
QUARTERLY OF APPLIED MATHEMATICS

VOLUME LXXII, NUMBER 4

DECEMBER 2014, PAGES 613–623

S 0033-569X(2014)01342-6

Article electronically published on June 11, 2014

TRANSLATIONAL ADDITION THEOREMS

FOR SPHERICAL LAPLACIAN FUNCTIONS

AND THEIR APPLICATION

TO BOUNDARY-VALUE PROBLEMS

By

IOAN R. CIRIC (Department of Electrical and Computer Engineering, The University of Manitoba,
Canada)

and

KUMARA S. C. M. KOTUWAGE (Department of Electrical and Computer Engineering, The
University of Manitoba, Canada)

Abstract. General translational addition theorems are presented for spherical scalar

Laplacian functions, and their application to boundary value problems is illustrated.

By these theorems, the eigenfunction solutions in a system of spherical coordinates are

expressed in terms of the spherical coordinates in another system, translated with respect

to the first one. This allows for a rigorous analytic solution to be obtained for Laplacian

and Poissonian fields in the presence of arbitrary configurations of spheres by imposing

the exact boundary conditions. Complete formulations and solutions are presented for

systems of electrically charged spheres and for arrays of perfect conductor spheres in

external electric and magnetic fields. Illustrative computation examples are given for

three-sphere systems. Numerical results of specified accuracy are generated, which are

useful for validating various approximate numerical methods.

1. Introduction. Addition theorems for spherical functions are needed in order

to obtain scalar or vector field problem solutions of controllable accuracy relative to

multiple-sphere systems. To impose the exact boundary conditions at the surface of each

sphere, the fields due to the presence of the other spheres, which can easily be expressed

in terms of coordinates attached to those spheres, have to be ‘translated’ to the system

of coordinates attached to the sphere at whose surface the boundary condition is to be

imposed. Such theorems for spherical scalar wave functions were derived in Friedman

and Russek, 1954, and for spherical vector wave functions in Stein, 1961, and Cruzan,

1962. The latter were used to analyze the electromagnetic wave scattering by systems of

Received August 1, 2012.
2010 Mathematics Subject Classification. Primary 35A99, 35A09, 65N99.
E-mail address: Ioan.Ciric@ad.umanitoba.ca
E-mail address: mksckumara@gmail.com

c©2014 Brown University

613

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf

http://www.ams.org/qam/
http://www.ams.org/jourcgi/jour-getitem?pii=S0033-569X-2014-01342-6


614 I. R. CIRIC AND K. S. C. M. KOTUWAGE

conducting and dielectric spheres (Hamid, Ciric and Hamid (1990)). The general expres-

sions of the addition theorems for the special case of spherical Laplacian functions are not

available in the literature. In this paper, we obtain the general form of the translational

addition theorems for scalar spherical Laplacian functions and illustrate their application

to the solution of electric and magnetic field problems.

2. Translational addition theorems for spherical scalar Laplacian functions.

The addition theorems for scalar wave functions given in Cruzan, 1962, for the translation

from the system of spherical coordinates r, θ, φ to the system r′, θ′, φ′ shown in Figure 1

is, for r′ ≤ r0,

zn(kr)P
m
n (cos θ) exp(imφ) =

∞∑
ν=o

ν∑
μ=−ν

∑
p

(−1)
μ
iν−n+p(2ν + 1)anmνμp

· jν(kr′)zp(kr0)Pμ
ν (cos θ

′)Pm−μ
p (cos θ0) exp(iμφ

′) exp [i(m− μ)φ0] ,

(2.1)

where i ≡
√
−1, k is the wave number, n and m are integers, n ≥ 0, |m| ≤ n, zn stands

for any of the spherical Bessel function jn, Neumann function nn, or Hankel functions,

Pm
n is the associated Legendre function of the first kind of degree n and order m (Smythe

(1989)), and anmvμp are expansion coefficients defined in the Appendix. The sum over p is

over all of the values

p = n+ ν, n+ ν − 2, n+ ν − 4, ..., |n− ν| , (2.2)

for which the coefficient anmνμp is different from zero. For r′ ≥ r0, the addition theorem is

obtained from (2.1) by interchanging r′, θ′, φ′ and r0, θ0, φ0 , respectively.

