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Translation Queries for Sets of Polygons 

Mark de Berg* Hazel Everett t Hubert Wagenert 

Abstract 

Let S be a set of m polygons in the plane with a total of n vertices. A 

translation order for S in direction d is an order on the polygons such that no 

collisions occur if the polygons are moved one by one to infinity in direction 

d according to this order. We show that S can be preprocessed in O(nlogn) 

time into a data structure of size O( m) such that a translation order for a 

query direction can be computed in O( m) time, if it exists. It is also possible 

to test whether a translation order exists in O(log n) time with a structure 

that uses O( n) space. These results are achieved using new results on relative 

convex hulls and on embeddings with few vertices, which are interesting in 

their own right. 

Translation orders correspond to valid orders for hidden surface removal 

with the painter's algorithm. Our technique can be used to generate displaying 

orders for polyhedral terrains. One of the advantages of our approach is that 

it can easily be adapted to handle perspective views within the same time and 

space bounds. 

Keywords Computational geometry, separation problems, hidden surface re

moval, painter's algorithm, relative convex hulls, embeddings. 

1 Introduction 

In its most general form, the separability problem can be stated as follows. Given a 

set of objects in some space, separate them by a sequence of motions. During the 

motions, the objects should not collide with each other. (A collision between two 

objects occurs when their interiors have a non-empty intersection.) These problems 

come in many different flavors, depending on the objects that are considered, the 
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space they are in, and the type of motion that is allowed. Toussaint [25] gives an 

extensive survey of such problems. 

We consider the following restricted version of the separability problem. Given 

a set S = {PI, ... , Pm} of non-overlapping polygons (i.e. polygons with pairwise 

disjoint interiors) in the plane, translate them in some direction d to infinity, one 

at a time. Thus, every polygon has to be translated into the same direction. The 

problem now is to determine whether the polygons can be ordered such that no 

collisions occur if the polygons are translated according to that order and, if so, 

to compute such a translation order. This problem, which is called the translation 

problem, originated in 1980, when Guibas and Yao [13] studied translation orders 

for sets of convex polygons. They showed that a translation order always exists 

for a set of convex polygons and gave an O(n + mlogm) algorithm for computing 

an order. Here, and in the rest of this paper, m is the number of polygons and 

n = E::IIPil is the total number of vertices of all polygons. Since then, their 

work has been extended in several ways. Ottman and Widmayer [23] simplified 

the method and Nurmi [16] adapted the method to arbitrary polygons, achieving 

a time bound of O(nlogn). Recently, Nussbaum and Sack [17] gave an optimal 

O( n + m log m) algorithm for this problem. Sack and Toussaint [24] showed how to 

compute, in O( n log n) time, all directions of separability (i.e., directions for which 

a translation order exists) for two arbitrary polygons, which was improved to O( n) 

by Toussaint [26]. Finally, Dehne and Sack [8] studied many of these problems when 

preprocessing is allowed: after O(m2 (Cs(p) + logm» time and using O(m2
) space, 

they are able to answer all kinds of questions on translational orders. (Here each 

polygon is assumed to have p vertices and C s(p) is the time needed to determine all 

directions of separability of two p-vertex polygons, which varies between O(logp) 

and O(p) depending on the type of the polygons.) Although their method is efficient 

when the number of polygons is small, it becomes very costly when there are many 

polygons. When all polygons have constant size, for example, their preprocessing 

takes O( n2 10g n) time and O( n2
) space and computing an order for a given direction 

still takes O(n2
) time. 

In this paper it is shown that a set of (arbitrary) polygons can be preprocessed 

in time O( n log n) into a data structure of size O( n ), such that it is possible to 

determine, for any given direction d, in time O(log n) whether there exists a trans

lation order. Moreover, such an order can be computed (if it exists) in O(m) time 

using a structure of size O(m). This improves the results of Dehne and Sack [8] 

considerably. We also show that all directions of separability can be computed in 

O( n log n) time. 

One of the main applications of the translation problem is in computer graphics. 

To render a realistic picture of a scene, hidden surface removal has to be performed. 

One way to do this is to display the objects in the scene in a 'back to front' (with 

respect to the viewpoint) order. This way the objects in the front are painted 

over the objects in the back, thereby achieving the desired overlaying effect. A 
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moment's thought will make it clear that a valid displaying order for this so-called 

painter's algorithm corresponds to a translation order for the objects in the direction 

perpendicular to the viewing plane. However, it is difficult to compute translation 

orders in three dimensions efficiently. Only recently an algorithm has been proposed 

by de Berg et al. [7] that computes such an order in sub quadratic time. The running 

time of this algorithm is O(n4
/

3+e
), which is considerably worse than the time that 

can be achieved in the planar case. Fortunately, for an important class of three 

dimensional scenes, the so-called polyhedral terrains-polyhedral scenes in which the 

projections of the faces of the objects onto the xy-plane do not intersect-solutions 

to the two-dimensional translation problem can be used. 

The translation order for the set of polygonal faces of a scene corresponds to a 

parallel view of the scene. This is often unwanted. One of the advantages of our 

method is that it can easily be adapted to yield a valid displaying order for perspec

tive views within the same bounds. Thus we can preprocess a terrain consisting of 

m convex polygonal faces with a total number of n vertices in time O( n + m log n) 

into a data structure of size O(m), such that for any viewpoint a displaying order 

for the faces can be found in time O(m). Notice that this gives a better space bound 

than the O( n log n) space that is needed in the binary partition scheme of Paterson 

and Yao [19]. 

We achieve our results using new results on relative convex hulls and embeddings, 

which are of independent interest. 

The convex hull of a polygon P relative to a set S of polygons is the polygon 

that contains P and excludes S whose boundary has minimal length. This means 

that the polygon is made 'as convex as possible'; since convex polygons are easier 

to translate than non-convex polygons, this will help us in solving the translation 

problem. We show how to compute, in total time O(nlogn), for each polygon in a 

set S its convex hull relative to the rest of the polygons. 

