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Translation-Invariant Contourlet Transform
and Its Application to Image Denoising

Ramin Eslami, Member, IEEE, and Hayder Radha, Senior Member, IEEE

Abstract—Most subsampled filter banks lack the feature of
translation invariance, which is an important characteristic in
denoising applications. In this paper, we study and develop new
methods to convert a general multichannel, multidimensional
filter bank to a corresponding translation-invariant (TI) frame-
work. In particular, we propose a generalized algorithme à trous,
which is an extension of the algorithme à trous introduced for
1-D wavelet transforms. Using the proposed algorithm, as well
as incorporating modified versions of directional filter banks,
we construct the TI contourlet transform (TICT). To reduce the
high redundancy and complexity of the TICT, we also introduce
semi-translation-invariant contourlet transform (STICT). Then, we
employ an adapted bivariate shrinkage scheme to the STICT to
achieve an efficient image denoising approach. Our experimental
results demonstrate the benefits and potential of the proposed
denoising approach. Complexity analysis and efficient realization
of the proposed TI schemes are also presented.

Index Terms—Algorithme à trous, bivariate shrinkage, filter
banks, image denoising, translation invariance (TI), transla-
tion-invariant contourlet transform (TICT).

NOMENCLATURE

APS Additions per input sample.

BLS-GSM Bayes least-squares estimate using Gaussian

scale mixtures.

BS Bivariate shrinkage.

CT Contourlet transform.

DFB Directional filter bank.

DTCWT Dual-tree complex wavelet transform.

FB Filter bank.

GAT Generalized algorithme à trous.

HDFB Horizontal DFB.

HT Hard thresholding.

LP Laplacian pyramid.

MPS Multiplications per input sample.

QFB Quincunx filter bank.

STICT Semi-TI contourlet transform.

TI Translation-invariant.

TICT TI contourlet transform.

TIDFB TI directional filter bank.
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TILP TI Laplacian pyramid.

TIWT TI wavelet transform.

VDFB Vertical DFB.

WT Wavelet transform.

I. INTRODUCTION

D
URING the past decade, wavelets have proven their capa-

bility in many signal and image processing applications,

such as compression and denoising [22]. Owing to the good non-

linear approximation property of wavelets for piecewise smooth

signals, they have been very effective in generating efficient rep-

resentation of 1-D waveforms. In the case of natural images in

which piecewise regions are separated by smooth curves (or

edges), however, one can still observe that there are self-sim-

ilarities among the wavelet subbands. This implies that one is

able to further process wavelet coefficients of an image in order

to achieve more decorrelation. It is well known that wavelets are

properly structured to treat point-wise singularities; hence, they

are appropriate in representing piecewise smooth 1-D signals.

In contrast, natural images contain singularities in the form of

edges which need a more efficient transform than the wavelet

transform (WT).

A. Background

An important factor of an effective image transform is direc-

tionality. Having this feature, a transform would be, in general,

capable of handling singularities in 2-D signals effectively.

Many directional transforms have been introduced in recent

years. Continuous (directional) wavelets [1], complex wavelets

[21], steerable pyramids [34], and brushlets [24] are some

examples in the literature. The wavelet X-ray transform [38]

and ridgelet transform [6] apply wavelets to the radon transform

of an image in such a way that one could effectively represent

arbitrarily oriented lines in an image. To make the ridgelet

transform applicable to a natural image, the authors in [5] con-

structed curvelets using three steps: subband decompositions

of the image, partitioning the subbands into blocks in such a

way to satisfy the anisotropic scaling law, and then applying

the ridgelet transform to the resulting blocks.

Using a similar idea of combining subband decomposition

with a directional transform, Do and Vetterli introduced the

contourlet transform (CT) [11]–[13]. In the CT, a Laplacian

pyramid (LP) [4] serves as the first stage and directional filter

banks (DFBs) [2] as the second stage. The LP is a redundant

transform with a redundancy ratio of up to 4/3; thus, since the

DFB is critically sampled, the redundancy factor of the CT is

up to 4/3. Both the LP and the DFB involve subsampling in
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their implementations and similar to the wavelet transform they

are shift variant. It follows that the CT is also a shift-variant

transform. An important advantage of translation invariance

is that the performance of denoising applications is signifi-

cantly improved when a translation-invariant (TI) scheme of

a subsampled transform is employed. This advantage of TI

schemes is achieved due to the elimination of the pseudo-Gibbs

phenomenon artifacts resulting from thresholding the trans-

form coefficients [8]. Translation-invariant (sometimes called

stationary or undecimated) wavelets have been introduced

in several studies [3], [8], [23], [25], [27]. TI denoising can

be realized through the cycle-spinning algorithm [8], [18].

