
Translation Methods for Non-Classical Logics

An Overview

Hans Jfirgen Ohlbach

Max-Planck-Institut ffir Informatik

Im Stadtwald

66123 Saarbrficken,

F. R. Germany

email: ohlbach@mpi-sb.mpg.de*

Abstract

This paper gives an overview on trans-
lation methods we have developed for
nonclassical logics, in particular for
modal logics. Optimized ’functional’
and semi-functional translation into
predicate logic is described. Using
normal modal logic as an intermedi-
ate logic, other logics can be trans-
lated into predicate logic as well. As
an example, the translation of modal
logic of graded modalities is sketched.
In the second part of the paper it is
shown how to translate Hilbert ax-
ioms into properties of the seman-

tic structure and vice versa, i.e. we
can automate important parts of cor-
respondence theory. The exact for-
malisms and the soundness and com-
pleteness proofs can be found in the
original papers.

1 Introduction

Most inference system for nonclassical logics
are defined in the style of Gentzen, sequent or

tableaux calculi. Alternatively one can trans-
late the theorems to be proved into predicate
logic and then use standard predicate logic in-
ference systems. In particular theorem provers

and logic programming can be applied directly
to the translated formulae. Furthermore it
turned out that the extension of the translation
methods to quantified versions of nonclassical
logic is straightforward. Compared to classical
methods where it is very difficult to use unifica-

tion instead of exhaustive instantiation, trans-
lation allows the application of unification and

*This work was supported by the Esprit project
MEDLAR, by the BMFT project LOGO (ITS
9102) and by the project D2 of the ’Sonder-
forschungsbereich 314’ of the German Science
Foundation (DFG).

resolution, which improves the performance of
the systems considerably.

The general setting for this approach is the
following: The logic we want to develop a trans-
lator for has to be presented by means of a
possible worlds semantics. This means there is
a possible worlds structure with certain prop-
erties and there are semantics definitions for
the connectives in terms of this possible worlds
structure. The properties of the possible worlds
structure can either be given directly or they
can be specified implicitly with Hilbert axioms.
The typical example is Kripke semantics for
modal logic. The possible worlds structure con-
sists of a set of worlds and binary accessibility

relations for each modal operator (in a multi-
modal version).

There are two main problems to be solved.
The first problem is to develop a translator
which produces optimal ’code’ in the sense that
the translated formulae can be processed effi-
ciently. Since the translation depends on the
semantics of the logic, this amounts to figur-
ing out alternative and more compact presen-
tations of the semantics. The second problem

is to find the axiomatization of the semantic
structure in case it is only implicitly specified
via Hilbert axioms. For example the Hilbert
axiom DP =~ P corresponds to the reflexivity
of the accessibility relation. Finding these cor-
respondences is very important for developing
translators for different logics. In the second
part of the paper we shall see how this can be

done automatically.

2 Translation of Formulae

The possible worlds semantics of a particular
connective can be turned into a translation rule.
For example the semantics of a modal operators

w ~ DP iff for all v T~(w, v) implies v ~

w ~ OP iff there is vT~(w, v) and v ~ P

113

From: AAAI Technical Report FS-93-01. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

can be turned into the translation rule

zc,(oP, w) = Vv Tt(w, v) ~ 7rr(P,
rc,(<>P, w) = 3v ~(w, v) A zrr(P,

A formula l:3~p is then translated into

Vu 7~(0, u) =~ 3v 7~(u, v) P’(v) where 0 is the
initial worldI and the one-place predicate P’
with a ’world term’ as argument corresponds
to the propositional variable P. Another ex-
ample for a translation rule derived from the
semantics is the translation of the implication
connective in relevance logic. From
w ~ A ~ B iff for all u, v T/(w, u, v) implies

if u ~ A then v ~ B
we obtain rr(A --~ B, w)
= Vu, v 7~(w, u, v) ~ (Trr(A, u) =~ 7rr(B,

Since the structure of the Try-translated for-
mulae is not arbitrary, special constraint deduc-
tion methods could be developed for the case of

translated modal logic formulae [14, 29]. The
7~-literals are treated as constraints and a con-
straint handling mechanism is derived from the
theory that describes the frame property for the
given modal system.

Taking the standard "relational" semantics
for the connectives, however, yields a trans-
lation function which, due to the new 7~-
literals, destroys the the structure of the for-

mulae. Moreover, the transformation into con-
junctive normal form may duplicate these extra
T~-literals exponentially often. For a normal

theorem prover or logic programming system
without a constraint handling mechanism, this
introduces a lot of redundancy.

The main question is therefore: is it possible
to transform the semantics of a logic such that
the corresponding translation function yields
predicate logic formulae which allow more ef-
ficient predicate logic inferencing? We shall
present some alternative transformations.

2.1 Functional Semantics for Modal
Logic

The standard relational Kripke semantics can
be reformulated by decomposing the accessibil-
ity relation into a set AF of "accessibility func-
tions." An accessibility function is a function
mapping worlds to accessible worlds. For the
serial case where there is always an accessible

world this idea yields the following semantics
for Cl.

w~OPiffforallTEAF:7(w)

1 Modal formulae are theorems if they hold in all
worlds. If we negate the formula Vw ... in order
to derive a refutation, the universal quantifier be-
comes an existential quantifier which Skolemizes to
the world constant 0.

which is turned into a translation rule translat-
ing into a many-sorted logic with a sort AF for
each modality

7r/(r-lp, w) = VT:AF 7r/(P, "f(w)).

This ’functional’ translation has been investi-
gated by various authors, in particular [35, 24,
21, 16, 4, 25, 12, 26]. The translated formulae
are more compact than in the relational case.
Moreover, the structure of the formulae is pre-
served which is useful for example for defining
modal Horn clauses. Furthermore, reasoning
about accessible worlds is done automatically
by a unification algorithm, and not by explicit
inference steps.

Unfortunately, things get more complex if the
accessibility relation is not serial. Since the ac-
cessibility functions are partial in this case, the

semantics definition and the translation has to
be modified to deal with the undefined cases.
w ~ []P iff for all 7 E AF: if 7(w) is defined
then 7(w) ~
We describe the corresponding functional
translation for a multi modal logic with m
modalities [Pl],..., [Pm]. As target logic we
take a standard order-sorted predicate logic. In
particular, we use an instance of the logic of [36]
and [30]. Its alphabet consists of three disjoint
sets of symbols: the sort symbols, the function
symbols and the predicate symbols. The set of

sort symbols consists of W, denoting the set of
worlds and AF1,..., AFro, corresponding to the
set of accessibility functions, one set AFn for
each modality Pn. The set of function symbols
consists of two symbols: the constant symbol 0
of sort W (the initial world) and the symbol

with declarations AFn x W ~ W for each n (the
application function ~(7, w) = 7(w).) We
ally write 7(w) instead of 1(7, w). The set
predicate symbols consists of the equality sym-
bol =, an arbitrary number of one place pred-
icate symbols Pl,P2,... with argument sort W
and a special one place predicate symbol def
also with argument sort W. det[7(w)) means
that 7(w) is defined. The translation function
is now:

=
=

^ ¢, =
v ¢, =

=
=

p’(x) if p is atomic

A

A
Vv:AFn de~v(x)) ==k ~r/(~o, 7(x)).