An embedding of a set of non-overlapping polygons is set of non-overlapping 

polygons such that each polygon in the original set is contained in exactly one 

polygon of the embedding. For convex polygons it is known that there always exist 

embeddings with a total number of vertices that is linear in the number of polygons 

[27]. For non-convex polygons this is not always true. However, we show that there 

exists an embedding with few vertices that allows us to reduce the space complexity 

of the data structure for translation queries to linear in the number of polygons. 

This embedding can be computed in O( n log n) time. 

This paper is organized as follows. We start in Section 2 by presenting our 

new results on relative convex hulls. In Section 3 we show how to construct small 

embeddings of sets of non-overlapping polygons. These results are used in Section 

4 to obtain an efficient solution to the translation problem. In Section 5 we discuss 

the application to hidden surface removal and show how perspective views can be 

handled. We conclude with a brief summary of our results and by mentioning some 

open problems in Section 6 .. 
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2 Relative Convex Hulls 

In this section we present our results on relative convex hulls, a generalization of 

convex hulls, introduced by Toussaint [26]. Relative convex hulls are defined as 

follows. Define a polygonal circuit to be a closed polygonal path without (proper) 

self-crossings. 

Definition 1 Let P be a polygon and V a set of polygons. The convex hull of P 

relative to V, denoted C H{PIV), is the polygon whose boundary is the shortest poly

gonal circuit that includes P but excludes V, that is, with int(P) ~ int(CH(PIV)) 

and int{P') ~ ext{CH{PIV» for each P' E V. 

(Thus our polygons are a slight generalization of simple polygons, where we allow 

some edges and vertices to be used more than once.) Intuitively, if we release an 

elastic band that is wrapped around P, then it tries to take the shape of the convex 

hull of P but it can be stopped by the other polygons, and it takes the shape of 

the relative convex hull of P. An example is given in Figure 1, where the dashed 

Figure 1: A relative convex hull. 

line is the boundary of the convex hull of PI relative to {P2 ,Pa,P4 }. Note that the 

relative convex hull is not a simple polygon, since there is a vertex that is used twice. 

Relative convex hulls exhibit the following useful properties: 

Lemma 1 Let P be a polygon and V, W be sets of polygons. Then: 

(i) [fv is a convex vertex ofCH(PIV), then v is a convex vertex of P. 

(ii) [fv is a reflex vertex ofCH{PIV), then v is a convex vertex of P or a 

convex vertex of some polygon P' E V. 

(iii) [fV ~ W, then CH{P/V) 2 CH{P/W). 

Proof: (i): Let v be a convex vertex of CH{PIV) and let e, e' be the two edges of 

CH(PIV) incident on v. If v is a point of P then clearly v is a convex vertex of P. 
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If v is not a point of P then there is a small area around v that does not contain any 

point of P. More specifically, there are points x E e, x' E e' (x, x' i= v) such that 

the triangle determined by x, x' and v does not contain any point of P. But this 

contradicts v E CH(P\V), since replacing xv U vx' by xx' would yield a polygonal 

circuit still enclosing P (and excluding V) that is shorter. 

(ii): Follows in the same way as (i). Note that if v is a convex vertex of P, then 

this vertex is used twice by CH(P\V). 

(iii): Suppose V ~ W, but CH(P\V) ~ CH(P\W). Denote the boundaries of 

CH(P\V) and CH(P\W) by {3 and (3', respectively. If CH(P\V) ~ CH(P\W), 
then there must be some area A enclosed by portions , of {3 and " of (3' such that 

A ~ CH(P\W) and An CH(P\V) = 0. (The reader should convince himself that 

both, and " are connected portions of (3 and (3'.) But, cannot have a vertex 

that is convex with respect to A. Such a vertex would be reflex w.r.t. CH(P\V) 

and thus, by (ii), be a vertex of P or of a polygon P' E V. The first case cannot 

occur since it contradicts the fact that CH(P\V) contains P. The second case is 

impossible since V ~ W, A ~ CH(P\W) and CH(P\W) excludes W. Similarly,,' 

cannot have a vertex that is convex w.r.t. A. Such a vertex would be convex w.r.t. 

CH(P\W) and therefore be a convex vertex of P. This contradicts the fact that 

CH(P\V) contains P. Of course, it is impossible that neither, nor " contains a 

convex vertex and, hence, area A cannot exist. 0 

Let S be a set of non-overlapping polygons. For a polygon PES we define 

p. = CH(P\S - {P}) to be the convex hull of P relative to the rest of S, and 

we define S· = {p·\P E S} to be the set of these relative convex hulls. In the 

remainder of this section it is shown how S· can be computed efficiently. Toussaint 

[26] has shown how to do this for a set of two polygons. Using ideas similar to his, 

we show how this can be done for larger sets of polygons. 

The idea is to compute first an area around each polygon P, called the sleeve 

of P, that contains the boundary of its relative convex hull. Then we determine a 

point which we know is on the boundary of the relative convex hull and we compute 

a shortest circuit that starts at this point, goes 'around' P and returns to this point. 

This last part is done using an algorithm of Chazelle [2] or Lee and Preparata [15]. 

They have shown that if the dual tree of the triangulation of a simple polygon is a 

chain, then the shortest path between two points in such a polygon can be computed 

in time linear in the number of vertices of the polygon. Next, we give a more precise 

description of the algorithm that computes S·. See Figure 2 for an illustration. 

1. Let R be a large rectangle that contains S properly, i.e., S ~ int(R). Trian

gulate R - S, the area inside R between the polygons. 

