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Abstract

Results

We have followed a typical fed-batch induction regime for heterologous protein production

under the control of the AOX1 promoter using both microarray and metabolomic analysis.

The genetic constructs involved 1 and 3 copies of the TRY1 gene, encoding human trypsino-

gen. In small-scale laboratory cultures, expression of the 3 copy-number construct induced

the unfolded protein response (UPR) sufficiently that titres of extracellular trypsinogen were

lower in the 3-copy construct than with the 1-copy construct. In the fed-batch-culture, a similar

pattern was observed, with higher expression from the 1-copy construct, but in this case there

was no significant induction of UPR with the 3-copy strain. Analysis of the microarray and

metabolomic information indicates that the 3-copy strain was undergoing cytoplasmic redox

stress at the point of induction with methanol. In this Crabtree-negative yeast, this redox

stress appeared to delay the adaptation to growth onmethanol and supressed heterologous

protein production, probably due to a block in translation.

Conclusion

Although redox imbalance as a result of artificially imposed hypoxia has previously been de-

scribed, this is the first time that it has been characterised as a result of a transient metabolic

imbalance and shown to involve a stress response which can lead to translational arrest.

Without detailed analysis of the underlying processes it could easily have been mis-inter-

preted as secretion stress, transmitted through the UPR.
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Introduction

The methylotrophic yeast, Pichia pastoris is a commonly used host for protein expression

[1, 2]. High volumetric productivities of both secreted and intracellular proteins can be pro-

duced, largely because of the high cell densities achievable in fed-batch fermentation. Specific

productivities, particularly of secreted proteins, are, in fact, relatively modest [3] because of the

limited flux through the eukaryotic protein export system. However, as growth and induction

is typically done in a minimal medium and the host strain naturally secretes very little protein,

this protein is usually fairly pure.

Expression typically uses the very strong methanol-inducible alcohol oxidase promoter

AOX1 which, in the parental strain, is capable of inducing alcohol oxidase production up to

30% of the total intracellular protein [1, 4]. Genes to be expressed are chromosomally integrat-

ed downstream of AOX1 by either recombination at a single site, generating a mut+ (methanol

utilisation positive) strain, in which a functional copy of the AOX1 gene is retained, or transpla-

cement, in which the AOX1 gene is disrupted. This can yield a muts (slow) or mut- strain de-

pending on the availability of a functional AOX2 gene which encodes a second alcohol oxidase

with allows slow growth on methanol [5]. Production is usually done in fed-batch in which

cells are grown to high densities using glycerol as the carbon source, induced initially with a

pulse of methanol and then switched to a continuous methanol feed which may be maintained

for up to 96h [1].

Despite the impressive track record of this expression system and occasional high titres re-

corded, the levels of expression are relatively poor compared to the evident strength of the

AOX1 promoter [1], and lengthy induction periods are needed to give good protein yields.

With secreted proteins, which form the bulk of the examples in the literature, at least part of

the problem has been ascribed to the effects of exceeding the secretory capacity of the cell

[6, 7]. The folding of secreted proteins in the ER is assisted by chaperones such as Kar2p and

Pdi. High demand for Kar2p caused either by relatively high rates of transit or poor folding, as

is frequently found with heterologous proteins, induces the unfolded protein response (UPR),

which increases chaperone production [8]. However, exceeding the capacity of the UPR to ben-

eficially affect secretion leads to increased ER associated degradation (ERAD) of the heterolo-

gous protein, which can actually reduce secretion to levels below those achieved at moderate

levels of expression [6].

One problem with the AOX1 induction system is that, particularly in mut+ strains, induc-

tion coincides with a major reorganisation of metabolism, not only requiring novel catabolic

functions for assimilation of formaldehyde, but a massive proliferation of peroxisomes [9]

which are the location of alcohol oxidase and catalase (which breaks down the H2O2 generated

by alcohol oxidase). Until the methanol metabolic machinery is in place and even beyond this

point if cell proliferation continues, the production of peroxisomes in particular is likely to act

as a drain on cellular resources. Recently, a few studies have compared the transcriptomes of

recombinant (expressing) and non-recombinant P. pastoris cells sampled either at single time

points after induction of expression [10] or grown in chemostat culture [11, 12]. While the

comparison is informative, the use of chemostat culture (primarily for better reproducibility of

data) does not capture the dynamics of a typical industrial production process. Therefore, al-

though the data obtained is inherently more noisy, in order to explore the events occurring

during the early stages of induction both in wild type and recombinant strains we have fol-

lowed a typical fed-batch induction regime using transcriptomic and metabolomic analyses.

This was done using human trypsinogen as the recombinant protein as this has previously

been characterised as producing copy-number dependent UPR and enhanced ERAD [6]. This
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facilitated both a progressive time course analysis for each strain and side by side comparisons

between wild-type and recombinant strains at the same times post-induction.

Materials and Methods

Strain construction

P. pastoris GS115 (HIS4-91), recently reclassified as Komagataella phaffii [13], was obtained

from Invitrogen, Paisley, UK. A 5’ truncated gene encoding 722bp of the human trypsinogen-1

gene (TRY1) starting at base 63 of the coding region after the signal peptide sequence and

flanked by SfiI sites, was synthesized by Genscript (Piscataway, NJ, USA) and supplied in

pUC57. TRY1 was released from pUC57 with SfiI, gel purified and inserted into the SfiI site of

pPICz α B (Invitrogen) placing the gene in frame with the α-factor signal peptide in the vector.

A stop codon had been inserted into the synthetic gene so that translation did not read through

into the vector HIS andMYC tag sequences. Recombinants were initially selected in E coli

JM109 grown on LB containing 100μg ml−1 Zeocin and authenticity confirmed by sequencing.

For cloning into P. pastoris, recombinant plasmid was isolated from E coli, linearised by digestion

with PmeI, which cuts in the 5’ AOX1 promoter region and electroporated into P. pastorisGS115.

Recombinant colonies were selected after 4 days incubation on YPD containing 100μg ml−1 Zeo-

cin, grown on YPD plates without Zeocin then on YPD containing Zeocin, to ensure that Zeocin

resistance was not transient. The presence of a single TRY1 vector insert in selected clones was

confirmed by Southern blotting of BamHI digested DNA separated on a 1% agarose gel, with a

DIG labelled TRY1 probe.

Two and three TRY1 gene copy recombinant strains were made using the BglII and BamHI

sites which flanked the pPICz α BTRY1 expression cassette (promoter, alpha factor signal pep-

tide, TRY1 and 3' UTR region). Thus, pPICz α BTRY1 was digested with BglII and BamHI and

the 2.5kb expression cassette fragment gel purified and ligated together in the absence of vector

to form multimers. The ligation products were cut with BglII and BamHI to remove any “head

to head” or “tail to tail” fragments and products of sizes consistent with containing 2 and 3 cop-

ies of the TRY1 cassette were separated on a 1% agarose gel and purified. Individual purified

products were then ligated into BglII and BamHI digested pPICz α B, before transformation

into E coli. Confirmation of vector construction was done by restriction digestion with BglII

and BamHI to release the vector backbone and TRY1 expression cassettes. The 2 and 3 copy

TYRY1 expression vectors were introduced into P. pastoris GS115 as described above and con-

firmed by Southern blotting with a DIG labelled TRY1 probe.