It can be shown that this translation preserves
satisfiability. A modal formula has a model if
and only if the translated formula has a first-
order predicate logic model. This is sufficient
for doing refutational theorem proving.

114

2.2 Optimizations of the Functional

Translation

Although the sets AF, are really sets of func-
tions, the predicate logic interpretations of the
sorts AF, need not be functions at all. In the
soundness proof for the translation, a modal
logic model is transformed into a predicate logic
model where the sorts AFn are indeed inter-
preted as sets of accessibility functions. In the
completeness proof, however, we have to go the
other way round and construct from a predicate
logic model, where the sorts AF, are interpreted
as some set of objects, a modal logic model with
the sets AF, of accessibility functions. The re-
lation between the interpretation IIwll of a term
w and the interpretation II1(/, w)ll of the term

l(f, w) is sufficient to define a function 7y with
7j(llwll) = IIl(/,w)ll. Thus, a set AF, of func-
tions can always be reconstructed from the sets

Ilwll, IIAF, II, the interpretation of the l-function
and the def-predicate.

That means, no special properties of

IIWlI, IIAF-II and the interpretation of I are
needed, but if IIAF, II is really a set of functions
and I denotes the application function, this has

no influence on the completeness proof. This
observation gives us a handle for restricting the
set of predicate logic models by interpreting the
sorts AF, more ’function like’. In other words,
without loosing soundness and completeness of
the translation, certain additional axioms can
be assumed which describe characteristic prop-

erties of sets of functions and which can then
be exploited to simplify the proofs of the trans-
lated formulae.

First of all, functions can be composed with
other functions yielding new functions. For ex-
ample if 7 and 5 are functions then 7 o 5 is

their composition. Unfortunately, if 7 and 5
are interpreted as functions mapping worlds to
R-accessible worlds then 7 o 5 maps worlds no

longer necessarily to T¢-accessible worlds, but
to worlds accessible in two steps. Only if the
accessibility relation is transitive, there is no

difference. Syntactically this means, we can-
not introduce a composition function symbol o

with sort declarations o: AF, x AF, --* AF,.
Instead of this, a sort AF* has to be intro-
duced for representing arbitrary compositions
of elements of IIAF, H. That means in partic-

ular, [IAF,[[C HAF*II, or as sort declaration
AF, _E AF* for every n can be assumed. The
sort declaration for the composition function
symbol is now o: AF* x AF* ---* AF* and the
axioms

VT:AF, Vh:AFk Vw:W 1(7, 1(5, w)) ---- 1(5 o

connect I with o. Of course, o can be assumed
associative. Furthermore the sort declaration of

the l-function can be generalized to I:AF* ×W ---+

W.

These considerations licences the usage of
the so called ’world path’ syntax. Instead
of complex nested terms like l(Tk,l(Tk-1,

1(.-. ,... 1(71,0)...) we simply write 1(71
7k, 0) or even simpler [71.-.Tk]. This is pos-
sible because 1(..., 0) is the only pattern oc-

curring in the translation. For example a for-
mula [p](q)P would then be translated into
VT:AFv 35:AFq P([7 5]) (seriality assumed).
turned out that theory unification algorithms

derived for modal systems like $4 work best on
this simple string notation.

A terminating, sound and complete theory
unification algorithm for the modal systems
with reflexive, symmetric and transitive acces-
sibility relations that operates on the world
path syntax has been given in [24].

The algorithm is presented in a Martelli-
Montanari style as a number of transformation
rules for sets of equations.

Decomposition:

f(sl,...,sn)-~ f(t1,...,t,---+
sl = tl &.. .&s, = t,
Separation:

[ss]=[tt] -~ s=t~s=t
Identity:

Is w s’] =t ~ w= 0 S~ [s s’]=t
Inverse:

[ss s’J=t
Path-Separation:

[w s] = [tt’] ---+ w = t &; s ----- t’
Splitting: [w s s] = [t t v t’] --~

v = Iv1 = It t s] = t’]

Letters in bold face stand for sequences

of terms whereas normal letters denote sin-
gle terms. The Decomposition and Separation
rules are always necessary. The Identity rule is
necessary when the accessibility relation is re-
flexive. The Inverse rule covers the symmetry
case and the Path Separation and Splitting rule
treat the transitivity case. The Splitting rule
terminates because a special syntactic invari-
ant can be guaranteed for functionally trans-
lated formulae: Each occurrence of a variable

in a world path has the same prefix (’prefix sta-
bility’ or ’unique path property’). Unification
problems like [xa] = [ax] which usually cause
problems do therefore not occur.

The next optimization we present simplifies
reasoning with the def-predicate. If there is an

accessible world v from a world w, i.e. there is
an accessibility function 7 with 7(w) = v there
is no reason for the other accessibility functions
to be undefined on w. They can map w at least
to the world v which is accessible form w any-
way. Thus a ’maximal defined-hess condition’

115

can be assumed:

vw:w (37:AF. Vr:AF. def(7(

As a consequence, def(f(w)) is redundant in-
formation for any f because from def(f(w)) we
can immediately derive de/(7(w)) for a variable

7 of the same sort as f. That means, only w
and the sort of f matters. Therefore we replace

de/" with a new predicate cont(w,n) (mean-
ing the accessibility relation 7~n continues from

world w). The correlation is cont(w,n) iff
37:AFn de/(7(w)). The translation function
now be optimized by moving the coat-predicate
out of the scope of the quantifier in

~r/([pn]~, x) cont(x, n) =:~VT:AFn zr/(~, 7(x)
x) : cont(x, .) ^ 37:AF.

This simplifies reasoning in the cases where lit-
erals def(f(s)) and --,det(g(t)) are not resolv-
able directly because although s and t might
be unifiable, f and g clash in the unification

algorithm. Without the above extra axiom, it
may require complicated reasoning to show that
these two literals are in fact complementary.
On the other hand, the corresponding cont-
literals coat(s, n) and -,cont(t, n) produced by
the optimized translation are directly resolv-
able.

In the third optimization we exploit that the
accessibility functions can be assumed to be
strict, i.e. the result of an application to some-
thing undefined is again undefined:

Vw:W VT:AF*

or in terms of the cont-predicate and in world
path notation:

W:AF* VT:AF* -,coat(Ira], n) -, coat(linT] , n)

This axiom can be turned into a special unifi-
cation rule for the cont-literals in world-path
notation which simply ignores trailing parts of
the strings if the start strings are unifiable.

For example the translation of [n][n]P yields
cont(O, n) ~ VT:AFncont([7], n) ~ V6:AF, P(b6]).
The clause form is

",cont(O, n) V -~cont([7], n) V P([76]).
By applying this special axiom or the corre-
sponding theory unification, we can factorize
the clause and eliminate the first literal com-
pletely.

As already mentioned, the def-predicate be-
comes superfluous if all accessibility relations
are serial. This is of course the maximal opti-

mization we can achieve for treating this pred-
icate.

