

Equation (2.8d) in Lemma 2.5 implies in particular that Tn(C') is closed under the
composition. Furthermore, since any non-zero coalgebra over a field has at least one
element with a non-zero counit, (2.8d) shows that id € Tn(C').

Theorem 2.6. Let (C,x) be a Hopf heap.

(1) The space Tn(C) is a bialgebra with multiplication given by the opposite com-
position, and comultiplication A and counit :

(2.10) =S nlen,  erh) =c(a)e ),

for all a,b e C.

(2) If (C,x) admits the Grunspan map ¥, then Tn(C') is a Hopf algebra with the
antipode

Ya
(2.11) S(rh) =7/,
for all a,b € C.
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(8) If f: C — D is a morphism of Hopf heaps, then the function

(2.12) Tn(f) : Tn(C) = Ta(D), 720 710,
s a bialgebra map, hence a Hopf algebra homomorphism whenever the Grunspan
map exists.

(4) The assignment C' +— Tn(C), f — Tn(f) defines a functor from the category
of Hopf heaps (with Grunspan maps) to the category of bialgebras (resp. Hopf
algebras).

Proof. (1) In view of the composition property (2.8d)), the multiplication in Tn(C'),
denoted by juxtaposition comes out as

(2.13) thrd = rlbed for all a,b,c,d € C.

The coassociativity and comultiplicativity of A and the counit property follow imme-
diately from (2.I0) and the fact that x is a counital coalgebra homomorphism. The
unitality of A is a consequence of (2.8d).

(2) If the Grunspan map ¥ exists, then we can use (2.9d) and (2.9D)) to obtain

by b b 9(as)) b .
W)y e _} : @) @) } : @) _
ZS Ty )Taq) = Taq) © Top Tlaqyag) by — e(a)e(b)id

b b 9amy) b b1y ,beay s (ar))] )
E (1) (2 (1) 1 _ (1)>°(2) 1 _
a(?) S( a(l) ) Tb(2) o Ta(2) - Ta(2) — €(a>€(b)ld

Therefore, S is the antipode and Tn(C') is a Hopf algebra as stated.
(3) Since f is a coalgebra map,

(1) (2)
A( Z f(a(2)®f(a(1)

fwy) o _flo@) b
f(a(;))® f(a(f)) (Tn(f)@Tn(f)) o A(7,),

and

and

e(Tu(f)(72)) = e(f(a))e(f (b)) = e(a)e(b) = &(7y).
Hence Tn(f) is a coalgebra map. Again, by the coalgebra map property of f, for all
a € C,

Tn(f ZTn £ (1)) = e(a)id,
so, Tn(f)(id) = id. Combmatlon of (213) with (2.4) yields the multiplicativity of
Tn(f). Explicitly,

Ta(f)(rd) = Tu(f)(red) = oo

), f(d b) _f(d
= OS] _ IO 1D T (£)(72) () (7).

Hence Tn(f) is a bialgebra homomorphism.
Finally, if the Grunspan map exists, then for all a,b € C|

Ta(f)(S(2) = Tu(f) () = ofi @ = 7@ = $ (Tn(p) (72)) .

where the penultimate equality follows by (2.7)). Therefore, Tn(f) is a Hopf algebra
map as stated.

(4) The fact that Tn(id) = id and the preservation of composition of morphisms
are obvious. Hence Thn is a functor as claimed. O
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Remark 2.7. By symmetric arguments, the space ﬁl(C) of left (a,b)-translations of

a Hopf heap C' with the Grunspan map ¢ is a Hopf algebra with operations, for all
o, 05 € Tn(C),
(214&) O-go-g — O.g o O_g _ O_C[la,b,c]7

(2.14b) Algg) = ol @™, elof) =e(a)z(b),  S(of) = oi®.