Expression in tubes

Single colonies were inoculated into 5 mL of BMGY (1% (w/v) Yeast Extract, 2% (w/v) Pep-

tone, 100mM potassium phosphate, pH6.0, 1.34% (w/v) Yeast Nitrogen Base (YNB), 4 x 10–5%

(w/v) d-Biotin, 1% (v/v) glycerol) in 50ml centrifuge tubes and grown at 30°C, 250 rpm for 24

hours, with the tube lid loosely attached for gas exchange. The OD600 was measured and cul-

tures normalised by taking a volume of cells equivalent to that contained in 5 ml of OD600 10.

Cells were centrifuged for 5 minutes at 4000 rpm at room temperature and the supernatant re-

moved. The cultures were then resuspended in methanol containing BMMY (as BMGY but

with 0.5% (v/v) methanol replacing glycerol) and left to grow for a further 24 hours.

Fed-batch culture

Fed-batch culture was performed in a 7 L fermentor (Applikon, Netherlands) at an initial batch

working volume of 4 L. Only the wild type (GS115), TRY1-1 copy and TRY1-3 copy were grown
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in fed-batch culture and each strain was grown in duplicate. The initial glycerol batch phase was

performed in basal salts medium, which was inoculated from a 30 ml overnight YPD culture.

Upon depletion of the glycerol a 50% v/v glycerol feed was initiated at 0.06 L/hr until the culture

reached OD600 80 which triggered the end of the glycerol feed and a 0.5% v/v bolus addition of

methanol. The methanol feed was controlled by a Raven methanol probe (Raven Biotech Inc,

Canada) which maintained the methanol concentration at 0.5% and was maintained for 24hrs

after the bolus addition.

Media

Basal salt medium contained per litre: 9 ml phosphoric acid (85%), 0.2 g CaSO4, 6 g K2SO4,

4.7 g MgSO4.7H2O, 7.5 g KOH, 5 g (NH4)2SO4, 20 ml glycerol, 1 ml Acepol-83E (10% solu-

tion), 3 ml PTM4, 20 ml 2% w/v histidine. The basal media was heat sterilised in situ and the

PTM4 and histidine added as a post sterile addition. PTM4 Trace Elements Solution contained

per litre 2 g CuSO4.5H2O, 0.08 g NaI, 3 g MnSO4.4H2O, 0.2 g Na2MoO4.2H2O, 0.02 g boric

acid, 0.5 g CaSO4.2H2O, 0.5 g CoCl2, 7 g ZnCl2, 22 g FeSO4.7H2O, 0.2 g biotin, and 1ml con-

centrated sulphuric acid. On starting the glycerol feed the medium was supplemented with

(per L) 2.5 ml 2% w/v histidine and 1 ml PTM4. The methanol feed bottle contained 400ml

methanol and 4.8ml of PTM4. pH was controlled at pH5 with 28% (w/v) ammonium hydrox-

ide, stirrer speed at 1000rpm and dissolved oxygen tension at 35% using air mass flow control

from 1.3L/min to 8L/min.

Sampling

The fed-batch culture was sampled at 0h (pre-induction), 0.5h, 1h, 2h, 3h, 4h, 5h, 7h and 24h

post-introduction of the methanol feed. All samples were used for metabolomics analysis, but

only samples taken at 0h, 2h, 4h and (TRY1-1 strains only) 24h were used for microarray anal-

ysis. Time zero sample was taken before the glycerol feed was stopped and immediately before

the addition of methanol.

For transcriptome analysis 1ml of culture was added to 9 ml RNA-later (Ambion) in order

to stabilise the transcripts. This mixture was then centrifuged at 4000 rpm (Eppendorf 5810R)

for 5 mins and the pellets re-suspended in 1 ml RNA-later and stored at −80°C until required.

Sampling from the bioreactor for metabolomics samples was performed as previously de-

scribed, using a total culture extraction [14]. Briefly, a cell suspension (*2 ml) from the biore-

actor was sampled rapidly (under reduced pressure) into a cold (<−50°C) aqueous methanol

(60% v/v final conc., 13 ml). The solutions were mixed thoroughly and frozen in liquid nitro-

gen. The sample was then thawed in an ultrasonic bath for 15 min and centrifuged for 5 min at

5000 g. The extract supernatant was concentrated under reduced pressure and samples were

stored at −80°C until analysis. At the same sampling time 1 ml of the cell suspension from the

bioreactor was sampled into a 1.5ml centrifuge tube to collect the extracellular metabolites.

The sample was immediately centrifuged for 5 min at 16000 g and the supernatants were trans-

ferred to a new tube, concentrated under reduced pressure and stored at −80°C until analysis.

NMR analysis

Samples were resuspended in 0.6 ml NMR buffer consisting of 0.1 M phosphate buffer pH 7.4,

1 mM trimethylsilyl-2,2,3,3-tetradeuteropropionic acid (TSP), and 0.55 ml was transferred to a

5 mm NMR tube. Spectra were acquired on a Bruker Avance DRX600 NMR spectrometer

(Bruker BioSpin, Rheinstetten, Germany), with 1H frequency of 600 MHz, and a 5 mm inverse

probe. Samples were introduced with an automatic sampler and spectra were acquired follow-

ing the procedure described by Beckonert et al [15]. Briefly, a one- dimensional NOESY
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sequence was used for water suppression; data were acquired into 64 K data points over a spec-

tral width of 12 KHz, with 8 dummy scans and 512 scans per sample. In addition, 2D 1H-1H

COSY were acquired. Data were acquired into 512 × 4096 data points covering 6 × 6 KHz, with

3 scans for each increment.

Spectra were processed in iNMR 2.6.3 (Nucleomatica, Molfetta, Italy). Fourier transform of

the free-induction decay was applied with a line broadening of 0.5 Hz. Spectra were manually

phased and automated first order baseline correction was applied. Metabolite assignments

were based on Tredwell et al [14]. Metabolite concentrations from 2D spectra, relative to the

internal standard TSP were calculated using rNMR [16], and data were normalised by the

probabilistic quotient normalisation method described by Dieterle et al [17].

Array design

An Agilent (Agilent, Santa Clara) 4 × 44,000 probe custom microarray was designed by Oxford

Genome Technologies (OGT, Oxford, UK) based on the Integrated Genomics P. pastoris

GS115 genome, which contained 5195 open reading frames (ORFs). Where possible, 9 non-

overlapping probes per ORF were designed, taking into account uniqueness, GC content, pre-

dicted hybridisation conditions and minimizing G-spots [18], see Table 1 for summary of the

number of probes per gene. In the cases where only a single unique probe could be designed,

further overlapping probes were designed. 5168 out of the 5195 ORFs had at least one unique

probe mapping to it. It was not possible to design at least one unique probe for 27 of the ORfs.

Blasting all probes against the genome revealed 384 of the designed probes had the potential to

cross hybridise. These probes have been highlighted with an ‘ortho’ appended to the identifier.

The array includes positive spike-in control probes and negative probes. In total 39,412 probes

were designed.

Subsequent to the design of the array presented here, De Schutter et al [19] published a ver-

sion of the P. pastoris genome. A comparative analysis was performed to determine how well

the probes from this array matched the De Schutter genome using Blast. Out of the 39,412

probes, 38,552 (97.8%) mapped to one position, 845 (2.1%) did not map anywhere, and 15

(0.04%) mapped at two or more loci.

Table 1. The number of unique probes on the micro-array per gene.