In [26, 27] we present two quantifier exchange
rules which can be applied to translated formu-
late.

Rule 1:
V71...VTn 37:AFn qI([w71a172a2.., ai-17iaiT])

---* 37 V71... VTi ql([w71a172a2.., ai-171aiT])

w and the 7i may be of sort AFj for arbitrary
j or of sort AF*. ’ql([w71a172a2... ai-17iaiT])’
means that all occurrences of 7 are prefixed by
the same string w71a172a2...ai-17iai where
the aj are, possibly empty, strings of Skolem
constants.

Rule 2: VT:AF, 36 ~([w67]) ~ 36 V7 ~([w67])
These rules remove certain dependencies in

Skolem functions generated from ~perators.
For example BOP can be translated into

V7 36P([76]) (seriality assumed) and then
36 V7 P([76]) which avoids that 6 depends on
The rationality behind this quantifier exchange

can be illustrated with the following example.

d

b

a 77~

e

This little frame consists of the worlds
a,b,c,d,e,f. The function set {71,72} speci-

fies the accessibility relation. There is however
another function set containing two more func-
tions 73 mapping b to d and c to g, and Y4 map-
ping b to e and c to f, which specifies exactly
the same frame.

The difference is that the extended func-
tion set is rich enough to ensure that whenever

V7:16 p(6(7(a))) is valid in that frame then
36 V7 P(6(7(a))) is also valid.

In tree frames there is always a function

set which is rich enough to allow exchange of
quantifier in this way. Frames which are not
trees can be unreeled to tree frames by copying
worlds. This has, however, subtle consequences
which we cannot discuss here (see [27]).

Using the quantifier exchange rules, various
propositional modal systems can be translated
into a fragment of predicate logic without func-
tion symbols, i.e. into a decidable fragment of
predicate logic. The translated formulae them-
selves do no longer contain Skolem functions de-
pending on variables. Only the axioms describ-
ing the characteristic properties of the frames in
the particular modal system may contain func-
tion symbols. For those propositional modal
systems where an axiomatization of the frame
properties without function symbols and with-
out equations causing lengthening of the world
paths is possible, decidability is obvious.

116

The quantifier exchange rules turned out to
be quite powerful. For example they bring sys-

tems like the McKinsey system DOP ::~ ©DP
whose corresponding property of the accessibil-
ity relation is not first-order axiomatizable into
the domain of the functional translation.

2.3 Semi-Functional Translation

In the functional version of the semantics, prop-
erties of the accessibility relation are in gen-
eral expressed as equations. For example the
reflexivity of 72 corresponds to the equation
Vw 7(w) -- w where 3’ is an identity function.

order to realize reasoning with the functionally
translated formulae efficiently, these equations
have to be turned into theory unification algo-
rithms. If this is not possible, complex equa-
tional reasoning may become necessary. A way
to avoid equational reasoning while retaining
the advantages of the functional translation has
been developed by Andreas Nonnengart ([23]).

The idea of this mixed translation in the se-
rial case is to translate the D-operator relation-

ally and the O-operator functionally.

~rm((pn)~, x) = 37:AFn ~rm(~, 7(x))

Since the D and O-operators are now no longer
dual in the usual way, we get extra conditions
which enforce the duality DP 4=>-~O-~P. The
two extra conditions are:

vw 72(w,,,,,(w))
vu, v 72(u, v) v =

For each Hilbert axiom of the particu-
lar modal system we obtain now a cor-
responding semantic property formulated in
the mixed language with accessibility rela-
tion and accessibility functions. For ex-
ample Vw, 71,72 ~(w, 72(71(w))) corresponds

to DP ::~ DDP and Vw,71,7~ 72(’),l(w),72(w))
corresponds to OP =~ DOP.

Conditional equational completion [11] with
the two basic axioms above and the spe-
cific axioms for the modal systems eliminates
the equation v = 7(w) in most cases and
yields quite compact set of equation free the-
ory clauses. For example for the system

KD45 (DP ~ P, DP ::V DDP, OP ::~ DOP),
the whole set collapses to a single unit clause

Vu, v:WVT:AF R(u, 7(v)). See [23] for more
amples.

Thus, the semi-functional translation yields
a still quite compact representation of the
translated formulae while also the properties
of the accessibility relation can be expressed
in a very short and compact way, but without
equations. In many cases the resulting theory
clauses are Horn clauses. That means from the

point of view of the theory clauses, this kind
of translation is very suitable for a translation

into standard Prolog.

3 Translation into Normal

Modal Systems

Since the methods for translating modal logic
into predicate logic are quite well developed,
the next step is to use the normal modal logic as
an intermediate language for translating other
logics into predicate logic. For example it is well
known that intuitionistic logic can be trans-
lated into modal $4. That means via $4 we can
translate intuitionistic logic functionally into
predicate logic. We have started to investigate
the possibility for translating other logics into
modal logic. One example is given in the next
section. Other examples can be found in [6] and

[13].

3.1 Graded Modalities

Modal logics of graded modalities have opera-
tors M,~ and L,~. Mn~ is interpreted as ~ holds
in more than n worlds and L,,~ is interpreted
as -~ holds in at most n worlds [34]. Accord-
ing to Fattorosi-Barnaba and de Caro [8], the
following axioms and inference rule make up a
complete Hilbert calculus:

the axioms of propositional logic

Mn+l~ ==~ M,~

L0(~ =:~ ~) ~ (M,~ ~ M,~)
L0~(¢ A ~) ~ ((M!n@ A M!m~)

v ¢))
b (I) and t- ~ :=~ ~ implies
b ¯ implies F L0¢

where M!n is the ’exactly n’-operator. The
problem with this formulation is that the
known tableaux calculi for this kind of logic
must generate n + 1 Skolem constants when-
ever they hit a formula Mn¢ [18]. For example
a formula city¢:~ town A Mlooooocitizen defin-
ing a city as a town with more than 100000
citizens would trigger the generation of 100001
Skolem constants for the citizens. Alternatively
one could translate such formulae directly into
predicate logic. A statement ’at most n’, how-
ever, would then have to be translated into
O(n2) equations which triggers so many case
distinctions. In none of these approaches there
is a place to apply simple arithmetic.

In [20] we show how this logic can be trans-
lated into a normal multi-modal system and
then into predicate logic such that arithmetic
can be applied. The idea is to add an extra class
of worlds representing sets of normal worlds.

Mn~ is then translated into (n)D~ which intu-
itively means: there is an 72,-accessible world

(which stands for a set of > n+l normal worlds)

117

and in all the T~-accessible worlds (which are
just these > n + 1 worlds) ~ holds. Besides
the standard axioms for normal modal systems,
the corresponding Hilbert axioms of this system
are:

if b ¢ then F [n]O¢

F [n]~ =~ In + 1]¢

e ((.)a(¢ ̂ ¢9 ̂ (m)a(v
::~ (n + m + 1)at

This is not the direct translation of the
original system, and only the completeness
proof reveals the role of the axioms. In fact
it is somewhat more general than the origi-
nal system. In particular formulae like [n]P
make sense in this system by interpreting P
as a predicate on sets of objects. For ex-

ample [lO](Dsoccer-player =:~ soccer-team) ex-
presses ’for every set with more than 10 objects:
if all elements are soccer players then this set
makes up a soccer team’.