The general form of the solution of the scalar Laplace equation in spherical coordinates

r, θ, φ, for regions with 0 ≤ φ ≤ 2π and which contain sections of the negative z-axis, can

be constructed in terms of two elementary solutions, i.e.,

f (1)
nm(r, θ, φ) = rnPm

n (cos θ) exp(imφ), f (2)
nm(r, θ, φ) = r−(n+1)Pm

n (cos θ) exp(imφ). (2.3)
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Fig. 1. Translation of the coordinate system
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ADDITION THEOREMS FOR SPHERICAL LAPLACIAN FUNCTIONS 615

To express f
(1)
nm and f

(2)
nm in the coordinates r′, θ′, φ′ in a translated system of coordi-

nates, we notice that the elementary solutions in (2.3) are simply related to

zn(kr)P
m
n (cos θ) exp(imφ). Indeed, taking zn to be jn and using the limiting value as

k → 0 (Abramovitz and Steigun (1965)),

(kr)−njn(kr) → 1/(2n+ 1)!!, (2.4)

where ( )!! denotes the double factorial, (2.1) yields

rnPm
n (cos θ) exp(imφ) = lim

k→0
(2n+ 1)!!

∞∑
ν=o

ν∑
μ=−ν

∑
p

(−1)
μ
iν−n+panmνμp

· r′
ν
rp0k

ν−n+p

(2ν − 1)!!(2p+ 1)!!
Pμ
ν (cos θ

′)Pm−μ
p (cos θ0) exp(iμφ

′) exp [i(m− μ)φ0] , r′ ≤ r0.

(2.5)

Since p ≥ |n− ν| ≥ 0 (see (2.2)), we have ν − n + p ≥ 0, and the only contributions to

the summations are from the terms with the power of k equal to zero, ν−n+ p = 0, i.e.,

p = n − ν ≥ 0 and ν ≤ n. Using the expression of anmνμ,n−ν (see Appendix, (A.7)), (2.5)

becomes

rnPm
n (cos θ) exp(imφ) = (n+m)!rn0

n∑
ν=0

ν∑
μ=−ν

(
r′

r0

)ν
1

(ν + μ)!(n+m− ν − μ)!

· Pμ
ν (cos θ

′)Pm−μ
n−ν (cos θ0) exp(iμφ

′) exp[i(m− μ)φ0], r′ ≤ r0.

(2.6)

The translational theorem for r′ ≥ r0 can be obtained directly from (2.6) by interchanging

r′, θ′, φ′ and r0, θ0, φ0, respectively. It should be remarked that the series in these two

theorems have a finite number of terms and that each of the two expressions, for r′ ≤ r0
or r′ ≥ r0, can be employed for either r′ ≤ r0 or r′ ≥ r0 without restriction on the

relative size of r′ and r0 (Stein (1961)).

Taking now zn to be nn and using the limiting value as k → 0 (Abramovitz and

Steigun (1965)),

(kr)n+1nn(kr) → −(2n− 1)!! , (2.7)

substitution in (2.1) yields

r−(n+1)Pm
n (cos θ) exp(imφ) = lim

k→0

1

(2n− 1)!!

∞∑
ν=0

ν∑
μ=−ν

∑
p

(−1)
μ
iν−n+panmνμpr

′ν

· r−(p+1)
0 kν+n−p (2p− 1)!!

(2ν − 1)!!
Pμ
ν (cos θ

′)Pm−μ
p (cos θ0) exp(iμφ

′) exp[i(m− μ)φ0], r′ ≤ r0.

(2.8)

Since p ≤ n+ ν (see (2.2)), in the limit, only the terms with p = n+ ν (when the power

of k is equal to zero) contribute to the summations. With the expression of anmνμ,n+ν in

the Appendix (see (A.10)), (2.8) becomes

r−(n+1)Pm
n (cos θ) exp(imφ) =

r
−(n+1)
0

(n−m)!

∞∑
ν=0

ν∑
μ=−ν

(−1)
ν+μ

(
r′

r0

)ν
(n−m+ ν + μ)!