2. For each PES, compute p. = CH(P\S - {P}) as follows. 

(i) Add as many triangles that are inside CH(P) to P as possible: while there 

is a triangle T that shares two edges with P, add T to P. 
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(ii) Compute sleeve(P) in the following way. Let Vo be the leftmost vertex of 

P and To the triangle sharing the edge VOVI with P, where VI is the next 

vertex of P in counterclockwise direction. Starting at Vo, walk along the 

boundary of P. Meanwhile concatenate the triangles that are incident 

to each vertex in the same order as they are encountered to each other, 

until To is reached again. Thus, if a triangle is incident to more than one 

vertex of P, it is added more than once to the sleeve. 

(iii) Compute a shortest path from Vo in To to (the copy of) Vo in 11, the last 

triangle added to sleeve(P), using the algorithm of [2] or [15]. This path 

is the boundary of P*. 

Figure 2: The (non-dotted) triangles around P form the sleeve of P. Triangle T 

is added in step 2(i) of the algorithm. Observe that triangles T' and Til occur two 

times in sleeve(P). 

Theorem 1 Let S be a set of non-overlapping polygons with n vertices in total. 

The set S* = {CH(PIS - {P}) : PES} of relative convex hulls can be computed 

in O( n log n) time and O( n) space. 

Proof: First we prove the correctness of the algorithm and then we show that it 

works within the stated bounds. 

It is evident that the circuit that is computed in step 2(iii) of the algorithm 

contains P and excludes S - {Pl. We argue that (the boundary of) P* is confined 

to sleeve(P). For suppose that it intersects some triangle T not in sleeve(P), then 

T has a vertex inside P* that is not a vertex of P. But then it would be a vertex 

of some other polygon P' and P* would not exclude P'. Therefore the boundary 
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of P* must lie in the union of all triangles that share at least one vertex with P. 

Furthermore, it is easily seen that the interior of the triangles that are added to P 
in step 2(i) cannot contain a part of the boundary of P*. Hence, these triangles will 

lie completely in P* and adding them to P will not change P*. Finally, since Vo lies 

on C H{P) it will certainly be a vertex of P*, and it follows that P* is indeed the 

shortest path from Vo in To to Vo in n inside sleeve{P). 

Because we add in Step (i) all the triangles that share two edges with P to P*, 

the dual of the triangulation of sleeve{P) is a chain. Thus we can use the algorithms 

of [2] or [15]. This is true even though sleeve{P) is not necessarily a simple polygon: 

some triangle could occur more than once in the sleeve. However, Toussaint [26] 

observed that this is no real problem: one can embed sleeve(P) onto a surface of 

several levels, so that if a triangle occurs for the second (or third) time it lies 'above' 

its previous occurrence. Algorithms that work for simple polygons also work in this 

case. 

To prove the time bound, we note that step 1 takes O{ n log n) time, see for 

example [20]. To perform step 2(i) efficiently, we first make for each polygon P a 

list of the triangles that share two edges with P. This can easily be done in linear 

time in total. Then we add these triangles to P and examine the triangles adjacent 

to them to see if they have to be added too, etcetera. This way step 2(i) takes only 

O(n) time for all polygons in total. Steps 2(ii) and 2(iii) take EPES O(lsleeve(P)1) 

time. To estimate EpEs Isleeve(P)I, we first note that any of the O(n) triangles 

is added to a sleeve if a vertex that it shares with some polygon P is encountered 

during the traversal of the boundary of P. Hence, any triangle can occur at most 

three times in a sleeve (that is, once in three sleeves, three times in one sleeve, 

etcetera) and the total complexity of all sleeves is O(n). The time bound follows, 

as well as the space bound. 0 

Remark: Notice that the time bound in the lemma above is determined by the 

time needed·to compute the triangulation of a polygon (R) with holes (the polygons 

in S). Therefore, if the number of polygons in S is constant, the algorithm can be 

implemented to work in O(n) time [1]. 

Any order on S naturally corresponds to a unique order on S* (and vice versa) 

and this correspondence is also preserved when restricted to translation orders, as 

the following lemma shows: 

Lemma 2 An order on S is a translation order (in direction d) for S if and only 

if the corresponding order on S* is a translation order (in direction d) for S*. 

Proof: Toussaint has proved in [26] that two polygons Pi and P; collide if and 

only if CH(PiIP;) and CH(P;IPi) collide. Since, by definition of relative convex 

hulls and by Lemma 1 (iii), Pi ~ Pt ~ CH(PiIP;) and P; ~ Pi ~ CH(P;IPi), this 

implies that Pi and P; collide if and only if Pt and Pi collide. 0 

7 



3 Embedding Polygons 

Let S = {PI, . .. , Pm} be a set of non-overlapping polygons in the plane. An embed

ding of S is a set S = {fit, ... , Pm} of non-overlapping polygons such that Pi ~ Pi, 
for 1 ~ i ~ m. In this section we will show that any set S can be embedded into 

a set S that has few vertices and, moreover, that can be translated if and only if S 

can be translated. This embedding will help us to devise a space-efficient solution 

to the translation problem. 

3.1 Embedding Convex Polygons 

Let us start by considering a set S = {PI, ... , Pm} of disjoint (thus, they are not 

allowed to touch) convex polygons, with n vertices in total. It is known that S can 

be embedded into a set S with only O( m) vertices in total. We sketch an algorithm 

due to Wenger [27] that computes such an embedding. 

Augment S with three dummy triangles Pm+b Pm+2 and Pm+3 such that the 

convex hull of S consists of one vertex from each of Pm+b Pm+2 and Pm+3 . Consider 

a triangulation of S. A triangulation of S is a planar subdivision consisting of the 

set S with additional line segments, called triangulation segments, between vertices 

of distinct polygons in S. These edges are such that each face which is not a polygon 

is bounded by exactly three triangulation segments and portions of the boundary of 

at most three polygons, as in Figure 3. Let G be the planar graph whose nodes are 

Figure 3: A triangulation of a set of polygons and the embedding for one of them. 