Formulae in this logic can now be function-
ally translated in the usual way. Additionally,
in order to characterize this particular system,
the Hilbert axioms translate into seven theory
clauses. They were computed using the quan-
tifier elimination algorithm (see table 1).

In table 1 ~ is of sort ,~F* and stands for
an arbitrary start sequence in a world path.
The superscripts 1, 2, 3 of f, g, h just distinguish
different f’s, g’s and h’s. Actually these for-
mulae are schemata for clauses. The symbols

k, n, m have to be instantiated with all non-
negative integers. The subscript ,~ of the vari-

ables and Skolem functions denotes sorts hFn of
the terms. The ~.-relation is almost like equal-
ity, but lacking the substitutivity property for
functions. (This has to do with the applica-
tion of the quantifier exchange rules mentioned
above. See [27] for the details.) Since the set
of formulae stands for an infinite number of
clauses, they can only be put to work in a the-

ory or constraint resolution framework. This is
the place where arithmetic can be incorporated.

As there is a close correspondence between

the Mn~perator and the atmost(n, r, 9) con-
struct in the knowledge representation language
KL-ONE, this translation of the logic of graded
modalities is of particular interest for knowl-

edge representation systems.

The following example shows how the reason-
ing with the translated clauses work.

Graded Mod.

MoM3 true
MoLa false
L1 false

KL-ONE Formulation

at-least(l, R, at-least(4, R, T))
at-least(i, R, at-most(3, R, T))
at-most(I, R, T)

Translation

Modal Logic

(o)o(3)D
(0)D[3]o false
[1]0 false

Predicate Logic

cont(D, O) A cont([aox], 3)
cont(U, O) A ~cont([boy], 3)
~cont(U, 1)

n = 0, m = 0, ~ = 0 instance of the clause Ps:
-~cont(~, 0), [x0f3°°(~, yo, z)] = [yog3°°(~, xo,

cont(L 1).
Theory resolution with unifier {x0 ~-~ a0,

Y0 ~-* b0, x ~-* fa00(U, b0, z), y ~-~ g3°°(0, a0, z)}
yields the empty clause. Notice that the reason-
ing is on the abstract level without generating
instances of the sets explicitly.

4 Automating Correspondence

Theory

Correspondence theory relates properties of the
accessibility relations with Hilbert axioms. For
example DP ==~ DDP corresponds to the tran-

sitivity of the accessibility relation. Since our
translation methods need an explicit axiomati-
zation of the properties of the possible worlds
structure, we have to compute these properties
somehow in case they are specified only implic-
itly as Hilbert axioms. If this can be done auto-

matically, we no longer rely on the well investi-
gated logics found in the literature, but we can
develop applications where the user can spec-

ify his own logic in an abstract Hilbert style
and this is then automatically translated into

executable code.
In order to see what this means, let us rewrite

the Hilbert axiom DP ::~ DDP which is implic-
itly assumed to hold for all P and in all worlds
into predicate logic, using the standard rela-
tional semantics of D. The translation yields

VP’ Vu (Vv ~(u, v)
P’(v)) :=~ Vv T~(u, v) ==~ Vw T~(v, w) ==~
This is a second-order predicate logic formula.

The key observation for computing correspon-
dences automatically was that such second-
order predicate logic formulae are sometimes
equivalent to first-order formulae without the
P’. If there is in fact a first-order equivalent,
then this is precisely a representation for the
desired correspondence property. Finding first-
order equivalents means eliminating second-
order quantifiers.

4.1 Quantifier Elimination

In [10] we have developed an algorithm
which can compute for second-order formu-
lae of the kind 3P1,...,Pk & where ¢ is
a first-order formula, an equivalent first-
order formula -- if there is one. Since

VP1,..., Pk (~ ¢:~’~3P1,..., Pk -~(I) this algo-
rithm can also eliminate universal quantifiers

118

Table 1: Translated Axioms for Graded Modalities

by first negating the formula, eliminating the
existential quantifiers and then negating the re-
sult. Related methods can also be found in

[1, 2, 3, 32, 5, 31]. The definition of the al-
gorithm is:

Definition 4.1 (The SCAN Algorithm)
Input to SCAN is a formula a = 3P1,..., Pn ¢
with predicate variables Pt,..., P,~ and an ar-

bitrary first-order formula ¢.
Output of the SCAN -- if it terminates -- is

a formula !o~ which is logically equivalent to
a, but not containing the predicate variables

P1, . . .,P,.
SCAN performs the following three steps:

1. ¢ is transformed into clause form.
2. All C-resolvents and C-factors with the
predicate variables P1,.-., Pn have to be gen-

erated. C-resolution (’C’ for constraint) is de-
fined as follows:

P(sl,...,s,) VC P(...) and -~P(...)
-~P(ta,...,tn) Y are resolution li terals
C V D V sl ~ tx V...Vs,, ~t,,

and the C-factorization rule is defined analo-
gously:

P(sl,...,s,) V P(tl,...,tn) V CV

P(Sl, ., 8r~) V C V Sl # tl V... n #t n"

Notice that only C-resolutions between differ-

ent clauses are allowed (no self resolution).
A C-resolution or C-factorization can be opti-
mized by destructively resolving literals x ¢ t,
where the variable x does not occur in t, with
the reflexivity equation Vx x = x. C-resolution

and C-factorization takes into account that sec-
ond order quantifiers may well impose condi-
tions on the interpretations which must be for-
mulated in terms of equations and inequations.

As soon as all resolvents and factors between
a particular literal and the rest of the clause
set have been generated (the literal is ’resolved
away’), the clause containing this literal must
be deleted (purity deletion). If all clauses are

deleted this way, this means that (~ is a tautol-
ogy.

All equivalence preserving simplifications may
be applied freely. If an empty clause is gener-
ated, this means that a is contradictory.

3. If the previous step terminates and there are
still clauses left then reverse the Skolemization
and output the result. If Skolemization cannot
be undone, the only chance is to take paral-

lel (second-order) Henkin quantifiers [15] or
leave the Skolem functions existentially quanti-
fied. In this case the resulting formula is again

second-order. <J

The next example illustrates the different
steps of the SCAN algorithm in more detail.
The input is: 3P Vx, y 3z (-~P(a) V Q(x))
(P(y) V Q(a)) A In the fir st s tep th e
clause form is to be computed:

C~ : -~P(a) V Q(x)
C2 : P(y) v Q(a)
C3: P(f(x,y))

f is a Skolem function. In the second step of

SCAN we begin by choosing -~P(a) to be re-
solved away. The resolvent between C1 and

C2 is C4 = Q(x)v Q(a) which is equivalent to
Q(a) (this is one of the equivalence preserving
simplifications). The C-resolvent between C1
and Ca is (35 = (a ~ f(x,y) VQ(x)). There

are no more resolvents with -~P(a). Therefore
C1 is deleted. We are left with the clauses

C2 P(y) VQ(a) 63 P(f(x,y))
C4 Q(a) C~ a#f(x,y) VQ(x)

Selecting the next two P-literals to be resolved
away yields no new resolvents. Thus, C2 and

C3 are simply to be deleted as well. All P-
literals have now been eliminated. Restoring
the quantifiers we then get

Vx 9z Q(a) A (a :/: z V Q(x))

as the final result.