Number of Genes Number of Probes Avg. Gene Length

78 1 158

183 2 224

197 3 329

210 4 430

281 5 519

275 6 615

275 7 712

298 8 808

3371 9 1844

A total of 3371 genes were targeted by 9 unique probes, with the average length of these genes being

1844 bases.

doi:10.1371/journal.pone.0119637.t001
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Sample processing for microarray analysis

RNAwas prepared using RiboPure Yeast RNA kit (Ambion) according to the manufacturer’s in-

structions using 200μl of the stored sample. The samples were treated with the supplied DNAse

and the absence of genomic DNA was confirmed by qPCR using primers to ACT1 and the 2X

SYBR Green JumpStart Taq ReadyMix (Qiagen, Crawley, UK) qPCR kit. RNA quantity and

quality was assessed using the Bio-Rad Experion system and the Stdsens kit. RNA of>200 μg/ml,

RQI of>7 and OD260/280 ratio>1.8 and OD260/230 ratio> 1.5 were submitted for transcriptomic

analysis.

Analysis of microarray data

Microarray data are available in the ArrayExpress database (www.ebi.ac.uk/arrayexpress)

under accession number E-MTAB-2530. Analysis was carried out in the R programming lan-

guage using Bioconductor package to identify differentially expressed genes. Each of the time

point samples for a particular strain was contrasted to the time zero sample for that strain and,

additionally, samples of the TRY1-3 and TRY1-1 strains taken at a fixed time point were con-

trasted to each other and the non-recombinant GS115 in order to reveal any statistically signifi-

cant differences. The Empirical Bayes method was applied to identify statistical significance in

contrast between gene expression profiles [20]. The false discovery rate (fdr) based on Benja-

mini and Hochberg’s method, which assumes that all genes are statistically different from one

another was set to be less than 5% [21]. Gene functionality was assigned with reference to a cu-

rated P. pastoris genome which can be viewed in a gBrowse [22] instance hosted by the Bioin-

formatics Support Service, Imperial College London (www.blugen.org/gbrowse-bin/gbrowse/

Pichia/).

Heat Maps and Pathway Analysis

Heat maps of log 2 normalised expression levels were generated using the Heatplus.2 function

from the R-bioconductor package. Genes with similar expression levels were clustered and pre-

sented as trees, using the same package. Pathway analysis was also used to identify sequential

metabolic processes, which were significantly up or down-regulated in accordance with the

gene expression data. Initially significantly up- or down-regulated genes were run through

KOBAS (KEGG Orthology Based Annotation System), which assigned genes to pathways

based on the KEGG maps specifically for P. pastoris [23–25]. Once pathways had been identi-

fied the KEGG Search & Colour pathway was used to visually map the differentially expressed

genes [26, 27]. Given the inherent noise in the system, discussion of regulation focuses on

those pathways in which all/virtually all changes were in a consistent direction (up or down-

regulation).

Results

Preliminary tests of genetic constructs

The effects of expression of multiple copies of TRY1 have been previously described, but as

these constructs were not made available to us we needed to confirm that our constructs per-

formed in a similar manner. Recombinant strains (3 of each) containing 1, 2 and 3 copies of

the TRY1 expression cassette were grown in 50ml tube cultures and supernatants analysed for

Try1p expression using an Experion Pro260 protein analysis chip (BioRad). This showed the

expected pattern of increasing (but not doubled) expression going from 1 to 2 copy numbers,

but lower expression (approx. 50%) in the 3 copy number strain than observed in the 1 copy

number strain. The correlation between reduced expression and secretion stress leading to the
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induction of UPR was also demonstrated by qRT-PCR ofHAC1 expression [28] which was

3–4 fold higher in the 3 copy number strains than in 1 copy number strains) (S1).

Growth characteristics in fed-batch culture

GS115 and recombinant strains carrying 1 (TRY1-1) and 3 (TRY1-3) copies of TRY1 were

grown in duplicate fed-batch cultures involving initial growth on glycerol to increase biomass,

followed by a switch to methanol fed-batch growth, with methanol concentration measured

with a dedicated probe and controlled at approximately 0.5% (v/v), throughout in order to

avoid the metabolic stress that has been associated with high methanol concentrations [29].

Aeration was started at 1L/min and the dissolved oxygen concentration allowed to drop to 30%

(saturation = 100%) where it was maintained by increasing the aeration rate. For GS115 this

produced a biphasic growth profile with oxygen demand increasing rapidly after the addition

of methanol to a maximum level between 3 and 7h after induction. The profile for TRY1-1 was

characterised by a reduced rate of biomass increase in the second phase, after addition of meth-

anol, while TRY1-3 exhibited virtually no biomass increase for at least 24h after addition of

methanol, although methanol metabolism was clearly occurring.

Samples for both microarray and metabolomic analysis were taken as described in methods.

The time zero sample was taken prior to the addition of methanol, when cells were growing in

fed-batch on limiting amounts of glycerol. The experimental design allowed insight into four

underlying processes: 1) the changes occurring in GS115 during the switch from glycerol to

methanol; 2) comparison between TRY1-1 and GS115 during induction of heterologous pro-

tein expression; 3) the consequence of massive secretion stress on induction in TRY1-3, and 4)

comparison of TRY1-1 and GS115 pre-induction. In this paper we focus on the significant

major processes and differences between constructs and time points. Additional information is

provided as supplementary data.

Transcriptional and metabolomic profiles in methanol fed-batch culture

Characterisation of the underlying effect of growth rate changes. Even in the wild-type

GS115 the switch from glycerol to methanol as the sole carbon substrate involves a reduction

in growth rate, which was more marked in the TRY1-1 and TRY1-3 strains. In S. cerevisiae re-

duction of growth rate has been shown to induce transcriptional responses similar to those in-

duced by nutritional starvation [30]. This includes reduction in protein synthesis capability

and DNA replication, and an increase in autophagy. Ribosome production has been estimated

to use approx. 90% of the total cell energy in exponentially growing yeast [31] so it is not sur-

prising that this is rapidly down-regulated in response to a reduction in growth rate. Binding

sites for RNA polymerases I (A) and III (C) are upstream of ribosome biogenesis (Ribi) genes

and the down-regulation of expression of these polymerases could partly account for reduced

Ribi gene expression [32].

DNA, RNA and protein synthesis. In all three strains there was a major reduction in ex-

pression of Ribi genes and ribosomal protein production within the first 2h after introduction

of methanol, together with a reduction in RNA degradation (core exosome) activity. Consistent

with the reduction of growth rate, genes encoding most of the DNA replication machinery

were down-regulated and cell cycle related functions re-adjusted. While many of these effects

returned to their basal level 4h after the start of methanol feeding, ribosomal biogenesis genes

remained down-regulated at 4h, consistent with the lower growth rate on methanol compared

to glycerol (S2 Fig.). This confirms that switching to growth on methanol is classically diauxic,

causing a transient starvation while the methanol metabolic machinery is induced, followed by

adaptation to a new, lower growth rate. Despite the increased metabolic load of heterologous
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protein production there was little difference in the down-regulation in ribosomal protein pro-

duction (S3 Fig.) and ribosomal biogenesis (S2 Fig.) between TRY1-1 and GS115, when the two

were directly compared at 2h post-methanol addition. However, consistent with the complete

cessation of growth, ribosomal protein gene expression in TRY1-3 was lower than both TRY1-

1 and GS115, 2h after methanol addition (S3 Fig.). The same pattern was also observed with

nuclear pore transport and some translation initiation factors. This pattern of reduced expres-

sion in TRY1-3 was similar after 4h, with ribosomal biogenesis and ribosomal protein synthesis

being down-regulated in comparison to TRY1-1.

