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The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative
agent of COVID-19, which has broken out worldwide for more than two years. However,
due to limited treatment, new cases of infection are still rising. Therefore, there is an urgent
need to understand the basic molecular biology of SARS-CoV-2 to control this virus.
SARS-CoV-2 replication and spread depend on the recruitment of host ribosomes to
translate viral messenger RNA (mRNA). To ensure the translation of their own mRNAs, the
SARS-CoV-2 has developed multiple strategies to globally inhibit the translation of host
mRNAs and block the cellular innate immune response. This review provides a
comprehensive picture of recent advancements in our understanding of the molecular
basis and complexity of SARS-CoV-2 protein translation. Specifically, we summarize how
this viral infection inhibits host mRNA translation to better utilize translation elements for
translation of its own mRNA. Finally, we discuss the potential of translational components
as targets for therapeutic interventions.
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INTRODUCTION

SARS-CoV-2 is a coronavirus with a single-stranded positive-sense RNA genome that can infect a
wide range of vertebrates, including wild animals, domestic animals and humans (1–3).
Coronaviruses receive their name for the surface of each virion outer membrane is decorated
with characteristic “crown-like” spikes that bind to host receptors and confer specificity and
infectivity (4, 5). The coronavirus family can be classified into four genera, including alpha-
coronavirus, beta-coronavirus, gamma-coronavirus, and delta-coronavirus (6–9). The seven
coronaviruses known to infect humans are alpha-coronavirus and beta-coronavirus, while
gamma and delta-coronaviruses mainly infect birds. In humans, the seven coronaviruses include
four epidemic seasonal coronaviruses (NL63, OC43, 229E and HKU1) and three highly pathogenic
human coronaviruses (SARS-CoV, SARS-CoV-2 and Middle East Respiratory Syndrome CoV
(MERS-CoV)). Coronavirus disease 2019 (COVID-19) caused by the SARS-CoV-2 virus has
become one of the largest and most destructive pandemics in recorded human history. The
COVID-19 pandemic has led researchers around the world to use their knowledge to address the
problem of infecting humans with SARS-CoV-2, and there are no effective antiviral drugs against
this virus (10–16). SARS-CoV-2 belongs to the genus Betacoronavirus of the family Coronaviridae.
The genome sequence of SARS-CoV-2 is 80% and 50% similar to that of SARS-CoV and MERS-
CoV (17–19). SARS-CoV, MERS-CoV or SARS-CoV-2 infection can develop into a serious, life-
org March 2022 | Volume 13 | Article 8574901
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threatening respiratory disease and lung damage through
infection of bronchial epithelial cells, lung cells and respiratory
tract cells (20–22). When SARS-CoV-2 enters into a host cell, it
rapidly reproduces using the energy and resources of the host
cells, which is critical for deciphering molecular evolution and
the controlling the pandemic (23–25).

The infection of SARS-CoV-2 usually results in a large-scale
remodeling of gene expression in cells, filling cells with viral
transcripts, disrupting innate immune pathways and translating
the viral proteins (5, 26, 27). In the multi-level regulatory
network, protein synthesis is the focus of control. Since the
translation of viral proteins depends on the translation
machinery of the cell, coronaviruses have developed a variety
of mechanisms to hijack the translation machinery and inhibit
the antiviral defense mechanism (28–30). This phenotype is
known as host shutoff, which not only increases viral
transcription access to ribosomes, but also promotes innate
immunity escape. Host shutoff is a key feature of coronavirus
infection and has been shown to have a significant inhibitory
effect on the innate immune response of a wide variety of
pathogenic coronaviruses (including SARS-CoV, MERS, and
SARS-CoV-2) (31). This epidemic highlights the need to
develop effective antiviral compounds to combat coronavirus
infection based on the understanding of the molecular and
cellular mechanisms of coronavirus infection (27). In this
review, we summarize the strategy used by SARS-CoV-2 to
hijack the host translation system to promote viral
protein translation.
PROTEINS ENCODED BY CORONAVIRUS
GENOME

The SARS-CoV-2 genome is about 30 kb in length that contains
13 open reading frames (ORFs) and encodes 28 major proteins,
including 16 nonstructural proteins (NSPs), 4 structural proteins
and 6 accessory proteins (Figure 1A) (16). In SARS-CoV-2
infected cell, approximately two-thirds of the positive-sense
genomic RNA (gRNA) at its 5’ end is directly translated into
two polyproteins from the overlapping ORF1a and ORF1b (2,
32). ORF1a is translated into 4,405 amino acids long polyprotein
1a (pp1a), while ORF1b requires a -1 programmed ribosomal
frameshift event (-1 PRF) to synthesize pp1b with 7096 amino
acids. The pp1a is cleaved into NSP1 to NSP11, whereas the pp1b
is sliced into NSP1 to NSP10 and NSP12 to NSP16 (Figure 1A)
(7, 33–35). The rest of 30% viral genome on the 3’ end is
transcribed into 11 subgenomic RNAs (sgRNAs) encoding four
structural proteins, including Spike (S), Membrane (M),
Envelope (E), and Nucleocapsid (N) proteins, as well as
accessory proteins (3a, 3c, 6, 7a, 7b, 8 and 9b) with unknown
function (6, 8, 9, 33, 36).