(ν + μ)!

· Pμ
ν (cos θ

′)Pm−μ
n+ν (cos θ0) exp(iμφ

′) exp[i(m− μ)φ0], r′ ≤ r0.

(2.9)
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The translational addition theorem for r′ ≥ r0 is obtained in a similar manner or directly

from (2.9) by interchanging r′, θ′, φ′ and r0, θ0, φ0, respectively.

In the special case when the translation is along the z-axis, φ′ = φ, θ0 = 0 or π,

(r0 = z0), and (2.6) and (2.9) reduce, respectively, to

rnPm
n (cos θ) = (n+m)!rn0

n∑
ν=|m|

(
r′

r0

)ν
1

(n− ν)!(m+ ν)!
Pm
ν (cos θ′)Pn−ν(cos θ0), r′ ≤ r0,

(2.10)

r−(n+1)Pm
n (cos θ) =

r
−(n+1)
0

(n−m)!

∞∑
ν=|m|

(−1)m+ν

(
r′

r0

)ν
(n+ v)!

(m+ ν)!
Pm
ν (cos θ′)Pn+ν(cosθ0),

r′ ≤ r0.

(2.11)

3. Application to Laplacian scalar potential problems. Consider a system of S

spheres arbitrarily located, the spheres p and q being shown in Figure 2. The Cartesian

axes of all the spheres are, respectively, parallel. The center of the sphere q has the

spherical coordinates rpq, θpq, φpq in the system of coordinates attached to the sphere p,

and the spherical coordinates of the center of p in the system attached to q are rqp = rpq,

θqp = π − θpq, φqp = π + φpq.

The scalar potential due to the presence of the sphere p can be written as (see (2.3))

Φp(rp, θp, φp) =
∞∑

n=0

n∑
m=−n

A(p)
nmr−(n+1)

p Pm
n (cos θp) exp(imφp), rp ≥ ap, p = 1, 2, . . . , S,

(3.1)

where rp, θp, φp are the spherical coordinates of the observation point, of position vector

r ≡ rp, in the system p and A
(p)
nm are constants of integration to be determined. The

resultant potential at any point outside the spheres due to the presence of all of them

and of an external applied field is

qx

qy

qz

py

px

pz

pqθ

pqφ

pqr
pr

pθ

qrqθ

pa

qa
P

Fig. 2. Pair of spheres p and q
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Φ(r) =

S∑
p=1

Φp(rp, θp, φp) + Φ0(r), (3.2)

where Φ0 is the potential due to the applied field.

When the material inside a sphere p is homogeneous and field-penetrable, then the

potential here is

Φ
(p)
in (rp, θp, φp) =

∞∑
n=0

n∑
m=−n

B(p)
nmrnpP

m
n (cos θp) exp(imφp), rp ≤ ap, (3.3)

with the constants B
(p)
nm to be determined.

In order to impose the boundary conditions at the surface of the sphere p, the potential

in (3.2) is transformed to

Φ(p)(rp, θp, φp) = Φp(rp, θp, φp) +
S∑

q=1
q �=p

Φ(p)
q (rp, θp, φp) + Φ

(p)
0 (rp, θp, φp), rp ≥ ap,

p = 1, 2, . . . , S,

(3.4)

where Φ
(p)
0 is Φ0 expressed in coordinates rp, θp, φp and Φ

(p)
q is the potential Φq(rq, θq, φq)

(see (3.1)) in the system of coordinates rp, θp, φp obtained by translation from the system

of coordinates rq, θq, φq, i.e. (see (2.9)),

Φ(p)
q (rp,θp, φp) =

∞∑
n=0

n∑
m=−n

A(q)
nm

r
−(n+1)
qp

(n−m)!

∞∑
ν=0

ν∑
μ=−ν

(−1)ν+μ

(
rp
rqp

)ν
(n−m+ v + μ)!

(v + μ)!

· Pμ
ν (cos θp)P

m−μ
n+ν (cos θqp) exp(iμφp) exp[i(m− μ)φqp], rp ≤ rqp.