Surprisingly, in addition to the down-regulation of expression of RNA pol I and III sub-

units, some RNA pol II core and specific subunits were down-regulated in all strains 2h after

switching to methanol (S4 Fig. PAS_chr2-1_0125, chr4_0906, chr3_0244, chr1-4_0359), indi-

cating a reduction in net protein synthesis. This is not typically linked to growth rate [33] but

significant in the context of heterologous protein expression. However, by 4h expression of all

RNA polymerase genes was starting to pick up in GS115, consistent with adaptation to a lower

growth rate on methanol in GS115. Compared to their levels at 2h of induction many of the

tRNA synthases were also up-regulated at 4h supporting the indication from pol II dynamics

for a greater demand for net protein synthesis. However, in TRY1-3 in addition to reduction in

expression of RNA polymerase I and III subunits, some core and specific RNA polymerase II

subunits (Fig. 1) and tRNA synthases (S5 Fig.) remained down-regulated in comparison with

Fig 1. Expression of RNA polymerase I, II and III core function genes, 0 (before), 2 and 4 hours after
the start of methanol addition to wild-type GS115 (black), TRY1-1(blue) and TRY1-3 (red), strains
containing 1 and 3 gene copies of the human typsinogen gene, respectively, under the control of the
AOX1 promoter. From top to bottom, panels represent RPA1, RPB2 and RPC2. Error bars show SEM.

doi:10.1371/journal.pone.0119637.g001
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GS115 after 4h. Not only does this reflect the complete cessation of growth but a significant

down-regulation of the potential for de-novo protein synthesis.

Membrane remodelling. The switch to methylotrophy requires biogenesis of peroxi-

somes; the location of the first steps in methanol oxidation. In S. cerevisiae PEX3 and PEX19

are essential for early stage biogenesis [34], with Pex3p being secreted into the ER and together

with Pex19p being critical for the formation of pre-peroxisomal vesicles [35]. This falls into 2

distinct families in S. cerevisiae, one containing the RING finger peroxisome membrane pro-

teins (PMPs,) Pex2p, Pex10p and Pex12p, and the other docking PMPs, Pex13p and Pex14p,

which are subsequently fused together through the action of Pex1p and Pex6p to form a func-

tional translocon for matrix proteins, with translocation being aided by Pex5p. Expression of

the P. pastoris homologues was strongly induced within 2h of methanol addition in GS115

(S6 Fig. PAS_chr4_0794, chr3_0043, chr4_0759, chr_1073, chr2-1_0715, chr2-2_0207, chr2-

2_0186). The expression of SEC61 in GS115 was down-regulated within 2h of methanol addi-

tion (S16 Fig. PAS_chr1-3_0202), which is surprising as the ER translocon formed by Sec61p

has been shown to be essential for import of the peroxisomal membrane proteins into the ER.

However, due to the transient and long term effects of switching to a poorer substrate peroxi-

some biogenesis coincides with a starvation response typified by an increase in autophagy

(S7 Fig.). Thus, reduction of expression of SEC61 has to be seen in the light of declining ER ca-

pacity. Expression of genes associated with autophagy (S7 Fig.), proteasomal activity (S8 Fig.)

and ubiquitin mediated proteolysis (S9 Fig.) were strongly induced in all three strains within

the first 2 hours of methanol addition, consistent with a period of extensive membrane remod-

elling, with some returning to near basal levels within 4h.

Energy metabolism and biosynthesis. On top of the expected induction of methanol utili-

sation gene expression, the transient starvation response, evident from the effects on macro-

molecule synthesis, was expected to have a significant effect on general energy metabolism. In

GS115 and to a lesser extent TRY1-1, within the first 2 hours there was an increase in expres-

sion of numerous respiratory chain components and the F-type ATPase (S10 Fig.), most of

which returned to basal levels of expression after 4h. However, with TRY1-3, most genes re-

tained their 2h expression levels or gradually increased in expression over 4h (eg succinate de-

hydrogenase/fumarate reductase PAS_chr2−2_0283). Clearly, during this time cells were going

through a major reprogramming so, despite the reduction in growth rate, there was an in-

creased energy demand from both methanol and endogenous energy sources. All of the key

genes encoding steps in methanol metabolism and assimilation (e.g. AOX1, catalase, FDH,

DAK2, TPI1) including riboflavin biosynthesis (RIB1) showed significant induction over the

first 2 hours after methanol addition (Fig. 2) in all strains. AOX1 expression increased 8 fold

between t = 0 and t = 2h. Although AOX1 expression levels fell slightly between 2 and 4 hours,

expression of most of the other genes was maintained at the 2h level indicating that cells should

have adapted to growth on methanol by that point.

After 2h expression of genes encoding steps in the TCA and glyoxylate cycles exhibited

a combination of up and down regulation in a trend which continued between 2 and 4h

(S11 Fig.). This was consistent with the TCA cycle switching from energy generating to biosyn-

thetic mode as would be expected once formaldehyde and formate oxidation had become the

major generators of NADH, with down-regulation of expression of pyruvate dehydrogenase

and α-ketoglutarate dehydrogenase and upregulation of pyruvate carboxylase, the reversible

steps between oxaloacetate and succinate, together with citrate synthase and both mitochondri-

al and cytosolic NADP+ dependent isocitrate dehydrogenases (S11 Fig.). Aconitase and fuma-

rase both showed transient upregulation. Consistent with this pattern, pyruvate kinase and the

gluconeogenic phosphoenolpyruvate (PEP) carboxykinase encoded by PCK1 were both down-

regulated (Fig. 3).
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Fig 2. Expression of genes associated with methanol oxidation and assimilation during fed-batch
culture, 0 (before), 2 and 4 hours after the start of methanol addition to wild-type GS115 (black), TRY1-
1(blue) and TRY1-3 (red), strains containing 1 and 3 gene copies of the human typsinogen gene,
respectively, under the control of the AOX1 promoter. From top to bottom, panels represent AOX1, FDH1,
FGH1, DAS1, DAK2, TPI1 and RIB1. Error bars show SEM.

doi:10.1371/journal.pone.0119637.g002
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Glycolysis/gluconeogenesis (S12 Fig.) and pentose phosphate (S13 Fig.) pathways displayed

broadly the expected patterns, with upregulation of steps associated with the xylulose mono-

phosphate pathway (XMP) and associated carbon skeleton rearrangements (eg PAS_chr2-

2_0337 and PAS_chr3_0868). However, given that the cells were growing on glycerol and the

output from the XMP is glyceraldehyde-3-phosphate, significant changes in hexose metabo-

lism were not expected. Therefore, transient induction of hexokinase (PAS_chr1-4_0447,

PAS_chr3_1192, PAS_chr1-4_0561 and PAS_chr4_0624), phosphoglucomutase (PAS_chr 1-

4_0264), glucose-6-phosphate dehydrogenase (PAS_chr 2-1_0308) suggest that during adapta-

tion to growth on methanol, metabolic reserves of glycogen, trehalose and cell wall β,D glucans

(see below) were being degraded. An additional feature was the induction of mitochondrial al-

cohol (PAS_chr2–1_0472) and aldehyde dehydrogenases (PAS_chr2–2_0853 and

PAS_chr3_0987). The former could have been involved in redox shuttling across the mito-

chondrial membrane [36], while the latter might be supplying acetate for histone acetylation

which must have increased following the massive induction of the nuclear acetylCoA synthase

2 (PAS_chr3_0403)

Fig 3. Expression of PCK1, PYC and PYK during fed-batch culture, 0 (before), 2 and 4 hours after the
start of methanol addition to wild-type GS115 (black), TRY1-1 (blue) and TRY1-3 (red). Error bars show
SEM.

doi:10.1371/journal.pone.0119637.g003
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At a metabolomic level, induction of methanol oxidation was characterised by increased ex-

tracellular production of 3-hydroxybutyrate and an intracellular and extracellular spike in for-

mate (Fig. 4A), which were more pronounced in GS115 than TRY1-1. As the former was not

observed with TRY1-3, evidence that acetylCoA acetyltransferase activity was enhanced in

GS115 compared to the recombinant may be significant. Because metabolite profiles may lag

transcriptional induction, the formate spike is difficult to track but the increased expression of

S-(hydroxymethyl)glutathione dehydrogenase and S-formyl glutathione hydrolase without in-

creased formate dehydrogenase activity in the 0–2h and 0–4h post-induction profiles (results

not shown) suggests that there may have been some imbalance. Taken together, these two pro-

files suggest a possible redox imbalance in cells adapting to growth on methanol, inhibiting the

induction of formate dehydrogenase and using acetoacetate as a redox sink.