Nonstructural Proteins
Among the nonstructural proteins, the papain-like protease
(PLpro) activity of NSP3, the chymotrypsin-like protease
(3CLpro) activity of NSP5, and the RNA-dependent
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polymerase (RDRP) activity of NSP12 are the core of
coronavirus replication (37). Pp1a is translated early and will
be cleaved into NSP1 to NSP11 by NSP3 or by NSP5, while
pp1ab synthesized through the -1 PRF is cleaved into NSP1-
NSP10 and NSP12 to NSP16 (38, 39) (Figure 1A). PLpro
hydrolyzes the viral polyprotein precursors pp1a and pp1ab at
three sites to produce the non-structural proteins NSP1, NSP2,
and NSP3 (40, 41). The 3CLpro cleaves viral polyproteins, pp1a
and pp1ab, at 11 distinct sites generating NSP4 to NSP16 (40,
41). Inhibitors targeting this enzyme prevent viral replication,
making 3CLpro an attractive target for the development of anti-
coronavirus drugs. All of these NSPs, except for NSP1 and NSP2,
are considered essential for transcription and replication of the
viral RNA (42–44). In addition to protease functions, NSPs are
involved in modulating the host cell environment, anchoring the
viral replication complexes to subcellular domains and driving
genome replication, transcription and mRNA processing (2, 38).
The SARS-CoV-2 proteins, NSP10, NSP13, NSP14, and NSP16,
cap the 5’ end of viral RNA (2). The 5’ cap facilitates viral mRNA
stability and translation and prevents detection by host innate
antiviral responses. The NSPs form the replication and
transcription complex (RTC), which transcribes the viral
genomic and sgRNA encoding structural and accessory
proteins (45).

Structural and Accessory Proteins
SARS-CoV-2 generates nine major sgRNAs that encode
structural proteins (that is S, M, E and N) and nucleocapsid
proteins, as well as other accessory proteins (46) (Figure 1A).
The structural and accessory proteins are encoded by ORFs
located in the downstream of viral genomes. These ORFs are
synthesized as a set of 5’-capped subgenomic mRNAs that carry
the respective ORFs in their 5’-terminal regions (2). The S
glycoprotein (150-200 kDa) is a trimeric transmembrane
protein with a predominant ectodomain and a short cytosolic
tail. It is cleaved by host proteases into two subunits. The trimeric
S-protein on the virus envelope binds specifically to the cell
receptor angiotensin converting enzyme 2 (ACE2), which
enables the virus to enter susceptible cells, thereby initiating
the first step in virus infection (3, 47–49). The M glycoprotein
(23-35 kDa) contains a short ectodomain, three transmembrane
domains (TMDs), and a C-terminal endodomain (50, 51). The M
protein is the most abundant virion protein and plays an
essential role during virus assembly (52). The E protein (8-12
kDa) is a minor transmembrane structural protein containing
three domains: An N-terminal hydrophilic ecto-domain, a
hydrophobic TMD, and then a long hydrophilic c-terminal
inner domain. The pentameric bundle of TMD forms iron
channels (IC), which probably play a role in the pathogenesis.
The N protein (43-50 kDa) has three domains: the N-terminal
domain (NTD) and C-terminal domain (CTD) are rich in basic
residues that interact with the genome, while domain 3 interacts
with the M protein (53). The M protein is a transmembrane
glycoprotein that interacts with S, E, and N proteins and is
essential for virus morphogenesis and budding (54). Structural
proteins are transported through the endoplasmic reticulum to
the Golgi secretion pathway, where the viral genome is packaged
March 2022 | Volume 13 | Article 857490
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into budding vesicles, which are then released as new viral
particles by exocytosis (2, 17).

Coronavirus accessory proteins are a group of highly variable
virus-specific proteins that have limited conservation even
within a single species, but their primary role is to help
regulate the host’s response to infection and are determinants
of viral pathogenicity (12, 14). The accessory genes of ORF3 and
ORF8 are the most variation between SARS-CoV-1 and SARS-
CoV-2 (7). However, the molecular functions of many accessory
proteins remain largely unknown due to a lack of homology with
accessory proteins of other coronaviruses or with other known
Frontiers in Immunology | www.frontiersin.org 3
proteins (55). A search for Kozak sequence of individual ORFs
for efficient translation shows a required purine A or G at the -4
position in ORF1a, S, M, 7a and 7b, 8 and N and a G at the +4
position in ORF1a, 3a and M (34, 56). An alternative antiviral
approach is to target host cell pathways that are essential for viral
replication, such as protein synthesis. Among the viral structural
proteins and accessory proteins expressed only by a newly
synthesized single sgRNA, the S, M, and E proteins are
integrated into the viral envelope (membrane) to form viral
particles. The interaction between S protein and cell surface
ACE2 not only helps the virus to penetrate the host cell, but also
A

B

FIGURE 1 | SARS-CoV-2 genome and replication cycle. (A) Genome organization of SARS-CoV-2. The single-stranded RNA genome encodes for NSPs, structural
proteins and accessory proteins. The sense RNA genome serves as a template for the translation of pp1a and pp1ab, which are cleaved into 16 NSPs. The
remaining 30% of the viral genome code at the 3’ end for structural and paraproteins. (B) SARS-CoV-2 replication cycle. b SARS-CoV-2 genome and replication
cycle. The virus enters the host cell by binding to the ACE2 receptor and releases its genome into the host cytoplasm, whereupon viral proteins are translated by the
host ribosome. New virions are assembled and released to complete the life cycle. The red parts are the localization sites of translation inhibitors that can be used for
antiviral drugs (Table 1). NSPs, nonstructural proteins; ACE2, receptor angiotensin converting enzyme 2; ORF, open reading frame; 43S PIC, 43S pre-initiation
complex; MNKs, MAPK-interacting kinases; MAPK, mitogen activated protein kinase; 4EBP, eIF4E binding protein; mTOR, mechanistic target of rapamycin; PABP,
poly (A) binding protein; ABCE1, ATP binding cassette subfamily E1; eIFs, eukaryotic initiation factor; eRFs, eukaryotic release factors; eEF1A, eukaryotic elongation
factor 1A; Xrn1, 5’-3’ exoribonuclease 1; gRNA, genomic RNA; sgRNA, subgenomic RNAs; ASOs, antisense oligonucleotides.
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activates Death-associated protein kinase 1 (DAPK1),
phosphorylates and releases the ribosomal protein L13a (57).
These events lead to the blocking of the translation of ORF1a and
S mRNA, which depends on the RNA structure of the RNA
element (57).