(3.5)

The unknown constants of integration A
(p)
nm, B

(p)
nm, p = 1, 2, . . . , S, are determined by

imposing the boundary conditions at the surfaces rp = ap of all the spheres. When a

surface rp = ap is equipotential, for instance, then the (Dirichlet) boundary condition is

(with (3.4) and (3.5)) Φ(p)(ap, θp, φp) = Vp, where Vp is the given potential of the sphere

p. When Neumann boundary conditions are to be imposed at a surface rp = ap, then

one needs the normal derivative ∂Φ(p)/∂rp at rp = ap calculated from (3.4) and (3.5).

In the case of a system of spheres with a common z-axis and axisymmetric boundary

conditions and applied external field, there is no dependence on the variable φ and, thus,

m = 0 in (3.1), (3.3), and m = 0, μ = 0 in (3.5) (see examples in sections 4.2 and 4.3

below).

4. Illustrative examples. In what follows, the theorems in (2.9) and (2.11) are ap-

plied to calculate the electrostatic field of systems of metallic spheres electrically charged

or immersed in external fields, as well as the magnetic field in the presence of configura-

tions of magnetic spheres.
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Fig. 3. System of spheres in arbitrary configuration

4.1. Electrically charged metallic spheres in arbitrary configurations. Consider for il-

lustration a system of S conducting spheres at given electric potentials Vp (as shown

in Figure 3 for S = 3), with the medium outside the spheres being homogeneous, of

permittivity ε. The electrostatic potential is given by (3.1), (3.2), with Φ0 ≡ 0. The

boundary conditions at the surfaces of the S spheres are (see (3.4))

Φp(ap, θp, φp) +

S∑
q=1
q �=p

Φ(p)
q (ap, θp, φp) = Vp, p = 1, 2, . . . , S. (4.1)

Multiplying both sides of the equations (4.1) with Pm
n (cos θp) sin θp exp(−imφp) and

applying the orthogonality properties of the spherical harmonics (Smythe (1989)) yields

an infinite system of linear algebraic equations for the unknown constants of integration

A
(p)
nm, p = 1, 2, . . . , S, which can be written in the form

A
(p)
n′m′ + (−1)n

′+m′
an

′+1
p

1

(n′ +m′)!

S∑
q=1
q �=p

∞∑
n=0

n∑
m=−n

A(q)
nmr−(n+1)

qp

(
ap
rqp

)n′

· (n−m+ n′ +m′)!

(n−m)!
Pm−m′

n+n′ (cos θqp) exp [i(m−m′)φqp] = Vpapδn′0,

p = 1, 2, . . . , S; n′ = 0, 1, 2, . . . ; m′ = −n′,−n′ + 1, . . . , n′,

(4.2)

where δn′0 is the Kronecker symbol.

The total charge of the sphere p is obtained as

Qp = 4πεA
(p)
00 , p = 1, 2, . . . , S. (4.3)

Numerical results are generated by truncating appropriately the infinite system (4.2).

To give a concrete example for the system of three spheres (S = 3) in Figure 3, with

a1 = 3cm, a2 = 5cm, a3 = 4cm and r12 = r23 = r31 = 10cm, a 5-digit accuracy was

achieved for the charge values when the infinite series were truncated to n = 10. For

a free space outside the spheres, the following values in pF have been obtained for the

capacitance coefficients (Smythe (1989)):
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c11 = 4.4710, c22 = 8.4680, c33 = 6.6793, c12 = c21 = −1.7474, c23 = c32 = −3.0661,

c31 = c13 = −1.0902.

4.2. Electric field intensification in the presence of coaxial conducting spheres. Con-

sider now an array of S coaxial metallic spheres in a uniform external electric field of

intensity E0 oriented along the common z-axis of the spheres. Each of the spheres has a

total electric charge equal to zero, and the medium outside the spheres is homogeneous.

There is no dependence on the variable φ, and θqp is either 0 or π; the potential in

(3.4) becomes (with m = 0, μ = 0 in (3.1) and (3.5))

Φ(p)(rp, θp) =

∞∑
n=0

A(p)
n r−(n+1)

p Pn(cos θp) +

S∑
q=1
q �=p

∞∑
n=0

A(q)
n

r
−(n+1)
qp

n!