Cycle-spinning, clearly, is not an efficient way to perform TI

denoising. Indeed, since wavelets are partially TI, by using an

appropriate algorithm such as “algorithme à trous” [19], [33],

the TI wavelet coefficients can be derived with low complexity,

where only wavelet coefficients are needed to obtain

the TI wavelets of a signal of size , when using

levels.

B. Contributions of the Paper

In this paper, we propose methods for developing a TI scheme

from a general multidimensional and multichannel subsampled

filter bank (FB). In particular, we extend the algorithme à trous

[19] introduced for 1-D wavelets to a “generalized algorithme

à trous” (GAT), which is applicable to a general multidimen-

sional subsampled (uniform or nonuniform) FB. We prove that

the TI version of a subsampled FB obtained through the GAT

provides a tight frame if the original subsampled FB has a

tight frame. Using the proposed GAT along with employing

modified versions of the DFB, we introduce the TI contourlet

transform (TICT). Despite the utility of the proposed TICT

for image denoising [16], its high redundancy in conjunction

with its high complexity make this scheme less attractive for

image processing applications. As a consequence, we propose

semi-TICT (STICT). We also provide efficient realizations for

the proposed TICT and STICT schemes. Subsequently, we

propose a new image denoising scheme where we employ the

STICT alongside the powerful bivariate shrinkage function

[32] and show its capability when compared with some other

leading denoising schemes.

C. Overview of the Paper

The outline of the paper is as follows. In Section II, we study

and develop a TI scheme of a subsampled FB. Then, we propose

a TI scheme of the CT in Section III. Section IV presents a new

image denoising scheme based on the STICT along with the

simulation results, and finally, our main conclusions are given

in Section V.

II. DEVELOPING A TI SCHEME FOR A

SUBSAMPLED FILTER BANK

In this section, we develop a TI version of a general mul-

tichannel and multidimensional FB. Translation invariance

can be achieved through several ways. For instance, for a 1-D

wavelet transform scheme with periodic extension, by appro-

priately shifting the signal at each level, we obtain different sets

Fig. 1. Single-level multichannel filter bank.

of transform coefficients, which altogether form a TI wavelet

transform [16].

Consider a perfect reconstruction -dimensional -channel

FB as illustrated in Fig. 1. We denote as a sampling

matrix. Note that if , where , the FB

is critically sampled and if , it is oversampled. We

denote the outputs of the analysis filters before downsampling

as , for , where .

Hence, we have . Below, we state a generalized

procedure for obtaining all possible shifts of a multidimensional

and multichannel FB.

Remark 1: If one computes all possible shifts of (see

Fig. 1) by1 , that is,

, where , and is the set of

integer vectors of the form , , then the output of

the analysis section is translation invariant. It is clear that for a

multilevel FB that one can apply the above method at each level

for as many inputs as that level has.

In the next remark, we give an example that illustrates the

fact that the existence of subsampling operations in a FB is not

sufficient for shift variance of the FB. In what follows, we de-

fine , where and

, and define

where is a matrix with as its th column. We also

adopt the notation for an integer .

Remark 2: According to Remark 1, if in a critically sampled

FB, without loss of generality, we have

(suppose that ), the FB will be TI.

In this case, the analysis and synthesis filters satisfy

and , and rep-

resent the polyphase components of . Consequently, the

filter bank boils down to a simple nonsubsampled system with

analysis filter and synthesis filter , where

to ensure perfect reconstruction.

Using the procedure mentioned in Remark 1 to obtain a TI

signal decomposition is appropriate in some applications such

as adaptive coding, where we need to find a “best” shift based

on a cost function. As a result, the method of finding a best tree

as proposed in [7] is easily extendable to the multidimensional

FB case with an arbitrary sampling matrix . If however, we

need the TI representation in some other applications (such as

denoising) in which we require all the TI coefficients at the same

time, we can use other approaches where we do not need to shift

the coefficients. In what follows, we further discuss this aspect

of the TI design.

1Note that, in general, this shift could be k + mM where m 2 is an
arbitrary integer vector.
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Fig. 2. Nonsubsampled (or TI) multichannel filter bank scheme in the polyphase domain.

Fig. 3. Effects of subsampling on the filters of a filter bank should be consid-
ered when developing a TI scheme.

Remark 3: In a single-level multidimensional perfect recon-

struction FB (see Fig. 1), omitting the sampling operations leads

to a new TI output, , which is a scaled version of , i.e.,

, where (see Fig. 2). Furthermore, the re-

dundancy of the resulting TI filter bank equals .