The black triangles are the dummy triangles. 

the m + 3 polygons in S and whose edges are the triangulation segments. Since G 
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is planar the total number of edges in Gis O(m). (This is true even though there 

can be multiple edges between two nodes, because such edges are 'topologically' 

different.) For each polygon Pi E S, let N(Pi) be a list of all the neighbors of Pi 

in G. Let Ii,; be a line separating Pi from P; and let L1(Pi) = {Ii,; : P; E N(Pi)}. 
Furthermore, let Ie be the line containing edge e of G and let L2(Pi) = {Ie: e 

is a triangulation edge connecting two neighbors of Pi, e is on some face with Pi 

and Ie does not intersect Pi}. For each 1 < i :::; m, let Pi be the intersection of 

the half-planes containing Pi that are bounded by lines in L 1(Pi) and L 2(Pi). Now 

S = {Pt, ... , Pm}. See Figure 3. 

Lemma 3 An embedding S of S with O(m) vertices can be computed in O(n + 
m log n) time. 

Proof: The fact that S is an embedding with O( m) vertices is not hard to prove. 

We refer to [27] for a precise proof. It remains to show that S can be computed in 

O(n + mlogn) time. 

First we compute a triangulation of S. To this end we triangulate (in the usual 

sense) CH(S) - S, the region in between the polygons in O(n + mlogn) time [1]. 
Note that each (bounded) face which is not a polygon contains either 2 or 3 tri

angulation segments. To obtain a triangulation of S, we just remove triangulation 

segments that are not on the convex hull, until each face is bounded by three trian

gulation segments. Thus, we remove a segment if it is part of a face having only two 

triangulation segments. Note that the resulting face still has either 2 or 3 triangu

lation segments. Hence, when no more edges can be removed, we have obtained a 

triangulation of S. Since there are O( n) segments in the triangulation of C H( S) - S, 

it is straightforward to compute the triangulation of S in O( n) time. 

The next step is to compute the separating lines in L 1(Pi), for each Pi. One sep

arating line Ii,; can be computed in time O(1og IPi I + log IP; I) = O(log n) by the algo

rithm of Edelsbrunner [9] or Chin and Wang [6]. The total time to compute all O(m) 

separating lines is thus O(m log n). The intersection of the half-planes bounded by 

lines in L 1(Pi) U L2(Pi) can be computed in O((IL1 (Pi)1 + IL2(Pi)1) log(IL1(Pi)1 + 
IL2(P;)I)) time [20], which adds up to O(mlog m) time for all Pi's in total. 0 

Note that S consists of convex polygons and, hence, is still translatable into any 

direction. Moreover, any translation order for S is also valid for S (but not vice 

versa), since the polygons of S are contained in those of S. 

3.2 Embedding Arbitrary Polygons 

Let S = {Ph ... , Pm} be a set of non-overlapping simple polygons with n vertices 

in total. Our goal is to find an embedding of S with few vertices that is still 

translatable. In the convex case it is always possible to find an embedding with 

O( m) vertices in total. In general this is not always possible. See Figure 4. However, 

we will be able to compute an embedding that is good enough for our purposes. 
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Figure 4: Two polygons for which any embedding has n( n) vertices. 

We first compute the set S* of relative convex hulls, as in Section 2. This way we 

make the polygons 'as convex as possible', which will help us to apply the same ideas 

that were used in the convex case. Recall from Section 2 that a polygon P* E S* 

may not be simple. However, if this is the case then the set of polygons admits no 

translation order [26] so we will assume that this case does not occur. Two polygons 

in S* may share a number of edges as, for example, the relative convex hulls of the 

two polygons in Figure 4. Let D denote the set of edges that are shared by pairs of 

polygons in S*. We will show how to construct an embedding S = {A, ... , Pm} for 

S*, and thus for S, such that L:~lIPil-IDI = O(m). 

As in the convex case, let us augment S* with three dummy triangles such 

that the convex hull of S* consists of one vertex of each of these triangles. Next, 

we triangulate the region CH(S*) - S*. We want to remove certain edges from 

the triangulation of CH(S) - S to obtain a triangulation of S*. Recall that in a 

triangulation of a set of polygons it is required that each face is bounded by three 

triangulation edges. To meet this requirement when the polygons are allowed to 

touch, we have to add degenerate triangulation segments between touching polygons. 

More specifically, for each maximal chain of boundary edges that is shared by two 

polygons we add the first and last vertex of this chain as degenerate triangulation 

segments. Now the same procedure as in the convex case can be used to obtain 

a triangulation of S*: remove non-degenerate triangulation segments that are not 

on the convex hull until each face is bounded by exactly three triangulation edges. 

Note that there may be triangulation edges between vertices of the same polygon. 

The boundary edges of a polygon in S* that are not shared with another polygon 

in S* form a number of convex chains. Let u be such a chain. Note that 0" does not 

share vertices with other polygons, except possibly the first and last vertex. We will 

show how to construct the chain 50 that replaces u in the embedding. 

Chain u is on the boundary of a number of faces of the triangulation. Let 

1t, ... ,la be an ordered enumeration of these faces, which together form sleeve(u), 

and let Ui, 1 ~ i ~ a, be the portion of u on the boundary of Ii. Note that it is 

possible that O"i consists of just one vertex. Let ti, 1 ~ i ~ a-I, be the triangulation 
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segment separating Ii from Ii+l, and let to and ta be the triangulation segments 

incident to the first and last vertex of u. Finally, for a triangulation segment ti 

we define Ti = Ui U Ui+1 and we define TI to be the union of the two other chains 

on the boundaries of Ii and fi+l that are incident to ti. See Figure 5(a) for an 

illustration of these definitions. The two fat chains in this figure are Ti and TI. Note 

that to = ta in the example of Figure 5. We will construct separators for each ti, 

(b) 

._-_ ............................ . 