∞∑
ν=0

(−1)
ν

(
rp
rqp

)ν

· (n+ ν)!

ν!
Pν(cos θp)Pn+ν(cos θqp)− E0z + Cp, rp ≥ ap, p = 1, 2, . . . , S,

(4.4)

where −E0z is the potential corresponding to E0 with the origin of the z-axis chosen

arbitrarily, for instance at the center of one of the spheres, the additive constants Cp

being fixed in terms of the reference point for the potential of the external field. From

the condition Qp = 0, p = 1, 2, . . . , S, S constants of integration are determined, namely

(see (4.3)) A
(p)
0 = 0, p = 1, 2, . . . , S.

The spheres are equipotential, i.e., Φ(p)(ap, θp) = Vp, p = 1, 2, . . . , S, but the poten-

tials Vp are now unknown. With E0z = E0rp cos θp ≡ E0rpP1(cos θp) in (4.4) and by us-

ing the orthogonality properties of the Legendre polynomials (Smythe (1989)), we get an

infinite system of linear equations for the unknowns (Vp−Cp) and A
(p)
n , p = 1, 2, . . . , S,

n = 1, 2, 3, . . . , in the form

(Vp − Cp)−
S∑

q=1
q �=p

∞∑
n=1

A(q)
n r−(n+1)

qp Pn(cos θqp) = 0,

A
(p)
n′ +(−1)n

′
an

′+1
p

1

n′!

S∑
q=1
q �=p

∞∑
n=1

A(q)
n r−(n+1)

qp

(
ap
rqp

)n′
(n+ n′)!

n!
Pn+n′(cos θqp) =

2

3
a3pE0δn′1,

p = 1, 2, . . . , S; n′ = 1, 2, 3, . . . .

(4.5)

The electric field intensity at points on the sphere p is evaluated as E(θp) =

−∂Φ(p)/∂rp at rp = ap. Numerical results are presented in Table 1 a) for a system

of three identical metallic spheres as shown in Figure 4. To generate results of a specified

accuracy, the infinite series in (4.5) are truncated to a finite number of terms, n = n′ = N,

which increases when the relative value of the gap g decreases. At the points A, B and

C in Figure 4, results of 5-digit accuracy are obtained with N = 8 for g/a ≥ 1, N = 40

for g/a = 0.1, N = 120 for g/a = 0.01 and N = 170 for g/a = 0.005. A 3-digit accuracy

is obtained with N = 30, 75 and 100, respectively, for g/a = 0.1, 0.01 and 0.005. One

notices the strong intensification of the electric field in the gap regions of the spheres

when they are very close to each other.
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A B C

g g

z

a a a

x

Fig. 4. Three coaxial spheres

Table 1. Field intensification at the points A, B and C in Figure 4
for three identical spheres in a uniform field:

a) conducting spheres in an axial electric field, E0 = E0ẑ

Point 
     g a  

Field 
5.00 1.00 0.50 0.20 0.10 0.05 0.02 0.01 0.005 

0/zE E 3.01460 3.15137 3.27008 3.45386 3.59462 3.72704 3.88319 3.98623 4.07715 

0/zE E 3.02885 3.80677 5.22587 9.49097 16.1108 28.3915 62.0759 113.922 210.911 

0/zE E 3.03875 3.85497 5.25679 9.49459 16.1109 28.3915 62.0759 113.922 210.911 

 

A
B
C

b) perfect conductor spheres in a transverse magnetic field, H0 = H0x̂

Point 
 g a  

Field 
5.00 1.00 0.50 0.20 0.10 0.05 0.02 0.01 0.005 

0/xH H 1.50161 1.51295 1.51971 1.52663 1.52990 1.53186 1.53320 1.53369 1.53395 

0/xH H 1.50399 1.61580 1.79735 2.21176 2.65806 3.22789 4.20205 5.14121 6.29495 

0/xH H 1.50504 1.61936 1.79923 2.21193 2.65807 3.22789 4.20205 5.14121 6.29495 

 