SARS-CoV-2 mRNA
Viruses can mimic the host’s mRNAs, which contains 5’ cap, 3’
polyadenylated tail, and untranslated regions (UTRs) on the 5’
and 3’ ends to take advantage of the host’s translational
machinery (46, 58–60). The 5’ and 3’ UTRs in the genome
RNA play essential regulatory roles in virus replication, viral
gRNA stability, host immunoregulation, and viral genome
encapsulation (61). The SARS-CoV-2 genome has an m7G-cap
structure, m7GpppA1, on the genome 5’ end, and a ~30-60-nt-
long (47nts in median length) poly(A) tail on the 3’end for viral
genome stability and preventing cellular exoribonuclease
digestion (16, 62, 63). The 5’ UTR of the SARS-CoV-2 genome
is 265-nt long and the 3’ UTR is 337-nt long (excluding the poly
(A) tail) (16). The 3’ UTR of SARS-CoV-2 also contains an
octanucleotide sequence 5’-GGAAGAGC-3’ with unknown
function located at ~70-80 nts of the 3’-end of the viral
genome. This sequence is conserved across all genera of the
coronaviridae and is a non-essential hyper-variable region (9, 64,
65). However, unlike most mammalian mRNAs, the coronavirus
genome has several ORFs between the 5’ end and the 3’ end, both
of which contain cis-acting signals involved in RNA replication
(11, 12). The transcribed sgRNA contain a common 5’ leader
sequence with 72-nt long, which is derived from the 5’ end of
viral genome (33, 62, 66) (Figure 1B).

Canonical Protein Translation
During protein synthesis, amino acids are linked into a
polypeptide chain, in which specific sequences are translated
from the nucleotide sequence of mRNA (67–69). It is generally
accepted that the vast majority of coronavirus mRNAs rely on
cap-dependent translation to produce proteins (59). A simplified
scheme for viral protein synthesis in host cell can be divided into
four steps: initiation, elongation, termination, and recycling
(Figure 1B) (70–72). The initiation step is the key step in
regulating the process of protein synthesis. mRNA activation is
initiated by the binding of 5’ cap to the eukaryotic initiation
factor 4F (eIF4F) complex. As shown in Figure 1B, the eIF4F
complex consists of cap-binding protein eIF4E, scaffold protein
eIF4G and the ATP-dependent RNA helicase eIF4A. During
protein translation, eIF4G can interact with poly (A) binding
protein 1(PABP1) to circularize mRNA (70).

The 40S ribosomal subunit is the nexus for translation
initiation, which recruits activated mRNA through multiple
eIFs-mediated process (Figure 1B). Under translation
initiation conditions, the 40S subunit binds to a variety of eIFs,
including eIF3, eIF1, eIF1A, eIF5 and the ternary complex of
eIF2-Met-tRNAi-GTP, thereby forming the 43S pre-initiation
complex (PIC) (73). The interaction of eIF3 and eIF4G promotes
the recruitment of activated mRNA by 43S-PIC to form a 48S
initiation complex. The 48S initiation complex scans the mRNA
Frontiers in Immunology | www.frontiersin.org 4
in a 5’ to 3’ direction to find the start codon (usually AUG) and
recruits the 60S ribosomal subunit to complete the 80S ribosome
translation initiation complex. The second step in cellular
protein translation is elongation, which is characterized by the
addition of amino acids to the growing polypeptide chain based
on the mRNA codon sequence. This process is mediated by the
eukaryotic elongation factors (eEFs). Here, eEF1a mediates the
cognate aminoacyl-tRNA recruitment to the ribosomal
aminoacyl site (A-site), the decoding takes place at the 40S A-
site, and the polypeptide chain is transferred from the peptidyl-
site (P-site) tRNA to the A-site tRNA. Then eEF2 mediates the
translocation of peptidyl-tRNA and deacetylated tRNA from A-
site and P-site to P-site and E-site, respectively. The elongation
step is repeated until the ribosome encounters one of the three
stop codons (UAA, UAG or UGA) that cannot accommodate
any of the aminoacyl-tRNA at the A-site. During termination,
the eukaryotic release factor 1 (eRF1) and eRF3 recognize a stop
codon in the decoding center of the 40S ribosome and release the
resulting peptide chain from the peptidyl-tRNA. The 80S
ribosome in the post-termination complex is dissociated into
40S and 60S ribosomal subunits by the recycling factor ABCE
(ATP binding cassette subfamily E). Taken together, these steps
form the basis of ribosome synthesis of eukaryotic proteins (74).