Figure 5: The sleeve of a chain and the two separators for triangulation segments tj 

and tao 

which are segments that lie inside sleeve(u) and separate Tj from TI. The chain u 
is constructed from these separators, and some of the triangulation edges between 

neighbors of u. 

Consider a non-degenerate triangulation segment tj. Note that, although Tj and 

TI are convex chains, it is not always possible to separate them with a line. Therefore 

we do the following. Let Ij be a line tangent to Tj at the point where tj touches Tj. 

Let 1; be the subsegment of Ii of maximal length inside sleeve( u) that touches Tj. If 1; 
does not cross TI then 1; separates Tj from TI, i.e., 1; divides sleeve( u) into two pieces 

with Tj on the boundary of one piece and TI on the boundary of the other piece. If 

1; crosses TI, then we rotate Ii such that it remains tangent to Ti until it becomes 

tangent to TI. When this happens, 1; must separate Ti from Tf. For degenerate 

triangulation segments tj (note that only to and ta are possibly degenerate), we 

construct Ii as follows. Suppose that one of the two polygons involved has a reflex 

vertex that is incident to tj; if none of the polygons has a reflex vertex, then we 

can use the same construction as in the non-degenerate case. Now Ii is the maximal 

extension inside sleeve(u) of the edge of this polygon that is incident to tj and is on 

the boundary of sleeve(u). See Figure 5(b). This special construction ensures that 

we do not introduce a new reflex vertex (one with a greater angle than the old one), 

which might prevent the separability of the set. 

We are now ready to construct u. The construction is done with the following 

incremental algorithm. At the start of the algorithm u consists of 10 • The remaining 

separators It, ... , la are processed in order and meanwhile we update iT. Suppose 
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1o, ... , Ii already have been added. To process 4, remove segments from the 'front' 

of the current chain if as long as they are on the wrong side of Ii+! and remove 

the part of the segment that is intersected by Ii+! that is on the wrong side. (The 

wrong side of li+l is the side where Ti+! does not lie.) Add Ii+! to Uj if li+l intersects 

a triangulation segment between neighbors of u (this intersection is necessarily an 

endpoint of li+l) then add this triangulation segment as well. 

Lemma 4 U is one convex chain with O(a) vertices that does not cross u. U can be 

constructed in O(lsleeve(u)llog Isleeve(u)1) time. 

Proof: The O( a) bound on the size of U and the fact that U does not cross u follow 

immediately from the construction. (Recall that a is the number of triangulation 

segments incident to u.) To see that U consists of convex chains we note that -

assuming that the faces Ii are numbered in clockwise order- we always take a 

clockwise turn at the intersection between two separators 4 and h+! or between a 

separator and a triangulation segment. So the first part of the lemma follows if we 

can prove that u is one chain, which follows if the separator 4 that is processed 

always intersects the currect chain. To this end, consider Ii-I. We will show that 

4 either intersects Ii-I, or that 4 and li-l intersect the same triangulation segment 

between two neighbors of u. It should be clear that it then follows that the current 

chain u must be intersected by 4. So let us assume that 4 does not intersect Ii-I. 

Since li-l separates Ti-l from TI_I' and 4 separates Ti from TI, this is only possible 

if they both intersect the triangulation segment opposite Ui. Thus u is indeed one 

convex chain. 

To prove the construction time we note that we spend 0(1 + k) time when 

we process a new separator, where k is the number of separators removed from 

the chain. This adds up to O( a) time in total. It remains to show that the 

separators can be computed efficiently. To compute a separator we may have to 

find a line tangent to two convex chains Ti and TI, which can be done in time 

O(log ITil + log ITII). Next we have to compute 4 from Ii. To this end, we preprocess 

sleeve(u) for efficient ray shooting as in [5]. Thus, after O(lsleeve(u)llog Isleeve(u)l) 

preprocessing we can compute 4 from Ii in O(log Isleeve(u)1) time, which leads to 

O(lsleeve(u)llog Isleeve(u)1) time in total. 0 

To construct the embedding S, we replace every chain on the boundary of each 

relative convex hull, as described above. For each triangulation segment ti, we only 

construct one separator, which is used in the construction of the replacements of 

both chains incident to ti. In other words, if 4 is the separator for Ti E bd(Pt) and 

TI E bd( PJ) that is created in the construction of Pi, then 4 is also used in the 

construction of P;. 

Theorem 2 Let S be a set of m simple polygons with n vertices in total, and D 

be the set of edges shared by the relative convex hulls of the polygons in S. An 

embedding S = {A, ... , Pm} of S with El<i<m IPil-IDI = O(m) can be computed 
in O(n log n) time. - -
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Proof: Consider the construction described above. From Theorem 1 and Lemma 

4, the construction time and bound on the size of S easily follow. It remains to 

prove that S is indeed an embedding. 

It is trivial to see that each polygon Pi E S is contained in Pi. To complete the 

proof we must show that the polygons in S do not intersect each other. Consider 

a polygon Pi. Since boundary chains are only replaced by chains inside the corre

sponding sleeves, Pi can only intersect another polygon Pj somewhere inside a face 

that belongs to the sleeves of both Pi and Pj. But this cannot happen because Pi is 

separated Jrom Pi by the separator that is constructed for the triangulation segment 

between Pi and Pj. 0 

We have seen that we can embed a set of arbitrary polygons into another set of 

polygons with few vertices. But we also want to be able to translate the new set. 

To prove that this is possible if it is possible for the original set of polygons, we need 

the following lemma, proved by Toussaint in [25]. 

Lemma 5 (Toussaint [25]) A translation order for a set of polygons exists if and 

only if there exists a translation order for every pair of polygons in the set. 

Lemma 6 S can be translated into direction d if and only if S can be translated 

into direction d, and any translation order for S is also valid for S. 