The obvious coalgebra isomorphism ﬁl(C) — Tn(C), of — 7 is an isomorphism of

Hopf algebras ﬁl(C’)Op = Tn(C) in the abelian Hopf heap case only, that is if and
only if, for all a,b,c € C, [a,b,c|] = [c,b,a]. Notwithstanding, similarly to the right
translations case, the assignment

Tn(-) : C s Tn(C), <C—f>D) - (ﬁl(C)T“—(Qﬁ(D) 03%’35((?3»

is a functor from the category of Hopf heaps (with Grunspan maps) to the category
of bialgebras (resp. Hopf algebras).

Definition 2.8. For a Hopf heap (C, x), Tn(C) is called the right translation Hopf
algebra and Tn(C') is called the left translation Hopf algebra.

Remark 2.9. A priori Tn(C') and ﬁl(C) are simply bialgebras, however, in view of
the forthcoming Corollary B4 a posteriori both are Hopf algebras, thus justifying
the terminology.

Proposition 2.10. Let (C,x) be a Hopf heap. Then, for all x € G(C),
H,(C) = Tu(C) = Tu(C),
as bialgebras. Consequently Tn(C') and ﬁl(C) are Hopf algebras.

Proof. Let us consider the map
(2.15) ¢ : H,(C) — Tn(C), a—Ty.

The map is a coalgebra homomorphism, since z is a group-like element. Using (2.13))
and (2.8d) one immediately concludes that ¢ is an algebra homomorphism. Equation
(2.8D)) together with the definitions of the antipodes in H,(C') and the right translation
Hopf algebra Tn(C) allow one to verify, for all a € C

o(S(a) = 75 = leas) _ 7

T a

In the opposite direction we define the map
¢! Tn(C) — H,(O), 0 [z, a, 0],
Then, for all a,b € C,

popl(7l) = 7l = 75 = c(a)rt = 7

and
¢ top(a) = [r,2,d4] = ¢(x)a = a.
Therefore, ¢! is the inverse of the bialgebra algebra map .
The isomorphism H,(C') = ﬁl(C) is given by a — of.
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For the last assertion, since H,(C') is a Hopf algebra, its antipode S can be exported

to Tn(C') and ﬁl(C) via the respective bialgebra isomorphism. For example the
antipode of Tn(C') comes out as

S(TS) =@o So 30_1(7—3) = T[i:,a,b}v
for all a,b € C. O

3. HorPF HEAPS AND HOPF-GALOIS CO-OBJECTS

Let H be a Hopf algebra. Recall that a coalgebra C'is a right H-module coalgebra
if C'is a right H-module, such that, for all h € H, ¢ € C,

(3.1) Alc-h) =) cay-h@y®c - ha,  elc-h) =e(c)e(h),

where the dot in-between elements denotes the action of H on C. A left H-module
coalgebra is defined symmetrically. Similarly to Hopf-Galois objects and bi-Galois ob-
jects defined as Hopf-Galois extensions [5], respectively bi-Galois extensions [§], with
trivial coinvariants Hopf-Galois co-objects are defined as Hopf-Galois co-extensions
[13, Section 4] with trivial invariants.

Definition 3.1. A right H-module coalgebra C'is a right Hopf-Galois co-object if
(a) kere =F(c-h—ce(h) | ce C,h € H),
(b) the canonical map

(3.2) can : C®H — C®C, c®h — 20(1)®C(2) - h,

is an isomorphism.

A left Hopf-Galois co-object is defined symmetrically. A coalgebra C' that is both a
right and left Hopf-Galois co-object of Hopf algebras whose actions on C' commute
(that is, C' is a bimodule coalgebra) is called a bi-Galois co-object.

We note in passing that the notion of a bi-Galois co-object is secondary to that
of a Hopf-Galois co-object, since, as shown in the dual set-up in [§], every (right)
Hopf-Galois co-object yields a Hopf algebra making it into a bi-Galois co-object.
This construction follows the Ehresmann association of a structural group or gauge
groupoid to a principal bundle (see [6] for overview, historic background and refer-
ences), and hence the resulting Hopf algebra is termed an Fhresmann-Schauneburg
Hopf algebra. We outline this construction presently.