However, this transcriptional and metabolomic pattern was different with TRY1-3 where, at

4h, glycolysis (S12 and S15 Figs.) and a classic TCA cycle (S11 and S14 Figs.) remained up-reg-

ulated compared to GS115. This is consistent with the up-regulation of glycogen breakdown at

both 2h and 4h in TRY1-3 (compared to GS115), suggesting greater starvation (lack of metha-

nol derived energy). This pattern is also clear from a TRY1-3 time course where mobilisation of

carbohydrate reserves was evident within 1h of induction. The first 4h of induction after meth-

anol addition were characterised by a transient rise in extracellular α- and/or β-D-glucose (the

two mutarotate in solution) accumulation in all strains, but which was particularly pronounced

in TRY1-3 (Fig. 4D). α-D-glucose production could reflect the breakdown of trehalose, β-D-

glucose on the other hand would be derived from β-D-glucans present in the yeast cell wall, in-

dicating an active breakdown process. Between 0 and 1h, the gene encoding β,1,4-D glucanase

was significantly induced, consistent with the latter, while at 2h the relevant (α and β) hexoki-

nases (PAS_chr1–4_0447, PAS_chr3_1192) were up-regulated in TRY1-3 compared to GS115,

indicating that the cells were trying to actively scavenge and import this glucose.

By 4h, both GS115 and TRY1-1 were recovering from the initial shock of transfer from glyc-

erol to methanol and tRNA synthases were up-regulated compared to their expression levels at

2h. Comparison with TRY1-3 shows that the tRNA synthases were neither significantly upre-

gulated in a 0–4h time course comparison and were significantly down-regulated (or less up-

regulated) in a 4h comparison between TRY1-3 and GS115 or TRY1-1. Thus, this recovery was

happening much more slowly in TRY1-3, consistent with the delay in the characteristic spike

in formate accumulation in TRY1-3 cultures (Fig. 4A).

Expression associated with heterologous protein production. In TRY1-1 and TRY1-3

the switch to methanol as a substrate induces heterologous protein production and, as revealed

above, this is against a background of cells undergoing transient (in the case of TRY1-1) or pro-

longed starvation. A number of responses associated with the switch from glycerol to methanol

could clearly have a significant effect on secretion. In particular, in GS115 there was an increase

in expression of ER specific ubiquitin ligase (PAS_chr3_0924) and ER associated degradation

(ERAD, PAS_chr1-1_0084), together with a decrease in the expression of some key ER associ-

ated protein export proteins such as Sec61 (PAS_chr2-2_210, PAS_chr1-3_0202) and Hsp40

(S16 Fig.). Together with increased proteasomal activity and autophagy, this indicates that the

switch to methanol utilisation actually results in degradation and recycling of some of the ER

at a time when the demand for heterologous protein secretion is increasing.

Activities specifically induced or down-regulated as a result of heterologous protein expres-

sion and secretion were assessed by comparison between the array profiles of TRY1-1 or TRY1-

3 and the parent strain GS115 at 2 and 4h after induction. In GS115 the 0–2h comparison

showed down-regulation of some ER related export functions, probably related to the inter-

conversion of ER to peroxisomes and reduction in ER capacity. Comparison between TRY1-1

and GS115 after 2h induction (S16 and S17 Figs.) shows up-regulation of genes encoding the
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Sec61 translocon (SEC61 α and γ, SEC62 and SEC63 PAS_chr2–2_210, PAS_chr1-3_0202,

PAS_chr3_1014), the ER Kar2p chaperone complex (KAR2/BiP PAS_chr2–1_0140,HSP40)

and protein disulphide isomerase (PDI PAS_chr4_0844), both key components of the ER

Fig 4. Metabolite accumulation profiles during fed-batch culture from 0 (before) to 24 hours after the
start of methanol addition to wild-type GS115 (black), TRY1-1(blue) and TRY1-3 (red), strains
containing 1 and 3 gene copies of the human typsinogen gene, respectively, under the control of the
AOX1 promoter. From top to bottom, panels represent a) formate (external), b) arabitol (external), c)
trehalose (external), d) α / β-D-glucose (external), e) lactate (internal). Error bars show SEM.

doi:10.1371/journal.pone.0119637.g004
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protein folding machinery, dolichyl-diphosphooligosaccharide-protein glycosyltransferase

(STT), oligosaccharide transferase (OST PAS_chr2–1_0423, PAS_chr3_0741,

PAS_chr4_0610), the glycoprotein chaperone calnexin (CNX) together with SEC23/24 (COPII

related). The ERAD pathway and proteasome biogenesis were not significantly different from

GS115, although both of these pathways were up-regulated between 0 and 2h in GS115. Some

heterologous protein expression and secretion related activities were clearly induced at time 0

(see below). Nonetheless, time course comparison of TRY1-1 between 0 and 2h shows that

SEC61, OST, CNX and PDI were also further up-regulated by induction of TRY1-1 expression,

compared to GS115; after 4h induction, the pattern was clearly retained, with no relative up-

regulation of the ERAD pathway.

Induction of the unfolded protein response, characterised by increased expression of the

chaperones Kar2p and Pdi is controlled by the production of Hac1p, the product of a spliced

HAC1mRNA. In P. pastoris, control of Hac1p expression appears to be via up-regulation of

HAC1 expression rather than control of the splicing reaction [28] Consistent with this, the ex-

pression ofHAC1 increased approximately 5 fold in the first 2h of induction of TRY1-1, where-

as it barely changed in GS115 (Fig. 5). Significantly, the lack of further induction of ERAD

suggests that, with a single copy of TRY1, the increased traffic through the ER is managed

adequately.

Based on the tube culture results we would have expected that the ER related chaperones

would have been further up-regulated in TRY1-3 compared to the situation with TRY1-1 at 2h,

and ERAD-related activities would also have been stimulated. Surprisingly, although both sets

of activities were elevated compared to GS115 at the same time points, they were significantly

lower than in TRY1-1. Significantly, this lack of induction of UPR in TRY1-3 correlated with a

relatively minor increase in expression ofHAC1, compared to that observed with TRY1-1, indi-

cating that the complete cessation of growth was not the result of secretion stress (Fig. 5). One

of the few secretion related functions that was up-regulated in TRY1-3 compared to TRY1-1

was GLCII, the product of which catalyses both glycosylation and deglycosylation, so could

have a scavenging function.