Non-Canonical Translation
Like many other RNA viruses, coronaviruses use non-canonical
translation mechanisms such as -1 PRF and ribosome leaky
scanning to expand their coding capabilities and fine-tune the
expression levels of certain viral proteins (Figure 2) (75, 76). In
ribosome leaky scanning, protein translation starts downstream
of the annotated start codon, which is driven by the suboptimal
nature of the upstream translation initiation signal. The
application of this mechanism was found in ORF3c, ORF7b
and ORF9b of SARS-CoV and SARS-CoV-2 (75, 77–79). The -1
PRF used in pp1ab translation requires a cis-acting RNA element
within the coding region that can redirect the elongating
ribosome to shift back 1 base in the 5’ direction back to the
first reading frame (80–86). The -1 PRF in the ORF1a/1b overlap
region are composed of a slippery sequence “U_UUA_AAC”
followed by a “stimulatory” RNA secondary structure, typically a
pseudoknot, located 5-7 nucleotides downstream of the slippery
sequence (Figure 2) (80, 82). The structured RNA pseudoknot
that stimulates the -1 PRF at the 3’ end of ORF1a is termed the
frameshift stimulation element (FSE) (60, 87). This element
interacts with the ribosomal subunit located at the entrance of
the mRNA channel and induces translation - 1 pause before FSE.
The fully unfolding of this tertiary RNA structure is slow and is
thought to promote the displacement of the ribosomal
frameshifting on the viral mRNA (83, 85, 88). The -1
frameshifting occurs at this slippery sequence where tRNAs are
supposed to dissociate from the mRNA and then shift by one
nucleotide in the 5’ direction to a codon into another reading
frame “UUU_AAA_C”, thereby generating an alternate gene
product by reading through the ORF1a stop codon (81, 84–86).

Compared to the genomic context, the sequence of SARS-
CoV-2 FSE is highly conserved to that of SARS-CoV except for a
single-nucleotide substitution (C13533A) (8, 11, 89). And the
March 2022 | Volume 13 | Article 857490
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FSE of SARS-CoV and SARS-CoV-2 contains three identical
stem architectures, the destruction of which affects the frame
shift efficiency (83, 90). This change is located at the loop region
in the molecule and is not expected to affect the structure of the
three-stemmed pseudoknot (89). This phenomenon indicates
that the optimal secondary RNA structure and RNA-RNA
interaction in the ribosomal frameshifting signal are important
for an effective -1 PRF (81, 86, 91, 92). It is thought that the
interaction between specific residues, newly emerged viral
polyproteins, and ribosome exit tunnels affects the efficiency of
-1 PRF (83, 93). The frameshift efficiency between ORF1a and
ORF1b is estimated to be 25% to 75%, which leads to a 1.4- to
2.2-fold overexpression of the protein encoded by ORF1a
compared to the protein encoded by ORF1b (33, 94). Studies
on SARS-CoV mutants with altered PRF levels have shown that
maintaining the expression ratio of ORF1a and ORF1b is
essential (95). Repressor of yield of dengue virus (RyDEN) is
induced after a SARS-CoV-2 infection, binds to SARS-CoV-2-
RNA in infected cells and regulates the efficiency of SARS-CoV-2
-1 PRF (96). In addition, the SARS-CoV-2 FSE is functionally
obligate for viral fitness, suggesting that the stimulatory element
could be used as a therapeutic target (87, 93, 97). Sun et al.
identified merafloxacin, an inhibitor of SARS-CoV-2 -1 PRF,
through a high-throughput compound screen and found that it
severely prevented other coronaviruses using similar FSEs in
cultured cells (98). These results indicate that -1 PRF is a
sensitive and effective broad-spectrum antiviral strategy that
Frontiers in Immunology | www.frontiersin.org 5
can be used to combat SARS-CoV-2 and other coronaviruses
(98, 99).
SARS-CoV-2 SUPPRESSES HOST
PROTEIN TRANSLATION