Let C be a right H-Hopf-Galois co-object with the canonical isomorphism can.
The cotranslation map 7 : C®C — H is defined by the formula

(3.3) 7 = (e®id) o can™".

The following properties of the cotranslation map (B.3) (see e.g. [3| Section 34.17])
play a key role in what follows. For all a,b € C, h € H,

(3.4a) e(1(a®b)) = e(a)e(b),

(3.4b) Z T(am®ag)) = (a)lm,

(3.4¢) T(a®b - h) = T(a®b)h,
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(3.4d) > aq) - T(a@®b) = (a)b.
The subspace
(3.5) I = F(a®be(c) Za T(b®ca))®c) | a,b,c € C) C CC,

is a coideal in C°®C'. The coalgebra E(C, H) := C*°®C/I is a Hopf algebra with
identity, multiplication, and antipode
(3.6)

1= eny®e), a®bc@d=a-7(b@c)@d, S(a®b) =Y a-7(b®e))Dew),

where ¢ € C is any element such that (e) = 1 and a®b indicates the class of
a®b e C®C in E(C, H).
Similarly to [9] one obtains

Lemma 3.2. Let H be a bialgebra and C a right H-module colagebra satisfying
conditions (a) and (b) of Definition[31. Then H is a Hopf algebra.

Proof. The proof dualises arguments of [9]. Let e € C' be such that e(e) = 1. Define
(3.7) S:H—=H — he Y 7leq) - h@eg),

where 7 is the cotranslation map. Then,

Y Shahey =Y Tleq -ha) @ e)he = Y Tleq) - hay ® e - hey) = e(h)1a,

by (8:4d) and (3.4D]) combined with (B.1]).
The equality ) hq)S(h(2)) = €(h)1y is obtained by observing that the application
of the isomorphism

I1: Hom(C'® H,H) = Hom“(C'® H,C), T(f)(c®h) = cqy- f

where Hom®(C'® H, C') denotes the space of all left C-comodule maps from C®H to
C, to the maps

flewh) =e(@e(h)ly & glewh) = hurcq) - hop©c),

yields an equality. We only note in passing that the inverse of II is given by
I (f)(e@h) =) 7(c@f(c@®h)),
for all f € Hom“(C' ® H,C). O

Theorem 3.3. Let (C,x) be a Hopf heap. Then:

(1) C is a right Hopf-Galois co-object over the right translation Hopf algebra Tn(C')
with the action, for all 7° € Tn(C) and c € C,
c -0 =71b(c) = [c,a,b].
Furthermore, E(C, Tn(C)) = Tn(C).
(2) C is a left Hopf-Galois co-object over the left translation Hopf algebra ﬁl(C)
with the action, for all of € ﬂ(C) and c € C,

oy -c=op(c) =la,b,c].

(3) Cisa (ﬁl(C),Tn(C))—bi—Galois co-object.
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Proof. Since the action of Tn(C') on C'is given by evaluation and the multiplication in
Tn(C) is given by the opposite composition C'is a right Tn(C)-module. Conditions
(B1) follow by the fact that the heap operation is a coalgebra map. Specifically and in
particular, the first of ([B.I]) is an immediate consequence of (2.8al) and the definition
of the comultiplication in Tn(C)

It is obvious that F{c- 70 — cs(7?) | a,b,c € C) C kere. Conversely, if x € kere,
then, for all @ € C such that g(a) =1,

r=c¢(a)r —e(r)a = Z (e(z@)e(@)za) — [za), 2(@), a])
=> ( Tre )T ~ T() -75(2)> ’

which proves the opposite inclusion.
The canonical map ([B.2)) is a linear isomorphism with the inverse

(3.8) can”!: C®C — C®Tn(C), a®b — Z an

“(2)

Indeed, in one direction
can o can’ a®b Z am® a(s) Z an)®[a), ag), b] = a®b,
by (2.2D)), while in the other

[e(3),a,b]

3
can~! o can c®7' g C1)XT, 0(2) () E C1)DTe(y)
= g ca ®5 7' = c®7‘

where the penultimate equality follows by (m) Therefore, C' is a right Hopf-Galois
co-object over Tn(C).