119

The SCAN algorithm is correct in the sense
that its result is really equivalent to the input
formula. It cannot be complete, i.e. there may
be second-order formulae which have a first-
order equivalent, but SCAN (as any other algo-
rithm) cannot find it. Completeness is not pos-
sible, otherwise the theory of arithmetic would

be enumerable.
The points where SCAN does not compute a

first-order equivalent are (i) the resolution does
not terminate and (ii) reversing Skolemization
is not possible. In the second case there is a
(again second-order) solution in terms of paral-
lel Henkin quantifiers or existentially quantified
Skolem functions.

4.2 A Framework for Automating
Correspondence Theory

In this section we show how to make use of the
SCAN algorithm for translating Hilbert axioms
into semantic properties. The method is ap-
plicable not only for modal logic, but for all
logics with semantics definitions for its connec-
tives which can be axiomatized in a first-order
framework. In particular for the case of modal
logic we can apply it to compute the frame
properties also for the functional translation.
In order to give a complete picture, we con-
sider also the inverse direction, from the frame
properties to the Hilbert axioms.

Developing correspondences as for example
between
(i) VP DP =~ DDP and (ii) the underlying
cessibility relation is transitive.

consists of four problems:

Top-Down Direction

1. Given (i), find a suitable candidate for (ii).
2. Verify the equivalence of (i) and (ii).

Bottom-Up Direction

3. Given (ii), find a suitable candidate for (i).
4. Verify the equivalence of (i) and (ii).

The bottom-up direction is not strictly rel-
evant to the translation topic. During the de-
velopment of a new logic, it is, however, very
instructive if not only a semantics, but also a
Hilbert system is known. Whereas notions like
’belief’ or ’knows’ are usually primarily speci-
fied by Hilbert axioms, just the opposite is the
case for well known mathematical structures
such as for example linear orderings as seman-
tics in a temporal logic. Here the property of
the semantical structure is given and the corre-
sponding Hilbert axiom is to be computed.

Up to now there was no method for solving
the problems 1 and 3, except by pure guess-
ing or by very special methods in certain lim-
ited cases, Sahlquist formulae in modal logic,

for example [33]. Of course, people with ex-
perience in this matter quickly develop enough

intuition for solving relatively simple problems
of this kind. The more complex the formulae
are, however, the less reliable is the intuition.

In contrast to this, our method is fully auto-
matic and solves the guessing problem together
with the verification problem.

4.3 The Top-Down Direction

The top-down direction of the correspondence
problem can be stated as follows: What needs
to be given is first of all
1. some operators F whose semantics is defined

in terms of other relations and functions R/us-
ing the ’holds’-predicate H:

(1) De/(F,R~) = VX1,...,X,
H(F(X1,..., X,), x)
where + contains no occurrence of F.

The ’holds’ predicate is used to formulate for-

mulae as predicate logic terms and to present
the problem as a pure first-order predicate
logic problem that can be submitted to a stan-
dard theorem prover. For example, Def(F, R~)
could be defined as

(2) VXI,...,X, Vx H(F(X~,...,X~),x)

Vxl,..., x, ~(x, xl,..., xn)
H(Xx, xl) ~ ... =~ H(X,, x,~)

For n = 1 this is the definition of the modal
D-operator. For n = 2 this is the definition of

the relevance logic implication.
2. The second part of the problem specifica-

tion is the Hilbert axiom ~(F) which is to
translated. This should again be formulated in
first-order predicate logic using again the spe-
cial ’holds’-predicate. For example the first-

order formulation of DP ::~ DDP is
(3) VP Vw g(implies(D(P), D(D(P))),

The structure of the formulae kO(F) must
such that application of Def(F, Ri) for all F

as rewrite rule from left to right (with suitable
renamings of bound variables) eliminates the
completely and the resulting formula is of the
structure

(4) ~’=
QXt,..., Xn k~"(H(X~,...),..., H(Xn,..
or equivalently

(5) @’ QX~,..., x~ @"(x~(...),..., x’(...))
where Q is an existential or a universal quan-

tifier. In the version (5), the variables Xi have
been replaced with one-place predicate symbols
X[. This brings to light the second-order na-
ture of the problem which had been hidden in
the holds predicate. For example rewriting (3)
with (2, n = 1) and a corresponding rule for
implies yields

(6) VP’ Vw (Vx /~.(w,x):=~ P’(x))
Vu ~(w, u) ::~ Vv 7~(u, v) ~ P’(v)
Our goal is to find a formula £(Ri) such that

120

(7) Def(F, Ri) ::¢, (kO(F) F(R/)).
Since Def is an equivalence, rewriting ~(F)

¯ ’(Ri) is an equivalence transformation in the
theory of De f, i.e. Def(F, Ri) ::¢, ~(F)
~(R/). Thus, computing a correspondence
property amounts to computing the formula
F(R/) with QXi,..., X" 9’(R~) ¢¢, F(R~).
turned out to be the kernel of the problem. It
can be solved by a quantifier elimination proce-
dure that computes for a second-order formula
an equivalent first-order formula -- if there is
one and the procedure succeeds.

To summarize, the recipe for the top-down di-
rection is:

1. Formulate the definition of the operators F
in the style of (1).
2. Formulate the property @(F) in terms of the
holds predicate.
3. Eliminate F from k~.
4. Replace the variables Xi by corresponding
predicates.
5. Apply quantifier elimination.

We illustrate the procedure with the following
examples:

Example 4.2 (Modal K4-Axiom)
Relational Translation:
Hilbert axiom: DP :=¢, DDP
H-Formulation: (= ~(D, implies))

VP Vw a(implies(DP, DDP), w)
Semantics: (= Def(D,~))

VP Vw H(DP, w) ¢¢, (Vv R(w, v) =:¢, H(P,
Semantics of implies as expected
translated (Semantics applied as rewrite rule).