Proof: Since S ~ S, the only non-trivial part of the lemma is that S can be 

translated if S can be translated. By Lemma 2, it suffices to show that S can 

be translated if S· can be translated. Suppose for a contradiction that S· can be 

translated into direction d but S cannot be translated. By Lemma 5, there are two 

polygons Pi and Pj that cannot be ordered. Assume w.l.o.g. that d is vertically 

upward. Let I and r be the two vertical lines tangent to Pj and denote the area 

between I and r and above Pj by Above(Pj) and the area below Pj by Below(Pj) 
(see Figure 6). If there is no order for Pi and Pj then Above(Pj) n Pi # 0 and 

Below(Pj) n Pi # 0. Let a be a point in the first intersection and b a point in 

the second intersection and let la and h denote the vertical lines through a and b. 

At least one of la and lb' say la, must intersect Pi above Pj as well as below Pj. 
Consider x, the first intersection of la with Pi above Pj, and x', the first intersection 

point below Pj. The part of the boundary of Pi connecting x and x' must contain 

a reflex vertex v such that both edges incident to v lie on one side of the vertical 

line through v. But any reflex vertex of Pi is a reflex vertex of Pt as well, which by 

Lemma l(ii) is also a vertex of some other polygon P;. This implies that Pt and 

P; cannot be ordered, contradicting the fact that S· can be translated. 0 

4 Translating Polygons 

A translation order for a set S of polygons (in direction d) is defined as an order 

such that no collisions occur if the polygons are moved one at a time (in direction d) 
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Figure 6: Illustration of the proof of Lemma 6. 

to infinity according to this order. The computation of translation orders involves 

computing some sort of dominance relation between the polygons. A polygon P 

dominates another polygon pi if pi collides with P when it is moved before P 

is moved. Thus a translation order exists iff the dominance relation between the 

polygons is free of cycles. It has been shown by Guibas and Yao [13] that it is not 

necessary to compute all (possibly n( m 2
)) dominances explicitly, but that it suffices 

to compute the immediate dominances. (P immediately dominates pi if, when pi 

is moved, some portion of pi intersects some portion of P before it intersects some 

other polygon.) 

This immediate dominance relation changes radically, however, when the direc

tion of translation d changes. Hence, if we want to do preprocessing to speed up 

the computation of a translational order for any given d, we have to take a different 

approach. The basic idea is that a triangulation of the area in between the poly

gons gives us all the information we need to compute a translation order for any 

given direction. Furthermore, instead of translating the set of polygons itself, we 
compute an embedding and translate the polygons in the embedding. This reduces 

the amount of storage and speeds up the queries. 

4.1 Translating Convex Polygons 

Let S = {PI, . .. , Pm} be a set of m convex polygons with n vertices in total. The 

first thing we do is to compute the embedding S, according to Lemma 3, and to 

replace S by S. Observe that S consists of convex polygons, so S can still be 

translated into every direction [13]. Moreover, since the polygons of S are contained 

in those of S, any translation order for S is also a translation order for S. 
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So now consider the translation of S. The convex hull of S is denoted by CH(S). 

Furthermore let T = {TI , ..• , Tk} be a triangulation of CH(S) - S, the area in 

between the polygons of S. The idea is to translate the set SUT. Observe that this 

new set still contains only convex polygons and, hence, it can still be translated. 

Surprisingly, translating S U T is an easier task than translating S, as follows from 

the lemma given below. First we define d-neighbors, a concept that is crucial in our 

method. 

Definition 2 Let Q and Q' be two polygons. Q is a d-neighbor of Q' iff 

(i) Q and Q' share an edge e 

(ii) there is a ray in direction d that intersects int( Q') just before it intersects e 

and int( Q) just after it intersects e. 

Notice that if two polygons Q and Q' share an edge e, then either Q is ad-neighbor 

of Q', or Q' is a d-neighbor of Q, or e is parallel to d. See Figure 7 for an illustration 

of this definition. 

d 

Figure 7: Q is a d-neighbor of Q'. 

Lemma 7 A polygon Q E S U T (possibly a triangle) can be translated to infinity 

in direction d without collisions if and only if all its d-neighbors already have been 

translated without collisions. 

Proof: The "only if'-part is trivial. To prove the "if"-part, suppose that all 

d-neighbors of Q have been translated without collisions, but that Q still collides 

with some polygon Q'. Consider the moment that Q and Q' first intersect during 

the translation. This intersection involves an edge e of Q. But then the d-neighbor 

of Q that shares e (which must exist since the area in between Q and Q' has been 

triangulated) would also collide with Q, which contradicts the assumptions. 0 

Lemma 7 immediately leads to the following simple scheme. The preprocessing 

just consists of computing a triangulation T of CH(S) - S and the dual graph 

G(S U T) of S U T. (The nodes in this graph correspond to the polygons in S U T 

and there is an arc between two nodes iff the corresponding polygons share an edge.) 

Now, given a query direction d, we proceed as follows. First we turn G(SUT) into 

a directed graph Gd • Let a be an arc in G(S U T) connecting nodes corresponding 
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to polygons Q and Q'. If Q is a d-neighbor of Q' then the arc in Gd corresponding 

to a, denoted ad, is directed from Q to Q'. If Q' is a d-neighbor of Q then ad is 

directed from Q' to Q. Otherwise the edge shared by Q and Q' is parallel to d and 

a has no corresponding arc in Gd • Thus a node corresponding to some polygon has 

incoming arcs from all its d-neighbors and outgoing arcs to all polygons for which 

it is ad-neighbor. 

From Lemma 7 and the definition of Gd it easily follows that a topological order 

of the nodes in G d corresponds to a translation order in direction d for the polygons 

in 5UT and, consequently, of SuT. (Note that the fact that 5uT can be translated 

guarantees that Gd is acyclic.) Clearly, if the triangles of T are omitted from of this 

order, we get the desired translation order for S. This leads to: 

Theorem 3 A set S of convex polygons can be preprocessed in O( n + m log n) time 

into a data structure of size O(m) such that, given a direction d, a translation order 

for S in direction d can be computed in time O(m). 