In view of the form of the inverse of the canonical map (B.8), the cotranslation
map comes out as

(3.9) 7:C®C — Tn(C), a®b > 78
Thus the coideal I generating the Ehresmann-Schauenburg Hopf algebra E(C, Tn(C'))

is

I =TF{a@be(c) = Y [a,b, c))®c) | a,b,c € C).
Consider the linear map
(3.10) ¢ E(C, Tn(C)) = Tn(C),  a®b+ oo

The map ¢ is well-defined, since, similarly to (2.8D) one easily checks that, for all
a,b,ce C,

[a,b,c(1)] a
(3.11) > o = e(c)r,

which immediately implies that for all ) a;®b; € I, ), 03" = 0.
Clearly, ¢ is a coalgebra map. By (B.II)), for alla € C, > UZ((;)) = £(a)id, hence ¢
is unital. It is also multiplicative, since

o (@88 3d) = ol = ot = i (a0) o (5).
by (218, (58) and (B3).



10 BRZEZINSKI AND HRYNIEWICKA

By construction, ¢ is onto. It is also a monomorphism since ), a;®b; € ker ¢ if
and only if, for all c € C, ). [a;, b;,c] = 0. In particular, for any ¢ € kere,

0= Z[al,bl,c )| ®c) = Z[al,bl,c |®c(a) — Za2®b e(c
that is >, a;®b; = 0.

In conclusion, ¢ is an isomorphism of bialgebras as required.

Statement (2) is proven by symmetric arguments or by invoking the fact that any
right H-Hopf-Galois co-object C'is an (E(C, H), H) bi-Galois co-object and using
assertion (1). By the same token the statement (3) follows. We note only that the
(Tn(C), Tn(C))-bimodule property follows by (2.2al), as for all a,b,¢,d,z € C

(o -z) -7 =[[a,b,2],c,d] = [a,b, [z, c,d]] = of - (x - 7).

This completes the proof of the theorem. O

Corollary 3.4. Both Tn(C) and ﬂl(C) are Hopf algebras.

Proof. This follows immediately for Theorem and Lemma [3.2l We only note that
in view of (B.1), the antipode in Tn(C') comes out as

(312> S(Ttlz)) = Z T[e((zl)),a,b}v

for all a,b € C, and e € C such that e(e) = 1.
Since the bialgebra Tn(C) is isomorphic to the Hopf algebra E(C, Tn(C)), it in-
herits an antipode via the isomorphism, thus becoming a Hopf algebra. O

Theorem 3.5. Let H be a Hopf algebra and C be a right H-Hopf-Galois co-object.
Then C' is a Hopf heap with the Grunspan map by the operation

(3.13) Xc,m) : CRC°®C — C, a®bc — a - T(bRc),
where T is the cotranslation map B.3). Furthermore, H = Tn(C') as Hopf algebras.

Proof. The theorem is a consequence of Theorem B.3 and the results of Grunspan [4]
and Schauenburg [10], [T1], but it can also be proven directly.
Property (3.4d) ensures that the condition (2Z2a)) for the operation (BI3) holds.

Equations (3.4D)) and (B:4d) yield the satisfaction of (2.2B]). The map x (¢, g is couni-
tal by (B.4al). That it is also comultiplicative follows by the equality, for all a,b € C,

(3.14) A(T(a®b)) = Z T(a@)y®ba)) T (a1 @b2) ).

The proof of (BI4]) requires a bit of algebraic gymnastics. First, let us define the
following map, which is a right C-coaction because C'is a right H-module coalgebra,

0:C®H — COHRC,  a®h— Y am®hy@ag) - he).