The complexity of the eukaryotic protein translation is under
precise control, but it also enables eukaryotic viruses to exploit or
manipulate this process (29). To solve this problem, cells have
developed a mechanism to recognize viral infections and then
alter the translational ability to limit the production of viral
proteins. Viruses, in turn, have developed ways to overcome and
even use antiviral defense mechanisms to promote viral protein
synthesis. Like many other viruses, coronaviruses are known to
globally downregulate host mRNAs translation to allow
translation of viral mRNAs (29, 59, 100, 101). SARS-CoV-2
mainly uses four mechanisms to inhibit host mRNA translation
(Figure 3): (I) the virus NSP1 directly binds to the 40S ribosomal
subunit and blocks the mRNA entry channel (30, 38), (II) the
infection leads to a host-induced degradation of the cytoplasmic
mRNA, which leads to viral transcripts taking over the mRNA
pool in infected cells (29), (III) the translation impairment can be
caused by inhibiting nuclear mRNA exporting and preventing
newly transcribed cellular mRNA from accessing to ribosome
(29), (IV) it inhibits cellular translation of cytokines and other
factors involved in the innate immune response (29, 102)
FIGURE 2 | SARS-CoV-2 -1 programmed frameshifting model. The SARS-CoV-2 mRNA pseudoknot interacts with the ribosome, generating tension in the mRNA
and pausing translation before the slippery site. After converting “U_UUA_AAC” to “UUU_AAA_C”, translation was resumed at the codon CGG (Arg), resulting in full-
length pp1ab. pp1a, polyprotein 1a.
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FIGURE 3 | Model of SARS-CoV-2 regulating host gene expression. (1) NSP1 binds to the 40S ribosomal subunit and blocks mRNA entry channels, thereby
blocking global mRNA translation. (2) NSP1 induces endonucleolytic cleavage and subsequent degradation of host mRNA via the Xrn1-mediated 5’-3’ exonucleolytic
mRNA degradation pathway, and these activities are dependent on binding of NSP1 to 40S ribosomes. (3) Inhibition of nuclear mRNA export. NSP1 interacts with
the host mRNA export receptor to inhibit nuclear export of cellular mRNA. ORF6 alters the nuclear pore complex by interacting with the export complex thereby
preventing the bidirectional translocation of cellular mRNAs. (4) A model how SARS-CoV-2 suppresses host immune responses. NSP1, NSP16, N, ORF6 and
ORF9b antagonize the host’s antiviral response and allow the virus replication robustly. SARS-CoV-2 induced activation of PKR inhibits the initiation of eukaryotic
translation by phosphorylating the IF2a. dsRNA, double-stranded RNA; IFN, interferon; IRF3, interferon regulatory factor 3; MAVS, mitochondrial antiviral signaling
protein; Tom70, outer mitochondrial membrane protein 70; TBK1, TANK-binding kinase 1; STAT1, signal transducer and activator of transcription 1; PKR, protein
kinase receptor; eIF2, a subunit of initiation factor 2; SRP54, signal recognition particle 54; RIGs, interferon-stimulated genes.
Frontiers in Immunology | www.frontiersin.org March 2022 | Volume 13 | Article 8574906
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NSP1 Directly Binds the 40S Ribosomal
Subunit
Among the 16 NSPs, NSP1 is the first coronavirus protein to be
produced in infected cells, containing a structured N-terminal
domain (residues 1-125) and a disordered C-terminal tail
(residues 126-180) (103). Previous researches on SARS-CoV-1
indicated that NSP1 inhibits host translation by interacting with
the 40S ribosomal subunit, inhibiting the formation of 80S (104–
106). The NSP1 of SARS-CoV-1 and SARS-CoV-2 has an amino
acid sequence homology of 84%, indicating that they could share
similar biological properties and functions. Recent structural
analyzes showed that SARS-CoV-2 NSP1 binds to the 40S
ribosomal subunit and blocks the mRNA entry channel, which
leads to the occlusion of mRNA translation in vitro and in cells
(30, 107, 108). In all instances, the N-terminal globular domain
of NSP1 is flexibly positioned on the solvent-exposed surface of
the 40S subunit near the entrance of the mRNA channel (107,
109). This domain is anchored by the two C-terminal alpha
helices of NSP1. In the free SARS-CoV NSP1 structure resolved
by NMR, these two helices are dynamic and unstructured (110).
In the NSP1-40S subunit complex, these helices are well resolved
and docked in the mRNA entry channel, where they contact the
ribosomal proteins uS3 and uS5 and the 18S ribosomal RNA
helix 18 (30, 111, 112). The N-terminal and adjacent residues of
NSP1 can stabilize the binding of NSP1 and ribosomes and
enhance the shutdown function of the host translation (109,
113). As mentioned above, this position on the ribosome is
structurally flexible, which adopts open or closed states upon
swiveling of the 40S subunit head (73, 114, 115). The presence of
NSP1 can also compete with mRNA for binding to the 40S
subunit and prevent proper accommodation of mRNA (107). In
a recent study, NSP1 was found near the position of the eIF3
translation initiation complex and inhibited protein translation
(116). After translation termination, NSP1 can bind to 80S
ribosomal complex, suggesting that NSP1 may be involved in
translation termination, which has been confirmed by a recent
study (117). However, this non-selective translational repression
of all host genes can be detrimental to the virus since the viral life
cycle invariably depends on host translational factors.

NSP1-Induced mRNA Degradation
In addition to directly blocking translation, NSP1 induces
endonucleolytic cleavage and subsequent degradation of the
host mRNA via the 5’-3’ exonucleolytically mRNA degradation
pathway mediated by Xrn1 (5’-3’ exoribonuclease 1), and these
activities are dependent on the binding of NSP1 40S ribosomes
(Figure 3) (113, 118, 119). Xrn1 is a highly conserved 5’-3’
exoribonuclease that is involved in the degradation of
cytoplasmic mRNA (101, 120–122). The NSP1 does not
degrade all transcripts equally, nor does it induce the
degradation of ribosomal RNA in host cells (101, 104, 123).
Weakening of the interaction between NSP1 and ribosome
rescues cellular mRNA from degradation and translational
repression (113), but the RNA cleavage-deficient mutant still
exhibits translational inhibitory activity (13, 106, 124),
suggesting that NSP1-induced RNA cleavage can occur
Frontiers in Immunology | www.frontiersin.org 7
following translational inhibition (125). RNA degradation plays
an important role in the reconstruction of mRNA pools in
infected cells, and these mRNA pools are mainly dominated by
SARS-CoV-2 (29). A recent study showed that the N protein
directly binds to host mRNAs in the cell, and it is preferable to
select 3’UTR and regulate the stability of the target mRNA (126).
Like other viruses, SARS-CoV-2 can hijack the miRNA pathway
by producing its own miRNAs, such as CoV2-miR-O7a (SARS-
CoV-2 miRNA-like ORF7a-derived small RNA) associates with
human Argonaute proteins and represses human targets
(127–129).

Inhibition of Nuclear mRNA Exporting
In fact, compared with mock-infected cells, SARS-CoV-2
infected cells have an accumulation of polyA+ mRNA in the
nucleus (130). NSP1 also directly interacts with the host mRNA
export receptor heterodimer Nuclear RNA export factor 1
(NXF1)-NTF2-related export protein 1 (NXT1) and is
responsible for nuclear export of cellular mRNA (Figure 3)
(111). The combination of NSP1 and NXF1-NXT1 weakened
the translocation of mRNA into the cytoplasm (111), which
resulted in a large amount of cellular mRNA being retained in
the nucleus during a virus infection. These two distinct functions
of NSP1, blocking translation and mRNA export, are performed
by different regions at the N-terminal and C-terminal regions of
the protein, respectively (30, 112, 131, 132). However, the results
of these two examples are conceptually similar, that is the
translation of the host mRNA is reduced (111). It is important
to note that gammacoronaviruses and deltacoronaviruses do not
produce NSP1, due to the lack of NSP1/NSP2 cleavage sites,
although similar host attacks are caused by other less obvious
mechanisms. In addition, the accessory proteins SARS-CoV and
SARS-CoV-2 ORF6 alter the nuclear pore complex by interacting
with the export of ribonucleic acid 1 (RAE1) and nucleoporin 98
(NUP98), thereby preventing the bidirectional translocation of
cellular RNA (130, 133). NUP98 is a component of the nuclear
pore complex, interacts with RAE1, binds to single-stranded
RNA and promotes the translocation of mRNA through the
nuclear pore complex, but the binding of ORF6 leads to the
cytoplasmic localization off RAE1 and NUP98 (134, 135). In cells
that overexpress ORF6, the mRNA transporter hnRNPA1, which
is thought to chaperone the mRNA through the nuclear pore
complex, also accumulates in the cell nucleus (136). Moreover,
NSP16 binds to the mRNA recognition domains of U1 and U2
splicing RNAs and inhibits global mRNA splicing when SARS-
CoV-2 infection (38).