According to Remark 3, one can simply omit the subsampling

operations at a single-level FB scheme to obtain a TI realization

of the FB. For a multilevel FB, however, we cannot merely do so

at every level to construct the corresponding TI scheme. In the

nonsubsampled version of the FB, one has to change the analysis

filters of level(s) such that they operate the same way as

if there is subsampling. In the next proposition, we show how

one can construct new filters when one omits the subsampling

operations in a multilevel FB, in order to achieve translation

invariance.

Proposition 1 (Generalized Algorithme à Trous): Assume

that we have an -level octave-band multichannel FB with anal-

ysis and synthesis filters at level as and (

, ), respectively, and a general -dimensional

sampling matrix . If one omits the subsampling operations in

the FB to obtain the TI scheme, the new analysis and synthesis

filters at a level are and

, respectively.

Proof: We prove this proposition through induction. For

the first level , as stated in Remark 3, the filters remain

unchanged. Now, suppose we have the TI filters of

and for a level . Assume

that the output of the analysis part at this level is ,

. Now, at the next level, , we apply a FB using

the previous level filters, which are and . Since

in the original FB, each analysis (synthesis) filter presumes a

downsampled (upsampled) version of the output of the last level,

as depicted in Fig. 3, the equivalent filters are obtained using

the noble identities: and

. Hence, ,

and . Note that ac-

cording to Remark 3, one has to include a scaling factor equal

to after each synthesis bank.

The following corollary generalizes Proposition 1 when the

sampling matrices are not the same.

Corollary 1: Suppose that , is the ( -dimen-

sional) sampling matrix for the level in the FB mentioned in

Proposition 1. Then, the equivalent analysis and synthesis fil-

ters for the nonsubsampled FB for levels (they remain un-

changed for the first level) are ,

and , respectively. To ensure per-

fect reconstruction, a scaling factor equal to is required

after each synthesis bank having the sampling matrix .

In Proposition 1 and Corollary 1, we have extended the well-

known algorithme à trous proposed in [19] for the wavelet trans-

form to a generalized algorithme à trous, which is applicable to

a general multidimensional multichannel FB system.

In Section III, we develop a TI scheme of the contourlet trans-

form using the algorithms mentioned in this section.

III. TRANSLATION-INVARIANT CONTOURLET TRANSFORM

The contourlet transform is composed of two stages: a LP [4],

[14] and DFB [2], [26]. The LP decomposes an image into a

number of radial subbands plus an approximation image. Then,

a DFB is applied to each resulting detail subband where a max-

imum number of directions are used at the finest subband, and

this number of directional levels is decreased at every other ra-

dial detail subband to achieve the anisotropic scaling law of

width length [5], [12]. Since the contourlet transform is real-

ized using two stages of subsampled FBs, to create a TICT, we

need to develop TI schemes for both stages as explained below.

A. Translation-Invariant Pyramids

A new reconstruction scheme was proposed for the LP that is

based on the frame reconstruction, leading to more robustness

against noise [14]. Fig. 4 shows the LP decomposition as well

as its new reconstruction schemes. We let the sampling matrix,

, be equal to diag(2,2) for images2 where

is defined as a diagonal matrix having

as its diagonal elements. Here, and are the 2-D low-pass

filter pair. Note that if one removes the subsampling operations

from this LP framework, the resulting nonsubsampled FB will

fail to be perfect reconstruction.

Do and Vetterli [14] proposed the LP in the polyphase domain

[36], [37] in the form of an oversampled FB. In this form one can

better observe the structure of the pyramids, and besides, it is a

more suitable framework for developing the TI version of the

2While it is easily extendable to the multidimensional case, we present the
2-D LP, proper for image applications.
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Fig. 4. Laplacian pyramid. (Left) The signal x is decomposed into a detail signal d and approximation c. (Right) The reconstruction scheme.

Fig. 5. Single-level 2-D LP in the form of an oversampled filter bank.

LP. Defining the vector of the polyphase components of a 2-D

signal in the -domain as ,

and the filters and as the row and column vectors

and , one

can write the input-output relationship of the LP as (see Fig. 5)

M

...
M

...
(1)

Therefore, we have M , where M de-

notes the downsample operator using matrix . If the filters

and are biorthogonal with respect to the sampling matrix

, the inverse transform of the LP in the polyphase domain is

found in the equation shown at the bottom of the page, and if

M denotes the upsample operator with respect to the matrix

, we have (see Fig. 5)

M

Fig. 5 shows a single-level LP in the form of an oversampled

FB. To construct a multilevel LP, one can simply iterate the

single-level LP on the low-pass channel. Using the generalized

algorithme à trous developed in Section II, the multilevel

TI scheme of the LP is constructed by suppressing all sub-

sampling operations and modifying the filters at a level :
M M M , and
M M M , where

M . This implies that we upsample the cor-

responding filters in both row and column directions with .