Evidence of metabolic stress in TRY1-3. Even before detailed analysis of the microarray

data it was clear that TRY1-3 cells were behaving differently from both GS115 and TRY1-1

cells. Notably, the switch to methanol led to a complete cessation of growth for an extended pe-

riod and the metabolomics profile showed an initial accumulation of extracellular arabitol, fol-

lowed by trehalose accumulation (Fig. 4B,C), both signs of metabolic, particularly oxidative

stress. Arabitol production derives from reduction of intermediates in the pentose phosphate

pathway, such as xylulose or ribulose. The only gene directly identifiable as catalysing this

Fig 5. Expression of HAC1 during fed-batch culture, 0 (before), 2 and 4 hours after the start of
methanol addition to wild-type GS115 (black), TRY1-1(blue) and TRY1-3 (red), strains containing 1 and
3 gene copies of the human typsinogen gene, respectively, under the control of the AOX1 promoter.
Error bars show SEM.

doi:10.1371/journal.pone.0119637.g005
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function was "D-arabitol-2-dehydrogenase”, which is clearly strongly induced in TRY1-3.

However, the timescale of induction (Fig. 6) suggests that it may be responding to the presence

of arabitol and be involved in conversion back to ribulose (note that production and uptake are

catalysed by different enzymes in C. albicans [37]). Baumann et al [38] suggested that arabitol

production was due to the activity of “YDL124W”, which is certainly expressed at a higher

level in TRY1-3 than the other strains at 0h (Fig. 6). However, the subsequent induction of this

activity in GS115 and TRY1-1 does not coincide with increased arabitol production in these

strains, so the origin of arabitol accumulation in P. pastoris remains uncertain.

Expression prior to induction with methanol

Excess glycerol is a catabolite repressor of AOX1 expression but induction has been observed

when methanol was added to cultures growing on limiting glycerol concentrations [39]. Fur-

thermore, a low level (compared to fully induced) of AOX1 de-repression has been observed

when cells are starved of a carbon source and therefore reliant on breakdown of endogenous re-

serves, and also in glycerol limited continuous cultures [40]. While methanol utilisation path-

ways genes were clearly induced after addition of methanol, it is apparent (Fig. 2) that all of

these steps were being expressed prior to the addition of methanol in GS115 and the

recombinant cells.

Significantly, in the context of de-repression of AOX1 expression, both TRY1-1 and TRY1-3

showed up-regulation of both cytoplasmic and ER lumen based protein glycosylation activities

associated with core N-glycosylation (S17 Fig. eg PAS_c121_0002, PAS_chr3_0944), consistent

with the expression of a glycosylated heterologous protein. So, at this stage it was clear that

TRY1 was being expressed, seemingly in a manner which reflected gene copy number (eg

PAS_chr3_0944). However, this clearly had a cost to the host cell. Compared to GS115, TRY1-

1 showed some down-regulation of ribosomal protein synthesis and ribosomal biogenesis,

whereas both of these were dramatically down-regulated (S1 Fig.) in TRY1-3 (the difference

was also evident in a comparison of TRY1-1 and TRY1-3). In addition TRY1-3 had reduced

Fig 6. Expression of the gene encoding D-arabitol-2-dehydrogenase (top) and “YDL124W” (bottom), 0
(before), 2 and 4 hours after the start of methanol addition to wild-type GS115 (black), TRY1-1(blue)
and TRY1-3 (red), strains containing 1 and 3 gene copies of the human typsinogen gene, respectively,
under the control of the AOX1 promoter. Error bars show SEM.

doi:10.1371/journal.pone.0119637.g006
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expression of RNA polymerase I and III, pol III associated tRNA 5’ and 3’ end cap processing,

purine and pyrimidine biosynthesis, DNA replication and translation initiation factors, and

even showed an increase in autophagy (S7 Fig.), ubiquitin ligase (S9 Fig.) and proteasomal ac-

tivity (S8 Fig.), in comparison with GS115. Increased autophagy and proteasomal activities are

similar to the pattern seen when comparing induction in GS115 between 0 and 2h. However,

while at t = 0, there may also have been some peroxisome biogenesis associated with the de-

pression of methanol oxidation genes, nutritional starvation responses/growth rate reduction

was also greater in TRY1-3 than GS115.

Discussion

The AOX1 induction system is described as tightly controlled and dependent on methanol for

induction but the level of control is substrate and condition dependent [39]. While excess glyc-

erol is a strong catabolite repressor, starvation or limiting concentrations of glycerol allow de-

repression of AOX1 gene expression. This means that it is possible to obtain growth in continu-

ous culture on glycerol-methanol or glucose-methanol combinations so long as the multi-car-

bon substrate is in limiting amounts [40]. In a typical induction regime, during the early stage

of fed-batch growth on glycerol, the glycerol concentration in the culture will be high, but as

the cell density increases, just before induction with methanol the glycerol concentration will

have become growth limiting (1) (ie the concentration in the culture will be very low). Thus, it

is not surprising that heterologous protein expression will have started prior to the addition of

methanol. With the multiple gene-copy strains it is possible that de-repression occurs even ear-

lier due to the change in stoichiometry of repressors and cognate binding site in the AOX1

promoter.

De-repression of heterologous protein synthesis prior to the switch to methanol clearly

presents an additional metabolic load on the cells, which are already undergoing a decline in

growth rate in a fed-batch regime with a constant supply of a growth limiting substrate. Com-

parison between GS115, TRY1-1 and TRY1-3 at t = 0 confirms that heterologous protein ex-

pression was accompanied by a typical starvation related down-regulation of ribosomal activity

and up-regulation of autophagy and proteasomal activity in a TRY1 copy-number-dependent

pattern. It should be recognised that this scenario is fundamentally different from a typical

tube or shake flask culture where cells are grown in an excess of an initial carbon source, har-

vested and then transferred into a methanol medium.

The switch from glycerol to methanol clearly has further dramatic effects on growth rate,

metabolic and energetic priorities of the cells and internal membrane organisation. While the

expression of a single copy of TRY1 increased this burden, it was tolerated and in many ways

exhibited a classical controlled UPR transcriptional profile, with little further induction of

ERAD, although notably the level ofHAC1 induction (Fig. 4) was higher in fed-batch than in

the tube culture experiments. However, the presence of 3 copies of TRY1, which gave a severe

UPR response and reduced protein secretion in tube cultures, presumably due to the effects of

ERAD [6], had a completely different profile in methanol-induced fed-batch culture. A high

level of AOX1 induction accompanied by a low level ofHAC1 induction indicates a disconnec-

tion between transcription of TRY1 (under the control of the AOX1 promoter) and protein ex-

port. The most likely explanation for this is some form of translational arrest meaning that in

TRY1-3 the TRY1 transcripts were not being quantitatively translated and therefore traffic

through the ER was significantly less than with TRY1-1. This is consistent with the observation

of similar levels of induction of the methanol dissimilation pathway genes in TRY1-3 and

TRY1-1, accompanied by transcriptional and metabolomic evidence for extensive breakdown

of carbohydrate reserves and slow adaptation of TRY1-3 to grow on methanol.
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Translational arrest can occur due to a variety of stress factors including high levels of UPR

[41], heat shock [42], nutritional [43] and osmotic stress [44]. In the case of TRY1-3, high levels

of UPR were clearly not the cause, and differences in heterologous protein expression were un-

likely to cause osmotic stress. Stress-related translational arrest occurs through interference

with one of two stages of the assembly of a functioning ribosomal translation initiation com-

plex. This leads to the formation of stress bodies which sequester specific mRNAs and certain

initiation factors meaning that only a selective subclass of mRNAs can be translated [42, 45].