Translational Factors as Targets for Host
Translation Inhibition
A global analysis of the SARS-CoV-2 protein interaction profile
identified 332 protein-protein interactions between the virus and
human proteins (10, 137), and another systematic analysis
identified 437 proteins with one or more SARS-CoV-2 gene
product combinations (138). Some of them are involved in
protein translation system (Figure 3). N protein binds to
eukaryotic translational elongation factor 1A (eEF1A) to
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induce aggregation of eEF1A, thereby inhibiting the synthesis of
the host protein (139). The S protein from SARS-CoV interacts
with eIF3f (one of the subunits of eIF3), resulting in suppression
of host translation in the later stages of infection (140). NSP8 and
NSP9 bind to signal recognition particles (SRP54) and interrupt
protein transport during infection, which leads to the
degradation of newly translated proteins (38). Similarly, NSP9
also interacts with eIF4H, a factor that enhances the ATP-
dependent helicase activity of eIF4A (71, 141, 142). N protein
of SARS-CoV-2 was also found to bind the stress granule
proteins GTPase-activating protein (SH3 domain)-binding
protein 1 (G3BP1) and G3BP2 and another host mRNA-
binding protein, including the mTOR-regulated translation
repressor LARP1 (La-related protein 1), two casein kinase-2
subunits (CK2) and mRNA decay factors ATP-dependent
RNA helicase upstream frameshift 1 (UPF1) and moloney
leukemia virus 10 protein (MOV10) (10, 138). LARP1 binds to
cellular mRNA containing oligopurine motif (TOP), thereby
inhibiting the entry of eIF4E, regulating its stability and
translation. On the other hand, since synonymous codons
encoding the same amino acid have different concentrations of
homologous tRNAs, SARS-CoV-2 codon usage is more relevant
to codon usage in human lung, allowing for rapid decoding and
protein translation (143–146). In short, all of these strategies
ensure that translation of host cell proteins other than viral
mRNA is inhibited.
SARS-CoV-2 Immune Escape
Like other RNA viruses, coronaviruses produce double-stranded
RNA through genome replication and mRNA transcription
(147–149), which results in the induction of cytokine mRNA
transcription, including type I interferon (IFN-I) and IFN-III
(31, 150, 151) (Figure 3). IFN-I induces the synthesis of
interferon-stimulated genes (ISGs) by activating the signal
transducer and activator of transcription 1 (STAT1) and
STAT2, which are expressed in infected cells and neighboring
cells. Meanwhile, SARS-CoV-2 use various strategies to
antagonize the host antiviral response allowing the virus to
replicate robustly after entering the cell (152–156). The
accessory proteins ORF3b, ORF6, ORF7a and ORF7b
antagonize the production and signal transmission of IFN-I,
while ORF8 disrupts antigen presentation by downregulating
major histocompatibility complex class I (MHC-I) (133, 153,
157, 158). In order to block the interferon receptor signal
transmission, ORF7a interrupts STAT2 phosphorylation and
inhibits the activation of antiviral ISGs (152, 155, 159–161).
The C-terminal mutation of ORF7a is usually occur in patient
samples all over the world, which leads to significant changes in
interferon-stimulated gene expression (161–163). It is
hypothesized that there might be redundancy between ORF7a
and ORF6 of SARS-CoV-2, which is also believed to inhibit host
translation, so that loss of ORF7a in vivo can occur at a lower cost
of fitness (159, 164). ORF9b expression alone suppresses the
innate immune response by interacting with TOM70, a
mitochondrial outer membrane protein required to activate the
Frontiers in Immunology | www.frontiersin.org 8
MAVS (mitochondrial antiviral signaling protein) RNA
detection linker (158). The MAVS activates TBK1 (TANK-
binding kinase 1) and IRF3 (interferon regulatory factor 3) and
the subsequent RNA recognition response (158). NSP6 binds
TBK1 and inhibits IRF3 transcription factor phosphorylation,
whereas NSP13 binds and prevents TBK1 phosphorylation (152,
155). Recent ribosome profiling analysis showed that translation
of IFN-I and IFN-III is restricted after SARS-CoV-2 infection
(94, 102). The interferon mRNAs are reduced by disrupting
translocation of the IRF3 transcription factor into the nucleus,
inhibiting their release from the nucleus, and/or triggering their
degradation (165, 166). In addition, the NSP14 of SARS-CoV-2
inhibits the protein expression of a large number of ISGs through
its global translational inhibitory activity, which offers additional
protection against IFN-I response (167–169). NSP3 not only
plays a role in inhibiting the host enzyme poly-(ADP-ribose)
polymerase (PARP), but also suppresses the expression of
interferon genes (170). The IFN-I response is critical for
effective protection against viral infections (153, 171), but
compared to other respiratory RNA viruses, SARS-CoV-2 is a
poor IFN-I response inducer (154, 172).