Note also that we should scale the signal after each synthesis

bank by 1/4. In the TILP scheme, since there are four detail

channels at each level, the redundancy factor of this scheme

is , when an -level system is employed. Below, we

provide a brief discussion about the characteristics of the LP

filters (Fig. 5).

As mentioned before, the LP is perfect reconstruction when

the filter pair and are biorthogonal. Now we examine the

condition in the case of the TILP.

Proposition 2: Upon omitting the subsampling operations in

a single-level oversampled LP, if the filters and are biorthog-

onal then perfect reconstruction is guaranteed.

Proof: The proof is straightforward noting that

Therefore, if , we have perfect recon-

struction. This condition is equivalent to ,

which implies that the filters and are biorthogonal. The con-

stant 4 indicates the need for a scaling factor.

Consequently, removing subsampling operations from the LP

does not eliminate the restriction of biorthogonality of filters

and in the TILP frameworks. Now we take a closer look at the

high-pass filters of the TILP.

Proposition 3: Let be a 1-D linear phase low-pass

filter having multiple zeros at as

(2)

where . Then, if and are

polyphase components of , has zeros at

or . In addition, and cannot

have a zero at .

Proof: We can write

and . Therefore,

and

for the second part since is a low-pass filter, we have

and consequently, regarding (2) its even and odd

parts are not zero at .
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Fig. 6. Frequency responses of the high-pass analysis filters in the 2-D oversampled LP (Fig. 5). (Color version available online at http://ieeexplore.ieee.org.)

As a matter of fact, is also a low-pass filter with

about half of the cutoff frequency of . Note that the fil-

ters M , in (1) are separable and obtained

from 1-D filters and ,

where they have zeros at and the latter has also zeros

at . It turns out that the high-pass analysis LP

filters , —and, similarly, the synthesis filters

—have passbands with different cutoff frequencies as

illustrated in Fig. 6.

Note that, when we remove the subsampling operations in

a FB, we encounter fewer restrictions in the filter design of

such FBs. For instance, to ensure perfect reconstruction in a TI

pyramid having five channels, the filters have to just fulfill the

following condition:

However, there is no standard method for designing 2-D fil-

ters having more than two channels with arbitrary passband re-

gions. Moreover, the McClellan transformation, which is nor-

mally used in 2-D filter design, seems to be disadvantageous

in designing 2-D multichannel FB. As a result, we resort to

biorthogonal filters in the TILP similar to the LP. Next, a frame

analysis is provided for a single-level TILP.

For redundant transforms, frames [9], [10] are efficient tools

for analysis. A frame is defined as follows.

Definition: Let the sequence and signal , be in

the Hilbert space ; then is a frame if there exist

two constants , and , such that,

. We call and , the frame bounds.

A frame is known as a tight frame when . In a tight frame,

the signal is reconstructed through .

It is important to note that when a scheme can be expressed by

a frame, it represents a stable framework, where the existence of

an inverse transform is guaranteed. This is especially important

for the schemes that are redundant. Since the LP is an oversam-

pled FB, it could be better analyzed using frame theory. In the

next proposition we prove that the TI realization of a single-level

subsampled FB having a tight frame, is also a tight frame.

Proposition 4: Consider a single-level multidimensional FB

(see Fig. 1) having a tight frame with frame bounds equal to

one. Then, the corresponding TI FB provides a tight frame with

frame bounds .

Proof: From Remark 1, a technique to obtain a TI set of

outputs is to shift the analysis filters by , .

We also shift the synthesis filters, correspondingly. Hence, for

each shift, we have a distinct set of kernel functions. Further-

more, each set provides a tight frame as we show it below. As-

sume the kernel functions of the original FB are ; thus,

the tight frame condition implies that .

Note that a shift in corresponds to the same shift in

. As a result, the shifted version of the kernel functions is a

distinct tight frame with frame bounds equal to one. Now sup-

pose we denote the analysis kernel functions for a shift of , by

, where . Let us denote ,

( , and ), as the kernel functions of the

TI FB. Then, we have

Therefore, the TI FB provides a tight frame with frame bounds

.

As a result, if a subsampled FB provides a stable framework,

the corresponding TI scheme also represents a stable realization.

Corollary 2: If the subsampled FB in Proposition 4 has a tight

frame with frame bounds equal to , then the corresponding TI

scheme provides a tight frame with frame bounds

.