Proof: The embedding 5 of S can be computed in O( n + m log n) time, according 

to Lemma 3. The convex hull of 5 as well as the triangulation (and its dual graph) 

can be computed in time O(mlogm) [20,1]. Note that the total number of edges 

in 5 U T (and therefore the number of nodes and arcs in G( 5 U T) as well) is O( m). 
Since we can decide in constant time for an arc a in G( 5 U T) what the direction 

of its corresponding arc ad in Gd will be, the construction of Gd takes only linear 

time. Topologically sorting a directed (acyclic) graph can also be done in linear time 

(see, e.g., Knuth [14]). 0 

4.2 Translating Arbitrary Polygons 

We will now show how to compute translation orders for a set S of arbitrary poly

gons. Again we replace S by its embedding 5, according to Theorem 2. Note that 

the idea of triangulating the area in between the polygons will not work with an 

arbitrary set of polygons. The problem is that if there are non-convex polygons, the 

triangles of the triangulation might prevent the existence of a translation order, i.e., 

it is possible that a translation order for S exists, but not for S U T. Consider for 

example the case where S consists of one U-shaped polygon P. The triangles of the 

triangulation of CH(P) - P will prevent a translation order (which trivially exists 

for Palone) in a horizontal direction. See Figure 8. Fortunately, this problem does 

not arise for the set 5. Let T be a triangulation of CH(5) - 5, then we have: 

Lemma 8 There exists a translation order in direction d for 5 if and only if there 

exists a translation order in direction d for S U T. 

Proof: The ~if' -part is trivial. The proof of the "only if' -part is similar to the 

proof of Lemma 6. 0 
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Figure 8: {P} can be translated, but {P, Tl, T2 } cannot be translated. 

We thus arrive at the following scheme for translating a set S of arbitrary poly

gons. As a preprocessing step, 5, and a triangulation T of CH(5) - 5 together 

with its dual graph G( 5 U T)) are computed, in O( n log n) time. Furthermore, we 

compute for each arc a in G some information that will help us to direct a for a 

query direction. Recall that a corresponds to two polygons that share an edge or a 

chain of edges. One of the polygons is a d-neighbor of the other (i.e, it will collide 

with the other along the chain when moved into direction d) for directions d that lie 

in a certain open interval la, and the other polygon is a d-neighbor of the first one 

in the opposite directions. The two polygons will not collide in the directions corre

sponding to the endpoints of the intervals, and in all other directions, the polygons 

are interlocked. We store this interval la, which can be computed in linear time 

in the number of edges of the common chain, with the arc a. Then, given a query 

direction d, we can construct Gd using the intervals la in O( m) time. If we find that 

two polygons are interlocked, then no translation order exists. Otherwise, we try to 

sort Gd topologically. A topological order corresponds to a translation order for 5 
(omitting the triangles of the triangulation) which, by Lemma 6, corresponds to a 

translation order for 5. (Note that Lemma 7 is true for non-convex polygons too.) 

If Gd cannot be sorted because it contains a cycle, then 5 U T cannot be translated. 

By Lemma's 6 and 8 we can then conclude that no translation order for Sexists 

either. 

Lemma 9 A set S of m arbitrary polygons can be preprocessed in O( n log n) time 

into a data structure of size O( m) such that, given a direction d, a translation order 

for S in direction d can be computed in time O( m), if it exists. 

4.3 Computing All Directions of Separability 

In this section it is shown that all directions of separability (i.e., all directions for 

which a translation order exists) can be computed in O( n log n) time. If this is done 

as a preprocessing step, then whether or not a translation order exists in a given 

direction can be decided in O(log n) time. 
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Toussaint has shown in [26] that there exists a translation order for two polygons 

in direction d if and only if their relative convex hulls are monotone in direction 

d + ~?r. He uses this result to compute all directions of separability of two polygons. 

Lemma 5 implies that the fact stated above for two polygons also holds for larger 

sets of polygons: 

Lemma 10 There exists a translation order in direction d for a set of polygons if 

and only if the relative convex hulls of the polygons are monotone in direction d+!?r. 

The proof is not difficult (although some care has to be taken because the relative 

convex hulls are different if we consider pairs of polygons in isolation) and therefore 

omitted. Monotonicity of a polygon can be characterized as follows: 

Observation 1 A polygon is monotone in direction d + ~?r if and only if it has no 

reflex vertex v such that the two edges incident to v lie on the same side of the line 

through v with slope d. 

For a reflex vertex v of some P* E S*, let Iv C [0 : 2?r] be the interval such that 

the two edges incident to v lie on the same side of a line through v with slope d if 

and only if dE Iv (in fact, Iv can consist of two disjoint intervals, one starting at 0, 

the other ending at 2?r). Given the two edges incident to v, Iv is easily computed 

in constant time. Thus, in O(n) time, we can compute I(S*) = {lvlv is a reflex 

vertex of a P* E S*}. By Lemma 10 and Observation 1, a translation order for Sin 

direction d exists iff d fI. U I(S*). In other words, the set D of directions for which 

a translation order exists is the set [0 : 2?r] - U I(S*). This leads to: 

Theorem 4 All directions for which a translation order exists for a given set S of 

polygons with a total number of n vertices can be determined in time O( n log n). 

Proof: S* can be computed in time O(nlogn) (see Section 2) and, as we have 

seen, I(S*) in linear time. By sorting the endpoints of the intervals in I(S*) and 

performing a line sweep keeping track of the number of intervals currently intersected 

by the sweep point, the set D = [0 : 2?r] - U(S*) can be found in time O(nlogn). 

o 

Observe that D consists of O( n) disjoint intervals. Hence, D can be stored in a 

search tree which can be built in O( n log n) time and uses O( n) space. With this 

tree it can be decided, for a given direction d, in time O(log n) if d E D and thus if 

there exists a translation order in direction d. 