Another coronavirus protein that affects host translation is
SARS coronavirus 7a protein, a multifunctional protein that
inhibits host translation, induces apoptosis, and activates p38
mitogen activated protein kinase (MAPK) (173). Activation of
p38 MAPK leads to phosphorylation of eIF4E, which promotes
translation initiation (174–176). The inhibitors of p38 MAPK,
such as ralimetinib, could be considered for testing in humans to
combat COVID-19 (176). In contrast, the mechanism by which
p38 MAPK inhibits cytokine production and impairs viral
replication during SARS-CoV-2 infection is unclear, suggesting
that p38 MAPK inhibition may be due to multiple pathogenesis-
related mechanisms of COVID-19 (176). However, several recent
studies have found that eIF4E is absent from the SARS-CoV-2
RNA interactome, suggesting that translation of SARS-CoV-2
could be eIF4-independent (32, 137, 177, 178). In addition to the
IFN-I response, protein kinase receptors (PKR) can trigger
translational arrest in infected cells, and PKR is also a type of
ISG (179–181). Activation of the PKR inhibits eukaryotic
translation initiation through phosphorylation of the a subunit
of initiation factor 2 (eIF2a) (151, 182). Before translation
initiation, the eIF2abg heterotrimer transfers the Met-tRNAi
to the 40S ribosomal subunit in the GTP-bound form. After the
start of codon recognition, GTP is hydrolyzed, which leads to the
release of inactive eIF2-GDP. The guanine exchange factor eIF2B
must restore its GTP binding state before another round of
translation initiation, which can be inhibited by phosphorylation
of eIF2a (183). How SARS-CoV-2 regulates the PKR-eIF2a
pathway is still unclear and more research is needed to
investigate the possibility of drug therapy related to the IFN
response (171). Taken together, NSP1 and other viral proteins
inhibit all cellular antiviral defense mechanisms that depend on
the expression of host factors, including the interferon response
(153, 171, 184). Shutting down these key parts of the innate
immune system could promote effective virus replication and
immune evasion (13, 105).
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Viral mRNA Escape From Translational
Inhibition
In contrast to host mRNA, viral mRNA prevents translation
shutdown in the presence of NSP1 (57, 119). It is unclear
whether viral mRNA can completely avoid NSP1 inhibition
(38, 112). Genes rich in 5’-terminal oligopyrimidines can evade
extensive inhibition of its translation by NSP1, indicating that
the conserved stem loop in the viral mRNA 5’ leader sequence is
necessary for viral gene expression (131, 132, 185). The N-
terminal domain of NSP1 binds to the structured 5’ end, as a
result of which the C-terminal domain of NSP1 is released from
the ribosome mRNA channel (131, 132). However, an earlier
study showed that NSP1 inhibits the translation of reporter
mRNAs that contain viral 5’ UTRs (112), which means that
viral mRNAs cannot easily escape the translational inhibition in
the context of 5’ UTR sequences (29, 186). A recent mutation
analysis showed that residues in the N-terminal and central
regions of NSP1 are not involved in docking 40S mRNA entry
channels, but their association with ribosomes and mRNA
stabilizes, increasing the restriction on host gene expression
and increasing the mRNA contains the SARS-CoV-2 leader
sequence, escapes translation inhibition (113). NSP2 interacts
with eIF4E2 to employ host translation machinery. In addition,
NSP3 can also interact with poly(A) binding protein interacting
protein 1 (PAIP1), which can interact with the translation
initiation component to enhance translation of viral proteins
(187). As a stimulating factor for protein translation, PAIP1 can
interact with eIF4A to ensure that only the complete mRNA is
selected as the translation template and combined with eIF3 to
stimulate translation (188–190). Compared with human RNA,
SARS-CoV-2-RNAs have less RNA structure at the 5’ end, so it is
more favorable to rapid translation (28, 60).
TRANSLATIONAL STRATEGIES AGAINST
SARS-CoV-2

No antiviral drug has yet been shown to be clinically effective in
treating COVID-19, and drug development has been hampered
by limited understanding of the molecular details of SARS-CoV-
2 cell infection. Due to the importance of protein translation in
viral replication, translational inhibitors may be an alternative
strategy for viral therapy (Table 1). As all coronavirus mRNAs
rely on cap-dependent translation, the main components of
eIF4F cap binding complex-cap binding protein eIF4E, scaffold
protein eIF4G and DEAD (Asp-Glu-Ala-Asp) box helicase
eIF4A are candidate targets for the treatment of coronavirus
(190, 198, 199). Translation initiation factor eIF4H, eIF4A and
elongation factor eEF1A1 are essential in viral infections (10,
191, 200), which suggests that translation factors can be used as
drug targets for the treatment of SARS-CoV-2 infections and
have therapeutic potential (10). Plitidepsin and ternatin4,
inhibitors of eukaryotic translation elongation factor 1A
(eEF1A), has a potential preclinical effect on SARS-CoV-2 by
inhibiting eEF1A, suggesting that translational elongation is
Frontiers in Immunology | www.frontiersin.org 9
critical to viral protein translation (10, 191). Plitidepine has
been clinically approved in Australia for the treatment of
multiple myeloma (MM), and it can cause toxicity by altering
multiple pathways, including arresting the cell cycle, inhibiting
cell growth, and inducing apoptosis (191). Previous in vitro
studies have shown that Emetine inhibits MERS-CoV and
SARS-CoV (192, 201). The expected mechanism is to reduce
viral RNA and protein synthesis by blocking the interaction
between SARS-CoV-2 RNA and eIF4E (192). Zotatifin, a
selective eIF4A inhibitor that increases the affinity between
eIF4A and specific polypurine sequence motifs, has been
reported to inhibit translation of driver oncogenes in
lymphoma models (176, 202). This drug has a strong antiviral
effect in case of SARS-CoV-2 infection (10, 193). Therefore,
inhibition of eEF1A and eIF4A can be extended to other human
coronaviruses and beyond unrelated viral pathogens as a strategy
for treating viral infections (191). It is predicted that a variety of
SARS-CoV-2 proteins will undergo co-translational insertion
into the endoplasmic reticulum mediated by SRP and sec61,
and SRP19, SRP54, and SRP72 are used as proteins that interact
with NSP8 (10, 203, 204). As predicted, several iterative SEC61
inhibitors (including PS3061) have been shown to effectively
inhibit the in vitro replication of Zika virus and coronavirus (10,
194, 195). Further study needs to be done to evaluate their
activities in vivo.