Then,
(id®A) o can = (can®id) o g,
and so we obtain

(3.15) (can™'®id) o (iId®A) = pocan™ .
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Next, observe that, for all a,b € C,
(3.16) can”! (a®b) = Z a@)y®T(a)®Db).
Combining (3.15]) with (3.16) we arrive at
> m(a@®bu))Ran @b = ZT(CL@)@@)( )Ra)Rag) - T(ag@b))
_ Z 7(ag)®b)(1y®can (a(1)®7(a(2)®b)(2))

Equation (B3.14) now follows by appying id®7 to this equality.
Let us define the linear map

oc.m): Tn(C) — H, Tg — T(a®b).

Note that this map is well-defined, since 7°(c) = 0, for all ¢ € C if and only if

a

0 =lc,a,b] = c-7(a®b), for all ¢ € C. In particular, for all ¢ € C,
0= Z c)®c) - T(a®b) = can(c®T(a®b)),

which implies that 7(a®b) = 0 for the canonical map is an isomorphism.
The map o m) has the inverse,

— ey-h
go((;H) : H — Tn(C), h el

where e is any element of C' such that (e) = 1. Indeed, that o ) o go(_(} o =
id follows by ([B4d) and (3.4h), while the other identity go(_c} m © Pom = id is a
consequence of (2.8D)) in Lemma 25

The multiplicativity of (¢ m follows by (B.4d), since

o) (To7d) = pem) (T2°1) = 7(a®b - 7(c®d)) = 7(a®b)T(c®d).

The unitality of ¢ is a consequence of (Z.8d) in Lemma 235 and (3.41). Finally, o m)
is a coalgebra map by (B14) (comultiplicativity) and (B.4al) (counitality). Therefore,
©(c,m) is an isomorphism of Hopf algebras as required.

It remains to prove the existence of the Grunspan map. Before we work out the
necessary form of this map from (2.6]), we prove the following equality, satisfied by
the cotranslation map:

(3.17) T(a - 7(b®c)®d) = ST(b®c)T(a®d),
for all a,b,c,d € C. First compute, for all a € C' and ¢g,h € H,
> can(a- g1y®S(g@)h) = Y _ ap) - gnm@ae) - 925(ge)h =Y aq) - gRag) - h.
Applying 7 to both sides of this we obtain
e(a)S(g)h =Y (aq) - g2ap) - h).
Setting g = 7(b®c) yields
e(a)ST(b@c)h =Y r(aq) - T(b@c)Rag) - h).



12 BRZEZINSKI AND HRYNIEWICKA

Therefore, aaplying this equality to ) aq)®7(a@)®d) instead of a ® h, we conclude
S7(bc)T(a®d) = Za(a ))ST(b&c)T(a@)®d)
— Z T(aq) - T(b®C)®ag) - T(a@ ®d))
— T(CL . T(b@C)@d),

where the last equality follows by (B.4d).
With (317), (Z6) and (BI3) at hand we can expect the following form for the

Grunspan map:
(3.18) v:C —C, ¢ Zc - ST(c3®c(2)).

Now it remains to check whether the property (2.5) holds.
We start by proving yet another property of the cotranslation map, namely that,
for all b,c € C,

(3.19) > 7(b®cay)) ST(c @) = ST(c@b).
To this end, let us consider the map
(3.20) ) CRCRC —» H,  bec®ar Y 7(b@a))ST(c®ag)).

Then, for all h € H,
Y(b@c@a-h) =Y 1(b@ag))ha)She ST(cag) = e(h)(b&ca),

by the fact that C' is a right H-module coalgebra and the property (3.4d). In view
of condition (a) in Definition B.] there exists map ¢ : C®C — H, such that, for all
a,b,ceC,

D(b®ee(a)) = Y(b@ewa) = Y T(b®aq)ST(cRag).