Corollary 3: Since it is proven that a LP with orthogonal

filters provides a tight frame [14], the single-level 2-D TILP

with orthogonal filters provides a tight frame with frame bounds

equal to four.

B. Translation-Invariant DFB

The DFB is a major part of the contourlet transform. It is

realized through iterated quincunx FBs, and some resampling

operations that just rearrange coefficients. In an -level DFB,

we decompose the frequency space to wedge-shaped parti-

tions [Fig. 7(a)]. Using the noble identities, one can transfer all

sampling operation to the end (beginning) of the forward (in-

verse) transform of the DFB [26]. As a result, one obtains

analysis and synthesis filters, and , respectively, and

the overall sampling matrices , as given below

[12], [26]:

for

for .

Since it is the equivalent iterated DFB system for levels,

to construct the TI scheme, it is sufficient to suppress the sub-
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Fig. 7. (a) Frequency response of a DFB decomposed in three levels. (b) An example of the vertical directional filter banks with three levels. (c) An example of
the horizontal directional filter banks with three levels.

sampling operations and multiply the reconstructed signal by a

scaling factor, which is for both vertical and

horizontal directions. Therefore, the redundancy factor of such

a scheme is equal to the number of directions .

According to the passband regions of the TILP high-pass

filters (see Fig. 6), in order to reduce complexity, for filters

and , it is appropriate to employ vertically and horizon-

tally oriented DFBs [17], respectively (as we explain further in

Section III-C). In vertical DFB (VDFB) and horizontal DFB

(HDFB), we can achieve mostly vertical directions (directions

between 45 and 135 ) and mostly horizontal directions (direc-

tions between 45 and 45 ), as depicted in Fig. 7. In these

two modified DFB schemes, we stop decomposing the signal

horizontally or vertically after the first level of the DFB. There-

fore, the overall sampling matrices for VDFB and HDFB will

be

for subband

for ,
and

for

for subband

where is the quincunx sampling matrix. Note that we can

change the shape of subbands and (see Fig. 7) in the spatial

domain into a rectangle using a resampling matrix and shifting

as explained in [17]. In the TI versions of the VDFB and HDFB,

we should consider the new sampling matrices to obtain the

proper scaling factors. The redundancy factor of the modified

(either vertical or horizontal) TIDFB will be .

Note that the construction provided for the (modified) TIDFB

is not efficient in terms of complexity. We will present an effi-

cient construction in Section III-D.

C. TI and Semi-TI Contourlet Transforms

We realize the TI contourlet transform (TICT) using the TILP

and (modified) TIDFB. In fact, we employ a similar structure as

the one used in the contourlet transform. However, when devel-

oping the TICT, since every level of the TILP has four high-pass

subbands, we propose to apply the (modified) TIDFB to each

one of these subbands. The form of passbands of high-pass

filters in the TILP (Fig. 6) suggests to apply regular TIDFB

to high-pass outputs of and and use TI VDFB and TI

HDFB for outputs of and , respectively. To preserve the

anisotropic scaling law of width length , we apply (modified)

TIDFBs with a desired maximum number of directional levels

to the four finest subbands of the TILP, where we are at level

one, then as we decrease the radial resolution of the TILP at

higher levels, we decrease the directional levels at every other

TILP level.

Remark 4: Assume that a TILP has levels and we apply

-level (modified) TIDFBs to the four detail

subbands of level of the TILP. Then the redundancy factor of

the constructed TICT is .

Improvement in denoising performance is an important

reason justifying the construction of a TI version of a sub-

band scheme. Since the redundancy of the (modified) TIDFB

increases exponentially as the number of directional levels

is raised, it makes the TICT highly redundant when comes

along with the redundant transform of the TILP. Therefore,

we propose another variety of the CT, which is less redundant

and less complex. This new scheme is accomplished through

applying the critically sampled (modified) DFBs to the TILP

in much the same way that we employ the (modified) TIDFBs

to realize the TICT. Hence, this contourlet realization is not

TI, and, therefore, we refer to this approach as the STICT. The

redundancy factor of this scheme is the same as that of the

TILP, which is .

Fig. 8 shows an example of the STICT of the Boats image

using three TILP levels and (modified) DFBs with

directional levels. Images at the top part of each level

in this figure indicate the horizontal directions. We will denote

the transform coefficients of the TICT and STICT by
d

i k

and
d

i k
, respectively, where , indicates the

pyramidal level, , shows the pyramidal subband

at each level, , ( i , for regular DFB) specifies the

directional subband at each level, and denotes the position

in two dimensions. Likewise, we can also denote the CT coeffi-

cients by
d

i
with the same definition for , , and .