VP’ Vw (Vx R(w, x) :=~ P’(x)) :=~ Vu R(w,
:=¢, Vv 7~(u, v) ~ P’(v)
negated:
3P’ 3w (Vx Td(w, x) =~ P’(x)) A 3u TO(w,
3v T~(u, v) A ~P’(v)
clause form:2 -.7~(w, x) P’(x)
Td(w, u) Td(w, v) -,Pt(v)
pi resolved away:

--~(w, v) U(w, u) Te(u, v)
unskolemized:

u, v v) ̂ u(w, u) ̂ u(u,
negated:

W, u, v 7Z(w, u) A U(u, v) ~ n(w,

Functional Translation (seriality assumed):
As already mentioned, the method is
parametrized with the semantics of the connec-
tives. Therefore it works as well for the func-
tional semantics of the modal operators and
we obtain the characteristic frame property in
terms of the functinal translation.
Hilbert axiom: DP =:¢, DDP

H-Formulation: VP Vw H(DP ::¢, DDP, w)
Semantics:

VP Vw H(DP, w) ¢¢~ V7 H(P, 7(w))

translated:

VP’ Vw (V7 Pl(7(w))) :=¢’ V5 V, P’(,(5(w)))
negated:

3P’ 3w (V7 P’(7(w))) A 36 =1, ~P’(,(5(w)))
clause form: P’(7(w)) -,P’(t(di(w)))
P resolved away: "),(w) ¢ t(df(w))
unskolemized: qw 3~i,L V7 7(w) ~ L(di(w))
negated: Vw V~,, 37 7(w) -- ,(6(w))

4.4 The Bottom-Up Direction

In the bottom-up direction of the correspon-
dence problem we want to compute from the
property F(Ri) of the symbols R/ and the def-

inition Def(F, 1~) for the operator F a cor-
responding property ~(F). This direction
much more complicated and it needs some
heuristic guidance. It consists of a guessing and
verification step. The guessing step, however,
can be systematized such that the whole proce-
dure is again fully automatic [7].

There are two different methods for guessing
¯ . In the first method we exploit that
(3/g/ F(R/) Def(F, R,)) ¢~ ~(F
implies

VRi Def(F, Ri) :=~ (F(P~) ~ ~(F)).
This reduces the problem again to a quantifier
elimination problem. The quantifiers 3Ri have

to be eliminated from 3Ri F(R./)A Def(F, Ri)).
If this succeeds, we have a candidate for ~(F).
This candidate has to be verified with the top-
down method. Unfortunately it succeeds only
in relatively simple cases. An evidence for fail-
ure is that F(R/) is recursive, as for example
transitivity.

In the second method for the guessing step a
theorem prover is used for synthesizing a can-
didate formula as a Skolem term. To this end,
the connectives necessary to build ~(F) as
term are axiomatized as function symbols and
a formula

3f Vw H(f, w)

is proved constructively. The binding ~(F)
of f used in the proof is the desired candi-
date formula. We enumerate the proofs and try
to verify the generated formula with the top-
down method. If there are enough connectives
available the correct result should eventually be

found.

Usually there are different options for the for-
mulation of k~. If it can be expected that g/can
be formulated in terms of the standard propo-
sitional connectives and, or, neg, impl, things
are simpler. The axioms for these connectives

2To distinguish between variables and Skolem
constants, we write the Skolem constants Roman
style.

121

are:

H(and(X, Y), w) ¢:> (H(X, w) A H(Y,
H(or(X, Y), w) ¢~, (H(X, w) V H(Y,
H(neg(X), w) -,H(X,
H(impl(X, Y), w) ¢~ (H(X, w) ::~ H(Y,

The input to the theorem prover consists

of these axioms, together with Def(F,P~)
and F(Ra). The theorem to be proven

is 3f Vw H(f,w). The result are proofs
with bindings for f, for example f =
implies(F(X), F(F(X))) (which of course
stands for our standard example DP ~ O[::]P.)

Summarizing, we propose the following pro-
cedure for computing ~(E) from nef(F,P~)

and F(R~):
a) Try quantifier elimination for

3R~ Def(I~, F) A F(R~).
If this does not succeed:
b) Try to find a solution in terms of proposi-
tional connectives.

1. Axiomatize the connectives.

2. From these axioms together with
Def(F, R~) and F(R~) prove the theorem

3f Vw H(f, w).

3. Each binding for f is a candidate for ~(F)
that needs to be verified with the top-
down method.

Exomple 4.3 (Bottom-Up Direction)
Again we use the correspondence [:]P =:~ O[:]p
with the transitivity of the accessibility rela-
tion to illustrate the bottom-up direction. The
following is a protocol of the OTTER theorem
prover [22]. It is the first of the generated proofs
which actually uses the transitivity clause (this
turned out to be a very powerful filter for elim-
inating junk proofs). The a-operator is en-
coded as the function F and the implication
connective as the function i. Otter uses ’l’ for
the disjunction symbol.

formula_list (usable).

(all w (all X (H(F(X),w)

<-> (all v (R(,,v) -> H(X,v)))))).
(all w (all X (all ¥ (H(i(X,Y),w)
<-> (H(X,,) H(Y,,)))))).
end_of_list.
formula_list (sos).
(all x y z ((R(x,y) & R(y,z)) -> R(x,z))).
-(exists f (all w (H(f,,) & -Sans(f)))).
end_of_list.

Clauses :

I-H(F(xl),.) [-R(w,v) J H(xl,v).

2 H(F(xl),w) [R(.,fl(~,xl)).
3 H(F(xl),w)] -H(xl,fl(w,xl)).
4-H(i(x2,x3),w)] -H(x2,w) ~ H(x3,w).

5 H(i(x2,x3),w)] H(x2,w).

6 H(i(x2,x3),w) [-H(x3,w).
7-R(x,y) I -R(y,z) I R(x,z).
8-H(x4,f2(x4)) I Sans(x4).

............ PROOF (4.47 sec)
12 [8,5] $ans(i(x,y))] H(x,f2(i(x,y))).

... (7 steps not listed)
383 [368,6] $ans(i(F(x),F(F(x))))

H(i(y,F(F(x))),f2(i(F(x),F(F(x))))).
384 [383,8] $ans(i(F(x),F(F(x)))).

In logical notation, the answer is DP ::~ ODp.
With the top-down method we have already
verified that this is in fact the correct answer.

5 Summary

As long as the semantics of a logic can be for-
mulated in first-order logic, it can be turned
into a translation function into predicate logic.
The actual presentation of the semantics, how-
ever, is not unique. For example a binary ac-

cessibility relation can be presented syntacti-
cally with a two-place function or with a sort

decribing a set of ’accessibility’ functions. As
another example, a ternary relation as it is used
in relevance logic, can be turned into three bi-
nary relations which in turn can be decomposed

again into sets of accessibility functions. These
transformation are the mechanisms that allow
the translation to be tuned such that ’efficient
predicate logic code’ is produced.

Since the modal a-and ©-operators are es-

sentially universal and existential quantifiers in
disguise, it seems that modal logic is the cen-
tral logic in the sense that other logics can be

expressed in modal logic. Therefore I propose a
two-step process, first translate into a normal
modal system and then use the functional or

semi-functional translation into predicate logic.
As an example we have shown this for modal
logic with graded modalities.

To support the development of these transla-

tions, we have shown how to automate the com-
putation of correspondences between Hilbert
axioms and semantic properties. The method
works in both directions and can be fully au-
tomated. A prototype implementation of the
top-down part by Antonis Kotzamanidis is
avaiblable. It uses the theorem prover Otter
to realize the SCAN algorithm.

Although there is some progress in deal-
ing with second-order semantic structures (cf.
also [17]), this is the main limitation of this
approach. In order to get a useful transla-
tion, eventually everything must be massaged
into first-order predicate logic. There are
enough applications, however, in particular in
the knowledge representation area, where this

is guaranteed.