A
B
C

4.3. Arrays of coaxial perfect conductor spheres in transverse magnetic fields. For a

system of S perfect conductor spheres, the Laplacian scalar magnetic potential satisfies

the general equations (3.1)-(3.5) with a zero boundary value for the Neumann condition

at the surface of each sphere, i.e., ∂Φ(p)/∂rp
∣∣
rp=ap

= 0, p = 1, 2, . . . , S. When the

spheres are coaxial and in the presence of a uniform transverse magnetic field H0 = H0x̂

(see Figure 4), the resultant potential in spherical coordinates attached to the sphere p

has the form (see (3.4), (3.5) and (2.11))

Φ(p)(rp, θp, φp) =

∞∑
n=1

A(p)
n r−(n+1)

p P 1
n(cos θp) cosφp +

S∑
q=1
q �=p

∞∑
n=1

A(q)
n

r
−(n+1)
qp

(n− 1)!

∞∑
ν=1

(−1)
ν+1

·
(

rp
rqp

)ν
(n+ ν)!

(ν + 1)!
Pn+ν(cos θqp)P

1
v (cos θp) cosφp −H0rp sin θp cosφp, rp ≥ ap,

p = 1, 2, . . . , S,

(4.6)
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with θqp = 0 or π. The following infinite system of equations is derived for the unknowns

A
(p)
n , p = 1, 2, . . . , S, n = 1, 2, 3, . . . ,:

A
(p)
n′ + (−1)n

′
an

′+1
p

n′

(n′ + 1)(n′ + 1)!

S∑
q=1
q �=p

∞∑
n=1

A(q)
n r−(n+1)

qp

(
ap
rqp

)n′
(n+ n′)!

(n− 1)!
Pn+n′(cos θqp)

= −1

2
a3pH0δn′1, p = 1, 2, . . . , S; n′ = 1, 2, 3, . . . .

(4.7)

In Table 1 b), we present numerical results for a system of three coaxial identical perfect

conductor spheres shown in Figure 4. Again, the number n = n′ = N to be retained in

the infinite series in (4.7) in order to obtain a desired accuracy of the numerical results

increases as the relative gap, g/a, decreases. For the magnetic field intensity at the points

A, B and C in Figure 4, a 5-digit accuracy is obtained with N = 7 for g/a ≥ 1, N = 35

for g/a = 0.1, N = 125 for g/a = 0.01, and N = 175 for g/a = 0.005, while for a 3-digit

accuracy one needs N = 20, 100 and 120, respectively, for g/a = 0.1, 0.01 and 0.005.

An appreciable intensification of the magnetic field at the points B and C is observed for

small gaps between the spheres though much less strong than the intensification of the

electric field at these points in the example considered in Table 1 a).

5. Remarks and conclusion. The general expressions in (2.6) and (2.9) for r′ ≤ r0,

as well as the corresponding expressions for r′ ≥ r0, take a simpler form in various

particular situations. In the cases, for instance, when the centers of the spheres are on

the same plane (the configuration with S = 3 in Figure 3, considered in section 4.1,

is included in this category), then this plane is chosen to be the zx-plane such that

φqp = 0, p, q = 1, 2, . . . , S, and, as a consequence, all the entries and the unknowns (the

constants of integration A
(p)
nm) in the system of equations (4.2) are real numbers. When all

the spheres have a common z-axis (as in sections 4.2 and 4.3), the translational addition

theorems only contain single series (see (2.10) and (2.11)) which yield much smaller

truncated systems of equations (compare (4.5) with (4.2)) for an imposed accuracy of the

numerical results. Comparing the classical expression in terms of Legendre polynomials of

the inverse distance between two arbitrary points on a unit sphere with that obtained as

a special case for n = 0, r′ = r0 = 1 of our formula in (2.9) yields directly the celebrated

Legendre’s addition theorem (Hobson (1965)). A variety of simplified expressions for

positive and negative powers of the distance between two points located at particular

positions can be generated from (2.6), (2.9) and from their companions for r′ ≥ r0.