Although the STICT is not TI, our preliminary image de-

noising results indicated the potential of this approach [16]. The

main drawback of a shift-variant FB scheme to employ for de-

noising is due to the appearance of artifacts when one recon-

structs the signal from not all of the transform coefficients. Here,

we perform a simple experiment (similar to the one in [20]) to

evaluate our proposed methods. First we obtain the transform

of a synthetic image of a circle using the CT, TICT, and STICT

(with ). Then, for each method, we re-

construct the image by keeping one directional subband at a
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Fig. 8. Some of the STICT coefficients of the Boats image using L = 3 and fl̂ g = f3; 2; 2g directional levels. The coefficients for only one TILP subband

(k = 3) are depicted. From left to right, the subbands �
d

, �
d

, and �
d

with all directions are shown. For better visualization, the transform coefficients have
been clipped.

level and its parents (ascendants) subbands in the other

levels .

Fig. 9 shows some examples of the reconstructed images. It is

clear that the images reconstructed using the CT show a lot of ar-

tifacts approving the unsuitability of this scheme for some image

processing tasks such as image denoising. In contrast, the re-

sults of the TICT are almost artifact-free and have higher direc-

tional resolution. The STICT, interestingly, provides the results

without noticeable difference to those of the TICT, which clar-

ifies the importance of making the pyramidal subbands trans-

lation invariant. Hence, making the DFB stage translation in-

variant does not have significant impact in improving denoising

results for the contourlet transform.

In Section III-D, we will provide fast realizations of the TILP

and (modified) TIDFB, as well as the complexity analysis of the

different proposed contourlet schemes.

D. Complexity Analysis and Efficient Realization

When employing the STICT and TICT, we encounter alter-

native FB schemes for which we propose and express efficient

realizations along with their individual complexities; then, we

specify the complexities of the above transforms. Note that

we compute the complexities for the decomposition (analysis)

stages while we have similar ones for the reconstruction (syn-

thesis) banks.

1) LP: Since the sampling matrix is separable, the 2-D

filtering could be carried out in a separable mode using the 1-D

filters and with lengths and , respectively. There-

fore, from Fig. 4, we have multiplications per input

sample (MPS) and additions per input sample

(APS) (note that the input to the filter has nonzero sam-

ples for an input image of size ). For a multilevel LP, the

complexity is up to 4/3 the complexity of a single-level LP.

2) TILP: Considering the transfer function of a single-level

TILP (1), although the filters , are indeed

nonseparable, we can do the filtering in a separable mode by

computing the difference of the filtered input image (by first

and then M , which are both separable filters) from

the input image shifted by . Since is a common filter in

all the channels, we are just required to filter the input image

Fig. 9. (a) Reconstructed images using the subbands 
1

i , �
1

i k , and �
1

i k for
1 � i � 3, and 1 � k � 4. (b) Images reconstructed using the subband(s)
with indices d = 1, i = 3, and 1 � k � 4. (c) Original image.

by this filter once, which needs MPS and APS.

Now, without loss of generality, suppose that is odd, then

the polyphase components of (denoted by and )

will have the lengths of and . Meanwhile,

the filters M , are created using the 1-D fil-

ters and . It turns out that one needs to filter the rows

and columns of the input signal by and once. Hence,

the complexity of filtering by M , will be

MPS and

APS. Consequently, the overall complexity is MPS
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Fig. 10. Normalized joint histograms along with their contour plots of parents children of the STICT coefficients for the images Barbara and Peppers. (Color
version available online at http://ieeexplore.ieee.org.)

TABLE I
PSNR VALUES OF THE DENOISING EXPERIMENTS

and APS. For an -level TILP, the complexity

will be times the complexity of a single-level TILP.

3) DFB: Although the quincunx sampling matrix is non-

separable and thus filtering using fan filters is nonseparable,

Phoong et al. [28] proposed an efficient approach, which pro-

vides separable filtering in the polyphase domain. Suppose that

the kernel function in the ladder network [28] has length

, which generates the 2-D synthesis filters with support sizes

of and . Then, the complexity

of the quincunx filter bank (QFB) is MPS and APS.

Since we iterate the QFB at all channels for the higher direc-

tional levels, the complexity of the -level DFB will be times

and that of a modified DFB is times the complexity of

the QFB.

4) TIDFB: In this case, opposite to the DFB, we have to

perform nonseparable filtering at some levels due to omitting

the subsampling operations. Nevertheless, we show that we can

have a complexity similar to the separable filtering. Using again

the filters designed in [28], we have the synthesis filters for QFB

as follows:

and

provided that the sampling matrix is .