122

6 Open Problems and Future

Work

The work presented in this overview can only be
seen as single steps in the attempt to automate
the development of application oriented non-
classical logics and to develop efficient generic
reasoning systems.

There are still many problems on various lev-
els of the approach to be solved. Let me men-
tion just a few of them. First of all, there
is not yet a detailed comparison between the
efficiency of different translation methods for
modal logics and between translation at all and
other calculi which operate on the original syn-
tax. Since this means finding suitable test ex-
amples, comparing different theorem provers,
different search strategies, even implementing
special unification algorithms for the functional
translation, it would require a major effort.

One of the problems with the functional
translation is that either equational reason-
ing or special theory unification algorithms are
needed. Since equational reasoning is very
inefficient, functional translation can compete
only if the appropriate theory unification algo-
rithems are implemented. At the time being,
this still requires a human expert, which means
that we cannot yet automate the development
of such a translation system from an abstract
specification of the logic. Narrowing might be
the method to overcome this problem, but this
has to be investigated.

A similar problem arises in the semi-

functional translation. As we have seen, we get
one conditioned equation from the translation
of the duality formula EIP ¢V -,~-,P. Fortu-
nately most of the formulae describing the cor-
respondences between semantic structures and
Hilbert axioms do not contain equations. Al-
though we have not yet done a systematic in-
vestigation, we suceeded in finding alternative
equation free representations for various modal
systems using conditional equational comple-
tion (we used Harald Ganzinger’s CEC pro-
gram). This seems to be a promising route for
generating optimized calculi automatically.

A spin off from this work might be meth-
ods for refutational complete transformations
of standard predicate logic formulae to make
life easier for the theorem prover. For example,
each formula which could be seen as a relational
translation of some modal formula can be trans-
formed into the corresponding semi-functional
or functional translation. But what to do with
formulae which are almost, but not exactly rela-
tional translations? My impression is that there
is a similar potential for improving the treat-
ment of binary relations as the transition from

unsorted to sorted logic improves the treatment
of unary relations.

The approach we have developed for the logic
of graded modalities might also turn out to be
useful for the treatment of finite domains in
predicate logic. The axiomatization of a finite
domain D with n elements is

(3Xl , Xn D(xl) A ... D(xn) A VyD(y
:~(y=xlV ... Vy=xn)

Everybody who has ever tried to apply a predi-
cate logic theorem prover to this kind of exam-
ples knows that the disjunction triggers a vast
amount of cases distingtions. This is feasible
only for small n.

Quantifier elimination is the key technique
for computing semantic properties from Hilbert
axioms. Unfortunately this is a problem with-

out a complete solution. For example the
McKinsey axiom VP D©P =~ OoP alone corre-
sponds to a second-order property of the acces-
sibility relation (reversing skolemization in the
SCAN algorithm needs second-order Henkin

quantifiers). Combined with the transitivity
axiom DP :=~ pop, however, these two define
atomicity Yz 3y (~(x, y) A Vz R(y, z)
y)) [33, page203] which is obviously a first-
order definable property.

Applied to the McKinsey axiom, SCAN actu-
ally computes this property if the critical clause

which prevents reversing the skolemization in
the normal way is replaced with its factor. Al-

though we have some ideas, why transitivity
might in this particular case enable this opera-
tion, we are far from having a general theory for
processing combinations of axioms with these
strange properties. Actually the proof that the
McKinsey axiom together with the transitivity
axiom correspond to atomicity requires the ax-
iom of choice. Therefore no simple solution of
this problem is to be expected.

Another modal Hilbert axiom which corre-
sponds to a second order property of the ac-

cessibility relation is Lhb’s axiom O(OP ==~ P)
:~ OP axiomatizing the system G. It enforces

that all chains in the possible worlds structure
are finite. Applied to this axiom, SCAN loops.
But it keeps on producing clauses with only T~-
literals. The loop has a certain regular struc-
ture which is easy to recognize and which can
be turned into a finite representation of an in-
finite formula. Automating loop detection, at
least for limited cases, seems possible and may
help in investigating more complex logics.

Applied to the axiom ©oP V o(O(oQ =v
:=~ Q, SCAN loops also. The difference to Lhb’s

axiom is that in this case it cannot get rid of
the predicate Q. Each resolvent still has liter-

als with Q. And in fact, this axiom is known
to be incomplete [19] in the sense that there

123

is no frame class at all characterized by this
axiom. It should be investigated whether this
chracteristic behaviour of SCAN always indi-
cates incompleteness of the Hilbert axiom.

The particular treatment of Hilbert systems
we have shown in this paper relies on a basic

completeness theorem for the semantics. For
example in modal logic it is well known that
the axiom K and the necessitation rule guar-
antee completness of the standard relational
Kripke semantics. But what about Hilbert sys-
tems without such a basic completeness the-
orem? Again from modal logic it is known
that minimal model semantics is complete pro-
vided closedness under equivalences (I- P ¢V

implies I- tiP ¢~ I::]Q) is guaranteed. In this se-
mantics, I::]p is valid in a world w if the truth set

of P is a ’neighbourhood’ of w. Relational se-
mantics can be reconstructed if the neighbour-
hood structure is closed under intersection and
supersets.

The game to play now is to find general
schemas for very weak semantic structures,
weak in the sense that as few Hilbert axioms
as possible are tautologies in this semantics.
Using this semantics, the Hilbert axioms are
translated with quantifier elimination. The re-

sult can then be used to (automatically) prove
certain key lemmas which licence the transition
to a stronger semantics.

In [9], Dov Gabbay has developed a general
schema for a very weak algebraic semantics for
a logic specified not with a Hilbert system, but
with a consequence relation to ~- ¢ where to and
¢ are single formulae. This is a very promising
starting point for developing a similar schema
for arbitrary Hilbert systems.

Since logics can be specified in various ways,
syntactically with various kinds of consequence
relations as well as semantically, either with al-

gebraic or other kinds of model theoretic se-
mantics, the ultimate goal of this whole enter-
prise is to provide automated methods for trans-

forming the specifications from any such frame-
work into any other. At the time being this goal
seems not to be completely unrealistic.

Acknowledgement

I would like thank all my colleagues in the var-
ious projects who contributed to this work. In
particular I am grateful to Luis Farifias del
Cerro, Dov Gabbay, Andreas tterzig, Andreas
Nonnengart, and Renate Schmidt for many im-
portant discussions and valuable contributions.
The comments of various referees were also very
helpful.

References

[1] Wilhelm Ackermann. Untersuchung fiber

das Eliminationsproblem der mathema-
tischen Logik. Mathematische Annalen,

110:390-413, 1935.

[2] Wilhelm Ackermann. Zum Elimina-
tionsproblem der mathematischen Logik.

Mathematische Annalen, 111:61-63, 1935.

[3] Wilhelm Ackermann. Solvable Cases of the
Decision Problem. North-Holland Pu. Co.,
1954.

[4] Yves Auffray and Patrice Enjalbert.
Modal theorem proving: An equational
viewpoint. Journal of Logic and Compu-

tation, 2(3):247-297, 1992.