In particular,

P®e) =Y Pboepe(cn)) = Y T(b®ew)ST(cE@ce)
and

P(b&c) =Y h(by@cz(b)) = Y _ 7(ba)®be))ST(c@b(3) = ST(c@b),
by (2.I0), and hence ([3.19) follows.

Finally, we can compute
[la,b,9(c)], de] = ) a-7(beq))ST(c@ @) T(dwe)
— a- Sr(ceb)r(dze) = [a. [d,c, 8], €],

where the the first equality follows by (BI9) and the second one by (BIT7). This
completes the proof of the theorem. O

Definition 3.6. Let (C, H) denote a right Hopf-Galois co-object C' over H and
(D, H) a right Hopf-Galois co-object D over K. A morphism from (C, H) to (D, K)
is a pair of maps (f, g) such that

(a) f:C — D is a homomorphism of coalgebras,

(b) g : H— K is a homomorphism of Hopf algebras,
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(c) forall ce C and h € H,
(3.21) fle-h) = f(c)-g(h).
The category of right Hopf-Galois co-objects is denoted by HG

Lemma 3.7. If (f,g) is a morphism of Hopf-Galois co-objects (C,H) to (D, K),
then

(3.22) po (f®f)=goc,

where 1¢ is the cotranslation map for (C, H) and Tp is the cotranslation map for
(D, K).

Proof. For all ce C'and h € H,
0 () o canc(c@h) = 7 (Y flew)®f (e - 1))

=7 (X e -oh)
=Tpo canD(f(C)®g(h))
=¢e(c)g(h) = g o 7c o cang(c®h),

since f is a coalgebra map, by (3.2I]) and by the definition of the cotranslation map
B3). The assertion follows by the bijectivity of the canonical map cang. O

In summary we obtain the following:
Theorem 3.8. The functors
Ga " HH — HG, (C,x) — (C,Tn(C)), f— (f,Tn(f)),
He :HG —HH,  (C.H) v~ (C.xcem), (f,9)=f,

are a pair of inverse equivalences between categories of Hopf heaps and right Hopf-
Galois co-objects.

Proof. Lemma [3.7] ensures that He is a functor, specifically, if (f, ¢) is a morphism of

Hopf-Galois co-objects from (C, H) — (D, K), then f o xc,u) = X(p,x) © (f@fRf).

One easily checks that x(c (o)) = X, and hence He o Ga = id. By Theorem [3.5]
Ga o He(C, H) = (C, Tn(C)) = (C, H),

and so the required isomorphism of objects in HH is provided by the pair (id, ¢(c,#))-
This is a morphism in ‘HH indeed, since, for all a,b,c € C,

a- -1, =la,b,c]=a-7(b®c) = a- v, (7).

The naturality of this isomorphism, that is, the commutativity of the following dia-
gram in HH

id,

(C, Tn(C)) =2, 1)
(f,Tn(f)) l l (f9)
id,

D,Tn(D)) (id, (D, x)) (D, )7

is equivalent to
g ° Yc,H) = PD,K)° Tn(f).
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Again, this follows by Lemma B.7 Explicitly, for all a,b € C,
govcm (1) = 9 (rc(a®d)) = o (f(a)@f (b))
= ©(D,K) (#é;;) = p,x) ° Tn(f) (72).
This completes the proof of the theorem. O

Combining the discussion of the whole of the paper we obtain the following dual
version of the main result of [11].

Corollary 3.9. Every Hopf heap admits the Grunspan map.

Proof. By Theorem [2.6]to any Hopf heap (C, x) one can associate a bialgebra Tn(C).
Since it admits a Hopf-Galois co-object by Theorem B3] it is a Hopf algebra (see
Corollary 3.4]). Theorem [3.5]ensures that the corresponding Hopf heap (C, x (¢ mn(c)))
has the Grunspan map, and since Xx(c,n(c)) = X by (the proof of) Theorem B.8| the
assertion follows. Explicitly, the Grunspan map is given by

9:C—=C, e Y e leqy, ce) el el

where e € C'is any element such that e(e) = 1. O
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