Here, since both and are diagonal ma-

trices having nonzero elements, the complexity of the QFB is
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Fig. 11. Denoising results of the Barbara image when (a) � = 20 and (b) � = 40.

MPS and APS, which is the same as the separable

case. In the second level of the TIDFB, we upsample the filters

by Q, where transforms to and

therefore, for each QFB we reach the same complexity as the

first level. For higher levels, in addition to the sampling matrix

, we have resampling matrices, as well. The overall sampling

matrices for these levels after the second level are in the form of

[26]

Consequently, for a level , converts to

or , which indicates that for

each QFB at these levels also we have the same complexity as

the first level. Since the total number of the QFBs employed

in an -level TIDFB is and that of the modified TIDFB

is , , the complexity of these schemes will be

MPS and APS, and MPS

and APS, respectively.

5) STICT: In this case, for an -level STICT employing

(modified) DFBs with , levels, we have

MPS and

APS.

6) TICT: Considering the complexity of the TILP and (modi-

fied) TIDFB, an -level TICT having TIDFBs with ,

levels has the complexity of

MPS and

APS.

Note that, in the above calculations, we have considered gen-

eral forms of the filters. If, however, linear-phase filters are em-

ployed, we can use about half of the filter lengths in the above

complexities. We see that due to the (modified) TIDFB, both the

complexity and redundancy ratio of the TICT are exponentially

proportional to the directional levels , , whereas

they appear as linear terms in those of the STICT. Hence, sig-

nificant reductions in complexity can be achieved when using

STICT, especially when using a high number of levels.

IV. IMAGE DENOISING

One of the major applications of the wavelet transform is de-

noising. For images, however, directionality is an important fea-

ture that the regular WT lacks. It follows that, when one de-

noises images using wavelets, the edges and fine details are

smeared. Therefore, using subband decompositions having the

feature of directionality as well as a good nonlinear approxima-

tion property would result in superior image denoising perfor-

mance [16], [32], [35]. The CT has been shown to be a better

alternative choice than the WT at some cases [13], [16], [18],

[30]. In [18], a cycle-spinning algorithm is employed to improve

the denoising performance of contourlets. Although it is equiv-

alent to a TI denoising if all of the possible shifts of the input

image are used [8], the computational complexity of this pro-

cedure for an image of size is times that of the CT,

which consequently makes this algorithm almost prohibitive for

rather large-size images. Our preliminary work on contourlet TI

denoising demonstrated the effectiveness of the STICT in image
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Fig. 12. Denoising results of the GoldHill image when � = 10.

denoising [16]. Here, we improve our method through finding a

suitable shrinkage function.

A. STICT Denoising Scheme Using Bivariate Shrinkage

One of the most crucial factors in image denoising is the

method of shrinkage. Because of the interscale and intrascale

dependencies amongst the transform coefficients, it is of key

importance to build the shrinkage operation upon an appropriate

probability model to account for these dependencies. Bivariate

shrinkage is a recent shrinkage approach, which in addition to

taking into account the dependencies among the coefficients in

each subband, considers the parent-children relationship into the

maximum a posteriori (MAP) probability estimation [31]. In

this work, we introduce a new image denoising scheme based

on the proposed STICT and incorporating bivariate shrinkage.

This shrinkage approach is established through modeling the

joint probability distribution function (PDF) of parents and chil-

dren of the transform coefficients. For wavelets and also dual-

tree complex wavelet coefficients, [31] proposed the following

non-Gaussian joint PDF

(3)

where and denote parents and children. The main advan-

tage of this model is that it provides a closed-form shrinkage

function that results in easy realization and also generates

competitive results in comparison with the more sophisticated

models [31].

For the STICT, we need to first study the joint PDF of parents-

children. In this case, we propose a parent-children relationship,

which is similar to the one introduced for the CT coefficients

[30]. Suppose that we have the STICT with ,

directional levels, then we consider the following parent-chil-

dren relationship, where for horizontal and

for vertical subbands (see the equation

shown at the bottom of the page). For subbands corresponding

to or (see Fig. 7), the children lie at the same position

where the parents are in the next coarser level. Note that for the

approximation subband , all the directional subbands at

the previous level are children subbands with a similar relation-

ship that was mentioned above. Using this definition, in Fig. 10,

we demonstrate the normalized joint histogram of parents-chil-

dren for the Barbara and Peppers images, when an STICT with

directional levels is employed. We see that

the joint histograms are similar to that of the wavelet coefficients

(see [31]) and, hence, we propose to use the model (3) with local

variance estimation for our bivariate shrinkage function in the

STICT domain.