[5] Leo Bachmair, tIarald Ganzinger, and
Uwe Waldmann. Theorem proving for hi-
erarchic first-order theories. In G. Levi and
H. Kirchner, editors, Algebraic and Logic
Programming, Third International Con-
ference, pages 420-434. Springer-Verlag,
LNCS 632, September 1992.

[6] Philippe Balbiani and Andreas Herzig. A
translation from the modal logic of prov-
ability into K4. Journal of Applied Non-
Classical Logics, 1993. to appear.

[7] Chris Brink, Dov Gabbay, and
Hans Jiirgen Ohlbach. Towards automat-
ing duality. Technical Report MPI-I-93-
220, Max-Planck-Institut fiir Informatik,
Saarbriicken, Germany, 1993.

[8] M. Fattorosi-Barnaba and F. de Caro.
Graded modalities. Studia Logica, 44:197-
221, 1985.

[9] Dov M. Gabbay. Classical vs non-classical
logics. In J. Siekmann D. M. Gabbay, edi-
tor, Handbook of Logic in Artificial Intelli-

gence. Volume 1. Oxford University Press,
1993. forthcoming.

[10] Dov M. Gabbay and Hans Jiirgen Ohlbach.
Quantifier elimination in second~)rder
predicate logic. South African Computer
Journal, 7:35-43, July 1992. Appears also
in Proc. of KR92, Morgan Kaufmann, pp.

425-436, 1992.

[11] H. Ganzinger. A completion procedure for
conditional equations. Journal of Symbolic
Computation, 11:51-81, 1991.

[12] Olivier Gasquet. Deduction for multi-
modal logics. In Proc. of Applied Logic
Conference (Logic at Work). Amsterdam,
December 1992.

[13] Olivier Gasquet and Andreas Herzig. The-

orem proving for non-normal modal log-
ics. Abstracts of the IJCAI 93 workshop
on Automated Theorem Proving, 1993.

124

[14] Inn P. Gent. Analytic Proof Systems for
Classical and Modal Logics of Restricted
Quantification. PhD thesis, University of
Warwick, Coventry, England, 1991.

[15] L. Henkin. Some remarks on infinitely long
formulas. In Infinitistic Methods, pages
167-183. Pergamon Press, Oxford, 1961.

[16] Andreas Herzig. Raisonnement automa-
tique en logique modale et algorithmes
d’unification. PhD thesis, Universit~ Paul-
Sabatier, Toulouse, 1989.

[17] Andreas Herzig. A translation from propo-
sitional modal logic G into K4. Universit~
Paul Sabatier, Toulouse, July 1990.

[18] Bernhard Hollunder and Franz Baader.
Qualifying number restrictions in concept
languages. In Proceedings of the 2nd Inter-
national Conference on Knowledge Repre-
sentation and Reasoning, pages 335-346,
Cambridge, Mass., 1991.

[19] G.E. Hughes and M.J. Cresswell. A Com-
panion to Modal Logic. Methuen & Co.,

London, 1984.

[20] Ullrich Hustadt, Hans Jiirgen Ohlbach,
and Renate Schmidt. Qualified number re-
strictions and modal logic. Forthcoming
MPI report, 1993.

[21] Peter Jackson and Hart Reichgelt. A gen-
eral proof method for modal predicate
logic without the Barcan Formula or its
converse. DAI Research Report 370, De-
partment of Artificial Intelligence, Univer-
sity of Edinburgh, 1988.

[22] William McCune. OTTER 2.0. In Mark

Stickel, editor, Proc. of 10th Interna-
lion Conference on Automated Deduction,
LNAI 449, pages 663-664. Springer Ver-
lag, 1990.

[23] Andreas Nonnengart. First-order modal
logic theorem proving and functional sim-
ulation. In Proc. of IJCAI 93, 1993.

[24] Hans Jiirgen Ohlbaeh. A resolution calcu-
lus for modal logics. In Ewing Lusk and

Ross Overbeek, editors, Proc. of 9th In-
ternational Conference on Automated De-
duction, CADE-88 Argonne, IL, volume

310 of Lecture Notes in Computer Science,
pages 500-516, Berlin, Heidelberg, New
York, 1988. Springer-Verlag. extended ver-
sion: SEKI Report SR-88-08, FB Infor-

matik, Universit/it Kaiserslautern, 1988.

[25] Hans J/irgen Ohlbach. Semantics based
translation methods for modal logics.
SEKI Report SR-90-11, FB. Informatik,

Univ. of Kaiserslautern, 1990.

[26] Hans Jfirgen Ohlbach. Optimized trans-
lation of multi modal logic into predicate
logic. In Andrei Voronkov, editor, Proc. of
Logic Programming and Automated Rea-
soning (LPAR), pages 253-264. Springer

LNAI, Vol. 698, 1993.

[27] Hans Jfirgen Ohlbach, Renate Schmidt.
Optimized functional translation of multi
modal logic into predicate logic. Forthcom-
ing MPI Report, 1993.

[28] Hans Jiirgen Ohlbach and JSrg H. Siek-
mann. The Markgraf Karl Refutation Pro-
cedure. In Jean Luis Lassez and Gordon
Plotkin, editors, Computational Logic, Es-
says in Honor of Alan Robinson, pages 41-

112. MIT Press, 1991.

[29] Richard Brian Scherl. A Constraint Logic
Approach to Automated Modal Deduction.
PhD thesis, Dept. of Computer Science,

Univ. of Illinois at Urbana-Champaign,
May 1993. Reprot No. UIUCDCS-R-93-

1803.

[30] Manfred Schmidt-SchauB. Computational
Aspects of an Order-Sorted Logic with
Term Declarations, volume 395 of Lecture
Notes in Artificial Intelligence. Springer-
Verlag, Berlin, Heidelberg, New York,
1989.

[31] Harold Simmons. The monotonous elim-
ination of predicate variables. Journal of
Logic and Computation, 1993. Forthcom-
ing.

[32] Andrzej Szalas. On correspondence be-
tween modal and classical logic: Auto-
mated approach. Technical Report MPI-
1-92-209, Max-Planck-Institut fiir Infor-
matik, Saarbriicken, March 1992.

[33] Johan van Benthem. Correspondence the-
ory. In Gabbay Dov M and Franz Guen-
thner, editors, Handbook of Philosophi-
cal Logic, Vol. II, Extensions of Classi-
cal Logic, Synthese Library Vo. 165, pages
167-248. D. Reidel Publishing Company,

Dordrecht, 1984.

[34] Wiebe van der Hock. Modalities for Rea-
soning about Knowledge and Quantities.
PhD thesis, Vrije Universiteit Utrecht,
1992.

[35] Lincoln A. Wallen. Matrix proof methods
for modal logics. In Proc. of 10th IJCAI,
pages 917-923. IJCAI, Morgan Kaufmann
Publishers, 1987.

[36] Christoph Walther. A Many-Sorted Cal-

culus Based on Resolution and Paramodu-
lation. Research Notes in Artificial Intelli-
gence. Pitman Ltd., London, 1987.

125