Another small molecule that has been found to regulate host
translation is rapamycin, an oral drug that regulates kinases that
are involved in host protein synthesis (197, 205, 206). eIF4E
binding protein 1 (4E-BP1) and ribosomal protein p70 S6
kinase 1 (p70S6K1) are phosphorylated by mechanistic target of
rapamycin complex 1 (mTORC1), which enhances cap-dependent
protein translation (196, 197). 4E1RCat is a dual inhibitor of the
interaction of eIF4E: 4E-BP1 and eIF4E: eIF4G, which prevents
the formation of the eIF4F complex and inhibits cap-dependent
viral translation (10). The study of White et al. suggests that
translation inhibitors may have promise in treating patients with
mild or moderate COVID-19 (191). Tomivosertib, an inhibitor of
MNKs (MAPK-interacting kinases) reducing the phosphorylation
of eIF4E, has recently been highlighted for the treatment of SARS-
CoV-2 infection (10). Host targeting has discernable advantages,
including creating a higher threshold for virus resistance and
providing broader protection for different strains of the virus (10,
195). It was previously shown that coronaviruses are very sensitive
to translation inhibitors, although these inhibitors may also affect
host translation (191, 207, 208).

Targeting conserved RNA structures and sequences of SARS-
CoV-2 is an alternative approach to inhibiting viral infection and
progression (209, 210). The most well-known examples are
antisense oligonucleotides (ASOs), which contain modifications
at their positions, such as 2-O-methyl (2-OME), 2-O-methoxy
(2-MOE), locked nucleic acid (LNA), morpholino, or other
nucleotide modifications, which may increase RNA base
pairing, metabolic stability, and/or delivery (209, 211, 212).
Circular RNAs (circRNAs) can also be engineered as antisense
RNAs to disrupt SARS-CoV-2 genome expression and viral
proliferation (213). These antisense-RNAs form stable hybrids
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with their target RNAs, which cause target RNAs cleavage/
degradation or block mRNA processing or translation (213–
215). Antisense DNA oligonucleotide forms a hybrid with the
target RNA and induces cleavage of RNA by RNase H, an
endonuclease that cleaves the RNA-DNA strands, limiting the
synthesis of the encoded protein (212). Another study showed
that in a pseudovirus infection model, 2’-OME/SP-ASO
conjugated with four 2’-5’-oligonucleotides that can induce
RNase L-mediated cleavage and degradation of SARS-CoV-2
envelope and spike, thereby effectively inhibiting the spread of
the virus (216). The stem-loop 1 (SL1), a highly conserved
sequence in the SARS-CoV-2 5’ UTR, is necessary and
sufficient to bypass NSP1-mediated shutdown, leading to the
design of LNA ASOs targeting this sequence and enabling
translational shutdown of virally susceptible NSP1, thereby
effectively inhibiting viral replication (214, 217). The
combination of cryo-electron microscopy and molecular
modeling reveals the tertiary structure of the SARS-CoV-2
frame-shift stimulus element (87). RNA-modified ASOs that
target the structure of this element can disrupt translational
frameshifts and thereby inhibit viral replication (87, 210).
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DISCUSSION AND PROSPECT

Currently, there are lots of information suggesting
that coronaviruses have evolved a number of mechanisms to
control viral and host gene expression at the post-transcriptional
level. This review not only provides an overview of the
experimental research in driving and controlling mRNA
translation of virus and host cells in coronavirus infected cells
but also summarizes the new targets on translation system for
therapeutic intervention. Translation is closely related to other
cellular processes (such as RNA degradation), which raises the
question of how the global environment affects or will affect
these viral mechanisms. To answer this question, contributions
from many fields are required, including virology, structural
biology, biochemistry, and cell biology. Excitingly, new tools
are emerging that can help solve these problems. For example,
advances in structural methods such as cryo-electron microscopy
will enable the visualization of large complexes including viral
RNA and translational machine, which is useful for studying
translational status during viral infection. In particular, recent
advances in single-cell protein genomics and single-cell signal
TABLE 1 | Protein translational inhibitors used for COVID-19.

Name Structure Binding sites Proposed mode of action References

Plitidepsin eEF1A Inhibiting viral protein translational elongation (10, 191)

Ternatin 4 eEF1A Inhibiting viral protein translational elongation (10, 191)

Emetine eIF4E Disrupting the binding of SARS-CoV-2 mRNA with eIF4E (192)

Zotatifin eIF4A Preventing the virus from unwinding the 5’ UTR (10, 193)

PS3061 SEC61 Inhibiting the co-translational insertion into the endoplasmic reticulum (10, 194,
195)

Rapamycin mTORC1 enhances cap-dependent and cap-independent protein translation (196, 197)

4E1RCat eIF4E:4E-BP1 eIF4E:
eIF4G

Preventing the formation of the eIF4F complex and inhibiting cap-dependent viral
translation

(10)

Tomivosertib MNKs Reducing the phosphorylation of eIF4E (10)
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visualization may provide important information about the
contribution of SARS-CoV-2 infection to the regulation of
their own replication.
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