B. Simulation and Results

To evaluate the proposed schemes, we performed several

experiments on a variety of images all of size 512 512.

Here, we also provide the WT, CT, and TICT denoising results

using hard thresholding. For the sake of comparison, we also

employed some of the state-of-the-art methods in the literature

such as the dual-tree complex wavelet transform (DTCWT)

parent child(ren)

d

i k

d

i 1 k
if i 1 i,

2d 1

i 1 k
and

2d

i 1 k
if i i ,
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Fig. 13. Denoising results of the Boats image when � = 20.

with both hard thresholding (HT) and bivariate shrinkage

(BS) [32], and the BLS-GSM denoising method proposed by

Portilla et al. [29] (using full steerable pyramid with window

size (3,3) and inclusion of parents). Furthermore, we used a TI

(or undecimated) wavelet transform (TIWT) as well as adaptive

wiener filter (function wiener2 in Matlab) using a window size

of (5,5). Note that using the generalized algorithme à trous

proposed in Section II, we can easily construct the TIWT.

Hence, a TIWT with levels has a redundancy factor of

and complexity of MPS and

APS, where and are the lengths of the 1-D analysis

filters and .

The filters we used for the TIWT and TILP in the (S)TICT

are biorthogonal Daubechies 9/7. Further, we used five levels

for the TIWT and a four-level TILP in the (S)TICT. For the

(modified) DFB and TIDFB, we utilized the fan filters designed

in [28] with and, hence, support sizes of (23,23) and

(45,45). We applied directional levels

to the (S)TICT except for the STICT (BS) for the Barbara image

where we used . Note that if we use

more directions and levels in the (S)TICT, there will be more

artifacts introduced in the denoised images.

The images were contaminated by a zero-mean Gaussian

white noise with a standard deviation of . For all the denoising

schemes, we assumed that is unknown and we estimated

it using the robust median estimator [15]. Moreover, we

mirror-extended the noisy images to avoid boundary distortion.

Although the size of the noisy images is rather large, the PSNR

values of the denoising results change slightly (usually up to

dB) when we use a different noise instance. Hence, to

obtain more accurate PSNR values, we repeated each denoising

experiment ten times using different noise realizations and

found the average of PSNR values. We also clipped the noisy

images to set the pixel values in the allowable range of 0 to 255.

Table I shows the PSNR values of the denoising results when

the standard deviation of the input noise is varying between

and . In the first part of the table, we used hard

thresholding to compare different transforms for denoising. We

also included adaptive wiener filter results in this part. As seen,

our proposed TICT (HT) method outperforms the other methods
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in most cases. In addition, the STICT (HT) provides competi-

tive PSNR values to the other leading schemes.

The second part of Table I shows our proposed STICT (BS)

denoising results as well as those of the TIWT (BS), DTCWT

(BS) [32], and BLS-GSM [29]. The computational times for

these methods on the computer we ran the simulation were

roughly 35, 17, 5, and 95s, respectively. As seen in Table I,

for low and moderate noise , our method performs

competitively to other methods but for higher power of noise

this approach slightly degrades due to the amount of introduced

artifacts.

Visually, however, the proposed STICT (BS) method per-

forms better in recovering very fine details found in some im-

ages such as the Barbara image. Fig. 11 shows the visual results

of the Barbara image where the superior performance of the

proposed approach is clear. Another visual example is depicted

in Fig. 12, which illustrates part of the GoldHill image. Again,

we can see that the details over the roofs are better recovered

using the STICT (BS) approach. Finally, Fig. 13 depicts another

example from the Boats image. Here, we can compare the arti-

facts introduced around edges by these methods. Note that both

the TIWT and dual-tree complex wavelets produce more (vis-

ible) artifacts around strong edges. The proposed method pro-

vides similar performance to that of the BLS-GSM in this figure.

V. CONCLUSION

In this work, we studied and developed new approaches for

converting a general multichannel multidimensional subsam-

pled FB to a translation-invariant or nonsubsampled FB. Partic-

ularly, we extended the algorithme à trous, which has been in-

troduced for 1-D wavelets, to a generalized algorithme à trous,

which is applicable to a general multidimensional and multi-

channel FB framework. Using the proposed generalized algo-

rithme à trous, as well as incorporating modified versions of the

DFB, we constructed the new scheme of the TICT. We also pro-

posed STICT to reduce the high redundancy and complexity of

the TICT. Then, we used a competent Bayesian-based shrinkage

approach in conjunction with the proposed STICT to create an

efficient denoising scheme. Our results indicate the potential of

this new scheme in image denoising.
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