Several stress factors stimulate Gcn2p to phosphorylate eIF2 α which inhibits the GTP binding

necessary for translational initiation. A later stage in initiation complex assembly is dependent

on a functional TOR complex, which responds to the nutritional status of the cell. Under gen-

eral nutritional starvation the function of Tor2p is compromised which indirectly leads to the

degradation of eIF-4G [46], which normally serves as a scaffold for late stage assembly of the

translation initiation complex.

The most likely stress factor which could give rise to translational arrest was a nutritional

imbalance resulting from the demands for a high level of protein synthesis in cells undergoing

nutritional limitation. It is evident that the TOR system must have been responding to general

starvation in GS115 and the TRY1 constructs, as this is the master repressor of autophagy [47]

and also indirectly controls ribosomal protein production [48]. However, if translational arrest

occurred in GS115 and TRY1-1 it was short lived, compared to the situation with TRY1-3,

which indicates that other factors may have been involved. Given the higher demand for pro-

tein synthesis in TRY1-3, it was possible that, combined with general starvation, this led to an

effective starvation for amino acids (ie demand outstripped supply). This has a dedicated con-

trol mechanism (general amino acid control responding to the presence of uncharged tRNAs)

linked to phosphorylation of Gcn2p but also involving the (degree of starvation-dependent)

control of translation of Gcn4p, a transcriptional activator of amino acid biosynthetic genes

[49]. Although the activation of this pathway involves phosphorylation and translational con-

trol (undetectable in a microarray), there was no evidence for higher levels of expression of

amino acid biosynthetic genes in TRY1-3 compared to GS115 at any of the time points. Indeed,

the transcriptional abundance of GCN4 in TRY1-3 at t = 0 was significantly below that of

GS115 and TRY1-1, suggesting that whatever stress was leading to translational arrest was also

limiting the possibility for activation of the GCN4 dependent signal transduction pathway

(Fig. 7). Interestingly, the profile of GCN4 expression reflects the changes in growth rate, with a

reduction between 0 and 2h followed by an increase at 4h in both GS115 and TRY1-1, whereas

in TRY1-3 that expression level stays low from 0–4h.

Major clues as to the likely cause of translational arrest come from the metabolomic profile

of TRY1-3, with a spike of intracellular and extracellular arabitol between 0–4h being consis-

tent with cells being stressed either before or during induction with methanol. Yeasts character-

istically produce polyols such as glycerol and arabitol [50] in response to a variety of

environmental stresses (osmotic, temperature, oxidative). In S. cerevisiae, glycerol appears to

be the major stress-related polyol, with arabitol playing a minor role, whereas in P. pastoris and

in P. anomala the predominant polyol appears to be arabitol [51, 52]. In the closely related

Candida spp, glycerol is produced in response to osmotic stress, whereas production of arabitol

results from either temperature stress or oxidative stress [53]. In our case, oxidative stress was

unlikely to be the cause given that TRY1-3 showed a lower induction of respiratory activity 2h

after methanol addition compared to GS115. Additionally, oxidative stress has characteristic

transcriptional induction signatures [54], with hydrogen peroxide (eg TRX2, TRR1, TSA1 and

CTT) and organic peroxides inducing expression of AHP1 and GPX1-3 and superoxide induc-

ing expression of SOD1, SOD2. While many of these activities were induced as cells adapted to
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Fig 7. Expression of starvation and stress response genes, 0 (before), 2 and 4 hours after the start of
methanol addition to wild-type GS115 (black), TRY1-1(blue) and TRY1-3 (red), strains containing 1 and
3 gene copies of the human typsinogen gene, respectively, under the control of the AOX1 promoter.
From top to bottom, panels representGCN4, TRX2, TSA1, AHP1, SOD1, SOD2. Error bars show SEM.

doi:10.1371/journal.pone.0119637.g007
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growth on methanol there was no significant difference between TRY1-1 and TRY1-3 in any of

these signatures (Fig. 7), suggesting that they were managed, rather than stress responses.

Even before methanol addition TRY1-3 had elevated levels of intracellular lactate (Fig. 3E)

which suggests a) that glycogen derived glucose was already a significant energy source (lactate

production from glycerol would have no metabolic advantage) but b) there was an imbalance

between the NADH generation in the cytosol and transfer or use in the mitochondria. Com-

bined with evidence for a restricted increase in respiratory activity after methanol addition

(compared to GS115), the production of arabitol can be seen, not as a general stress response,

but as a response to redox imbalance in the cytosol. In S. cerevisiae, cytoplasmic redox stress is

known to induce glycerol production in a pathway which is regulated separately from the gen-

eral stress response pathway [55]. Even though a high dissolved oxygen tension was main-

tained through control of aeration, limitation of mitochondrial capacity to exchange reducing

equivalents with the cytosol would have the same physiological consequences as hypoxia, in

which arabitol production has also been observed [38]. Similarly, the filamentous fungus As-

pergillus niger produces large amounts of polyols, principally mannitol, in response to low oxy-

gen levels, to oxidize the NADH that would otherwise accumulate as a consequence of reduced

oxidative metabolism [56, 57]. Given that the de-repressed expression of TRY1 appeared to be

following the expected profile based on copy number, this suggests that the high metabolic de-

mands of heterologous protein production in the TRY1-3 strain, combined with the metabolic

stress of a classical glycerol to methanol fed-batch regime resulted in a severe cytosolic-mito-

chondrial redox imbalance, sufficient to cause a stress response which appears to have resulted

in translational arrest. While the effects of redox stress on polyol production have previously

been demonstrated in both S. cerevisiae and P. pastoris, this has not previously been character-

ised as a major stress response that can lead to translational arrest. In S. cerevisiae this may not

have been observed because, as a Crabtree-positive yeast, physiologically relevant redox stress

can be resolved by the production of ethanol.

Examination of the metabolomic profile of all of the strains suggests that a degree of redox

stress is characteristic of the switch from glycerol to methanol even in the absence of heterolo-

gous protein synthesis. All strains start to accumulate some arabitol and β-hydroxybutyrate

(less in TRY1-3 until 4h after induction) after the addition of methanol and also have a charac-

teristic formate spike, where formate accumulates transiently, presumably due to a redox im-

balance reducing the rate of formate oxidation. However, in TRY1-3 arabitol accumulation is

higher, the formate spike appears later and only in this strain is there a significant production

of α, α trehalose, the production of which coincides with the peak of arabitol production. Tre-

halose is a classic stress response molecule which can have a number of functions including

providing protection of proteins and membranes after heat shock and control of glycolysis. In-

tracellular accumulation appears to be the result of an imbalance between synthesis and degra-

dation, resulting primarily from post-translational control of the different activities.

A clear and unexpected pattern has emerged from this data which provides an additional

explanation for poor secreted heterologous protein production in bioreactors, where results

sometimes differ from those obtained in shake flasks. The standard fed-batch production re-

gime leads to de-repression of heterologous protein production before methanol induction,

and this is in a background of metabolic stress caused by declining growth rate. With the addi-

tion of methanol, cells with a high existing metabolic load due to heterologous protein produc-

tion undergo a stress response caused by a redox imbalance between the cytosol and

mitochondria. This causes a transient and possibly selective translational arrest, which affects

both heterologous protein production and the rate of adaptation to growth on methanol. As a

result, titres of heterologous proteins produced using this standard fed-batch production re-

gime, may be dramatically lower than those predicted from shake flask studies.
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Supporting Information

S1 Fig. Expression levels of Try1p in tube cultures. Try1p levels (arbitrary scale) in the cul-

ture supernatant of 50ml tube cultures of recombinant strains containing 1, 2 and 3 copies of

the TRY1 grown for 24h in BMMY analysed on an Experion Pro260 protein analysis chip

(BioRad). The same volume of supernatant was applied to each lane.