We now state our main theorem, which summarizes the results of this section. 

Theorem 5 A set S of m polygons, with a total number of n vertices, can be pre

processed in O( n log n) time into a data structure of size O( n) such that, given any 

direction d, it can be decided in time O(log n) if there exists a translation order for 

S in direction d. If an order exists it can be computed in O( m) time with a structure 

that uses O(m) space. 
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5 Application to Hidden Surface Removal 

One of the most important applications of translation orders is in the performance 

of hidden surface removal in computer graphics. When an object of a scene is dis

played onto a screen, it is painted over the objects that already have been displayed.. 

Therefore, the objects must be displayed in a 'back to front' order. This order cor

responds to a translation order perpendicular to the projection plane. Translation 

orders for polygons in the plane can be used to obtain displaying orders for so-called 

(polyhedral) terrains. A terrain is a set of polygonal faces in 3-space that do not 

intersect when projected onto the xy-planel
. Observe that this is a very general 

definition of a terrain: we do not require the scene to be 'connected' (as, e.g., is 

necessary for the hidden surface removal algorithm of Reif and Sen [22]). 

We next show how our translation algorithm can be used to generate display

ing orders for perspective views for terrains consisting of convex faces. Let F = 

{fb ... , fm} be a set of convex polygons in 3-space, the faces of the terrain, and let 

F' = {f~, . .. ,f:n} be the (non-intersecting) set of projections of these faces onto the 

xy-plane. Let h be the viewing plane and let X be the viewpoint. Thus we want 

to project the faces of F onto h as seen by an observer at position X. Again, we 

permit ourselves a preprocessing of O( n + m log n) to compute an embedding F of 

F', a triangulation T of C H(F) - F and its dual graph G(F U T). After this, given 

a viewpoint X and a viewing plane h, a correct displaying order can be calculated 

in linear time, as is shown in the remainder of this section. 

Let us assume that X, the projection of X onto the xy-plane, does not lie in 

(the interior of) the convex hull of F. (This can easily be accomplished by splitting 

F U T into two sets with a line through X.) 

To find a valid displaying order for the faces of F that corresponds to a perspec

tive view all that we have to change in the algorithms of the previous section is the 

concept of neighborhood. 

Definition 3 Let Q and Q' be two polygons and X be a point in the plane. Q is an 

X -neighbor of Q' iff 

(i) Q and Q' share an edge e 

(ii) there is a ray starting at X and intersecting e that intersects int( Q') 
just before intersecting e and int( Q) just after intersecting e. 

The analog of Lemma 7 is as follows. 

Lemma 11 A face f E F can be safely displayed if all the faces corresponding to 

X-neighbors ofl in F U T already have been displayed safely. 

Proof: Denote the (perspective) projection of a face f onto h by proj(f) and let 

fi, 1; be two faces such that proj(fi) nproj(Jj) =F 0. Thus, there is a ray r starting 

1 In this section all projections onto the zy-plane are orthogonal. 
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at X that intersects both Ii and 1;. We argue that Ii and I; are displayed in the 

correct order, i.e., the face that is intersected closest to X is displayed last. To see 

this, consider the projections Ii, 1;, X and r on the xy-plane. Clearly, r intersects 

Ii and I; in the same order as r intersects Ii and Ij. Suppose r intersects Ii first, 

then either /; is an X-neighbor of Ji' in which case /; is (correctly) displayed first, 

or there is some X -neighbor of Ji that is intersected by r. But then this neighbor 

must have been displayed (safely!) before Ji which implies that also /; must have 

been displayed before Ji. 0 

Of course, there are no real faces corresponding to the triangles that were added 

when CH(F) - F was triangulated, and displaying a face corresponding to such a 

triangle is just a dummy statement. Also (the parts of) the faces that lie on the 

same side of h as X should not be displayed. Note that, since all faces are convex, 

we always find an order. We conclude: 

Theorem 6 A terrain F consisting oj m convex polygonal faces with a total number 

oj n vertices can be preprocessed in O( n + m log n) time into a data structure 01 size 

O(m) such that, given a viewpoint X and a projection plane h, a valid displaying 

order for the laces of F can be determined in O( m) time. 

Remark: If the terrain contains non-convex faces, we can always cut these faces 

into convex parts without changing the complexity of the scene. The restriction to 

convex faces is necessary because if there are non-convex faces it is possible that 

there is a valid displaying order for the faces of the terrain, but no translation order 

for the corresponding 2-dimensional problem. Consider, e.g., the case where the 

terrain is completely contained in the xy-plane and the faces are such that they 

cannot be translated. In spite of this, a valid displaying order exists for viewpoints 

above the terrain. (In fact, any order is valid.) 

6 Concluding Remarks 

In this paper, we have presented an efficient solution to the translation problem for 

a set of m polygons in the plane. It was shown that there exists a structure of size 

O(m) such that a translation order for a query direction can be determined in O(m), 

if it exists. It is also possible to test in O(log n) time whether an order exists for 

the query direction with a structure that uses O( n) space. One of the advantages 

of our method is that it can easily be adapted to yield a valid displaying order for 

perspective views of a terrain (consisting of convex polygonal faces) to be used in 

hidden surface removal. It should be stressed that the preprocessing of the terrain 

as well as the algorithm that yields the displaying order are conceptually very simple 

and good candidates for efficient implementations. 

One of the open problems concerns translation queries in three dimensions. The 

recent algorithm of de Berg et al. [7] computes a depth order, but it does not give a 
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structure for answering queries. See also [4, 11, 17] for results on three-dimensional 

problems that are related to our work. 

A second interesting open problem (in both two and three dimensions) is the 

following. Suppose that a translation order in a given direction does not exist for 

some set S of polygons. Then we would like to cut the polygons in S into smaller 

pieces to achieve translatability. It is unknown how to compute a minimum (or 

small) number of cuts. 
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