The formulations presented in this paper particularized for a system of two spheres

constitute an alternative to the classical formulations using the method of images in the

case of equipotential spheres or employing the bispherical coordinates (Morse and Fesh-

bach (1953), Ciric and Kotuwage (2011)). The application of the translational addition

theorems to the field problems in section 4 can be performed in the same way for other

scalar Laplacian fields relative to multiple-sphere systems, for example for temperature

distribution and in fluid mechanics, thus extending the class of problems which can be
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solved by exact analytic methods. This includes problems relative to spheres with non-

homogeneous boundary conditions and also field-penetrable spheres. As well, the results

in this paper are relevant to studies regarding the behavior of cloud water droplets in ex-

ternal electric fields, the determination of electric and magnetic field intensification, and

of forces on particles in colloidal suspensions, the response of nanostructures to electro-

magnetic fields, where, at a first approximation, the intervening small bodies or particles

are modeled as spheres. The formulation and solution for perfect conductor spheres in

the presence of magnetic fields can also be used for calculating the field intensity, induced

electric currents, losses and forces in problems of pronounced skin effect for solid con-

ductors at sufficiently high frequencies, when the field depth of penetration is negligible

with respect to the local radii of curvature of the bodies involved.

Appendix A. Expansion coefficients anmνμ,n∓ν in (2.5) and (2.8). The general

expression of the expansion coefficients anmνμp in (2.1) is (Cruzan (1962))

anmνμp = (−1)m−μ(2p+ 1)

[
(n+m)!(ν − μ)!(p−m+ μ)!

(n−m)!(ν + μ)!(p+m− μ)!

]1/2 [
n ν p

0 0 0

]

·
[
n ν p

m −μ −m+ μ

]
,

(A.1)

where the Wigner “3j” symbol is calculated using the formula (Messiah (1999))[
a b c

α β γ

]
= (−1)

a−b−γ
[(a+ α)!(a− α)!(b+ β)!(b− β)!(c+ γ)!(c− γ)!Δ(a, b, c)]

1/2

·
∑
s

(−1)s[s!(a+ b− c− s)!(a− α− s)!(b+ β − s)!(c− b+ α+ s)!(c− a− β + s)!]−1,

(A.2)

with

α+ β + γ = 0, |a− b| ≤ c ≤ a+ b (A.3)

and

Δ(a, b, c) ≡ (a+ b− c)!(b+ c− a)!(c+ a− b)!

(a+ b+ c+ 1)!
. (A.4)

∑
s

extends over all integral values of s for which the arguments of the factorials are

positive or null (0!=1).

In the special case (see (2.5)) when p = n− ν ≥ 0, we obtain[
n ν n− ν

m − μ −m+ μ

]

=(−1)
n+m

[
(n+m)!(n−m)!

(ν+μ)!(ν−μ)!(n+m−ν−μ)!(n−m−ν+μ)!

]1/2[
(2ν)![2(n− ν)]!

(2n+ 1)!

]1/2
,

(A.5)

and, for m = μ = 0,[
n ν n− ν

0 0 0

]
= (−1)

n n!

ν!(n− ν)!

[
(2ν)![2(n− ν)]!

(2n+ 1)!

]1/2
. (A.6)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



ADDITION THEOREMS FOR SPHERICAL LAPLACIAN FUNCTIONS 623

Thus,

anmνμ,n−ν = (−1)
μ n!(n+m)!(2ν)![2(n− ν) + 1]!

(2n+ 1)!ν!(ν + μ)!(n− ν)!(n+m− ν − μ)!
, |m− μ| ≤ n− ν. (A.7)

In the case (see (2.8)) when p = n+ ν, we get[
n ν n+ ν

m − μ −m+ μ

]
= (−1)

(n+m−ν−μ)

[
(n+m+ ν − μ)!(n−m+ ν + μ)!

(n+m)!(n−m)!(ν + μ)!(ν − μ)!

]1/2

·
[

(2n)!(2ν)!

[2(n+ ν) + 1]!

]1/2
,

(A.8)

and, for m = μ = 0,[
n ν n+ ν

0 0 0

]
= (−1)

n−v (n+ ν)!

n!ν!

[
(2n)!(2ν)!

[2(n+ ν) + 1]!

]1/2
. (A.9)

Thus,

anmνμ,n+ν =
(2n)!(2ν!)(n+ ν)!(n−m+ ν + μ)!

n!(n−m)!ν!(ν + μ)![2(n+ ν)]!
. (A.10)
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