(TIF)

S2 Fig. Expression levels of ribosome biogenesis genes. Log 2 normalised expression levels of

ribosome biogenesis genes grouped according to KEGG pathways. Genes are uniquely identi-

fied by PAS (PAStoris) codes and expression was determined at 0, 2 and 4h after methanol ad-

dition in fed-batch cultures of GS115, TRY1-1 and TRY1-3.The associated trees cluster genes

with similar expression profiles across all conditions.

(PDF)

S3 Fig. Expression levels of ribosomal protein biosynthesis genes. Log 2 normalised expres-

sion levels of ribosomal protein biosynthesis genes grouped according to KEGG pathways.

Genes are uniquely identified by PAS (PAStoris) codes and expression was determined at 0, 2

and 4h after methanol addition in fed-batch cultures of GS115, TRY1-1 and TRY1-3.The asso-

ciated trees cluster genes with similar expression profiles across all conditions.

(PDF)

S4 Fig. Expression levels of genes encoding RNA Polymerase I, II and III associated pro-

teins.Heat maps of log 2 normalised expression levels of genes encoding RNA Polymerase I, II

and III associated proteins grouped according to KEGG pathways. Genes are uniquely identi-

fied by PAS (PAStoris) codes and expression was determined at 0, 2 and 4h after methanol ad-

dition in fed-batch cultures of GS115, TRY1-1 and TRY1-3.The associated trees cluster genes

with similar expression profiles across all conditions.

(PDF)

S5 Fig. Expression levels of tRNA synthase genes.Heat maps of log 2 normalised expression

levels of tRNA synthase genes. Genes are uniquely identified by PAS (PAStoris) codes and ex-

pression was determined at 0, 2 and 4h after methanol addition in fed-batch cultures of GS115,

TRY1-1 and TRY1-3.The associated trees cluster genes with similar expression profiles across

all conditions.

(PDF)

S6 Fig. Expression levels of genes encoding proteins involved in peroxisomal biogenesis.

Heat maps of log 2 normalised expression levels of genes encoding proteins involved in peroxi-

somal biogenesis grouped according to KEGG pathways. Genes are uniquely identified by PAS

(PAStoris) codes and expression was determined at 0, 2 and 4h after methanol addition in fed-

batch cultures of GS115, TRY1-1 and TRY1-3.The associated trees cluster genes with similar

expression profiles across all conditions.

(PDF)

S7 Fig. Expression levels of genes associated with autophagy.Heat maps of log 2 normalised

expression levels of genes associated with autophagy, grouped according to KEGG pathways.

Genes are uniquely identified by PAS (PAStoris) codes and expression was determined at 0, 2

and 4h after methanol addition in fed-batch cultures of GS115, TRY1-1 and TRY1-3.The asso-

ciated trees cluster genes with similar expression profiles across all conditions.

(PDF)
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S8 Fig. Expression levels of genes associated with proteasomal activity.Heat maps of log 2

normalised expression levels of genes associated with proteasomal activity, grouped accord-

ing to KEGG pathways. Genes are uniquely identified by PAS (PAStoris) codes and expres-

sion was determined at 0, 2 and 4h after methanol addition in fed-batch cultures of GS115,

TRY1-1 and TRY1-3.The associated trees cluster genes with similar expression profiles across

all conditions.

(PDF)

S9 Fig. Expression levels of genes associated with ubiquitin mediated proteolysis.Heat

maps of log 2 normalised expression levels of genes associated with ubiquitin mediated proteol-

ysis, grouped according to KEGG pathways. Genes are uniquely identified by PAS (PAStoris)

codes and expression was determined at 0, 2 and 4h after methanol addition in fed-batch cul-

tures of GS115, TRY1-1 and TRY1-3.The associated trees cluster genes with similar expression

profiles across all conditions.

(PDF)

S10 Fig. Expression levels of genes encoding proteins involved in oxidative phosphoryla-

tion.Heat maps of log 2 normalised expression levels of genes encoding proteins involved in

oxidative phosphorylation, defined by KEGG families, at 2h and 4h after methanol addition

in fed-batch cultures of GS115, TRY1-1 and TRY1-3, compared to those of GS115 before

methanol addition. The associated trees cluster genes with similar expression profiles across

all conditions.

(PDF)

S11 Fig. Expression levels of genes encoding proteins involved in TCA Cycle.Heat maps of

log 2 normalised expression levels of genes encoding proteins involved in the TCA Cycle, de-

fined by KEGG families, at 2h and 4h after methanol addition in fed-batch cultures of GS115,

TRY1-1 and TRY1-3, compared to those of GS115 before methanol addition. The associated

trees cluster genes with similar expression profiles across all conditions.

(PDF)

S12 Fig. Expression levels of genes encoding proteins involved in Glycolysis/gluconeogene-

sis.Heat maps of log 2 normalised expression levels of genes encoding proteins involved in gly-

colysis/gluconeogenesis, defined by KEGG families, at 2h and 4h after methanol addition in

fed-batch cultures of GS115, TRY1-1 and TRY1-3, compared to those of GS115 before metha-

nol addition. The associated trees cluster genes with similar expression profiles across all condi-

tions.

(PDF)

S13 Fig. Expression levels of genes encoding proteins involved in pentose phosphate cycle.

Heat maps of log 2 normalised expression levels of genes encoding proteins involved in the

pentose phosphate cycle, defined by KEGG families, at 2h and 4h after methanol addition in

fed-batch cultures of GS115, TRY1-1 and TRY1-3, compared to those of GS115 before metha-

nol addition. The associated trees cluster genes with similar expression profiles across all condi-

tions.

(PDF)

S14 Fig. KOBAS comparisons between TCA cycle gene expression levels in TRY1–3 and

GS115, 4 hours after addition of methanol. Comparisons are based on KEGG pathways.

Genes where expression is significantly up-regulated (red) or down-regulated (blue) in TRY1-3

compared to GS115 are highlighted. P pastoris genes where expression is not significantly
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different are highlighted in green.

(TIF)

S15 Fig. KOBAS comparisons between glycolysis/gluconeogenesis gene expression levels in

TRY1-3 and GS115, 4 hours after addition of methanol. Comparisons are based on KEGG

pathways. Genes where expression is significantly up-regulated (red) or down-regulated (blue)

in TRY1-3 compared to GS115 are highlighted. P pastoris genes where expression is not signifi-

cantly different are highlighted in green

(TIF)

S16 Fig. Expression levels of genes associated with protein processing in the ER.Heat maps

of log 2 normalised expression levels of genes associated with protein processing in the ER,

grouped according to KEGG pathways. Genes are uniquely identified by PAS (PAStoris) codes

and expression was determined at 0, 2 and 4h after methanol addition in fed-batch cultures of

GS115, TRY1-1 and TRY1-3. The associated trees cluster genes with similar expression profiles

across all conditions.

(PDF)

S17 Fig. Expression levels of genes associated with N-glycan biosynthesis.Heat maps of log

2 normalised expression levels of genes associated with N-glycan biosynthesis, grouped accord-

ing to KEGG pathways. Genes are uniquely identified by PAS (PAStoris) codes and expression

was determined at 0, 2 and 4h after methanol addition in fed-batch cultures of GS115, TRY1-1

and TRY1-3. The associated trees cluster genes with similar expression profiles across all con-

ditions.

(PDF)
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