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Translational diffusion of fluorescent probes on a sphere:
Monte Carlo simulations, theory, and fluorescence anisotropy experiment
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Translational diffusion of fluorescent molecules on curved surfanelles, vesicles, and protejns
depolarizes the fluorescence. A Monte Carlo simulation method was developed to obtain the
fluorescence anisotropy decays for the general case of molecular dipoles tilted at an enthe

surface normal. The method is used to obtain fluorescence anisotropy decay due to diffusion of tilted
dipoles on a spherical surface, which matched well with the exact solution for the sphere. The
anisotropy decay is a single exponential to=0°, a double exponential fax=90°, and three
exponentials for intermediate angles. The slower decay compshémt «#0 arise due to the
geometric phase factor. Although the anisotropy decay equation contains three exponentials, there
are only two parameters, namely and the rate constanB,/R?, whereD,, is the translational
diffusion coefficient andR is the radius of the sphere. It is therefore possible to determine the
orientation angle and translational diffusion coefficient from the experimental fluorescence
anisotropy data. This method was applied in interpreting the fluorescence anisotropy decay of Nile
red in SDS micelles. It is necessary, however, to include two other independent mechanisms of
fluorescence depolarization for molecules intercalated in micelles. These are the wobbling dynamics
of the molecule about the molecular long axis, and the rotation of the spherical micelle as a whole.
The fitting of the fluorescence anisotropy decay to the full equation gave the tilt angle of the
molecular dipoles to be £2° and the translational diffusion coefficient to be £@®1x 10 *°

m?/s. © 2000 American Institute of Physid$0021-960600)51619-9

I. INTRODUCTION of fluorescence dynamics of fluorophores bound to micelles

. . (nanometer size particl)aé:‘8 and surface diffusion was
Nanosecond and picosecond time-resolved fluorescence . o . -
aken into account empirically in a few studfe§. The the-

and anisotropy decay measurements provide important infor-" " . : .
. : . . ?ret|cal and experimental studies on the fluorescence anisot-
mation about solvent—solute interactions and the rotational

dynamics of the fluorophore in homogeneous media such 1Py decay of dipoles diffusing on curved cylindrical sur-

. — 1 . . .
liquids® The fluorescence techniques are widely used i aces have been carried ot Surprisingly, analytical

complex systems such as heterogeneous and biological mgquations for the a}nisotr_opy deca_y are not available for (_)ther
dia but the interpretation of fluorescence data is not agurved surfaces, including the simple case of translational

straightforward as in liquids. For example, the fluorescencdiffusion of fluorophores on a spherical surface.
anisotropy decay of most dye molecules in liquids is single ' this work, a Monte Carlo simulation method has been
exponential and occasionally two exponentidté.on the developed fpr obta!nlng fluorescence anisotropy decay due_ to
other hand, the fluorescence anisotropy decay in heteroggje translational diffusion of probes on curved surfaces in
neous or biological media is multiexponential. In liquids, thethree dimensions. The anisotropy decay simulated for the
fluorescence anisotropy decay is not affected by the transi&liffusion of oriented dipoles on a spherical surface matched
tional diffusion of the fluorophore. On the other hand, if the Well with the analytical solution obtained by solving the dif-
fluorophore is bound to the surface of a nanometer-size pafusion equation for the same problem. The anisotropy equa-
ticle (micelles, vesicles, and protejnghe fluorescence is tion is a three exponential function with slower decay com-
depolarized due to the translational diffusion of the dye orponents when the orientation of the dipole is away from the
the surface as well. There are numerous experimental studigsirface normal. A theoretical approach to this problem is
also presented. The applicability of the equation to experi-
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equations are necessary for understanding biological phe- z Za

nomena at a molecular level where the translational diffusion

of solutes bound to different surfaces directly influence the ’

rate of metabolism or the rate at which the chemical signals VA [

are conveyed? The Monte Carlo method of solving transla- v

tion diffusion on a curved surface described here can be ex-

tended to any regular or irregular surfaces and will be par-_

ticularly useful in the case of systems that cannot be treatea

analytically. FIG. 1. (A) The figure shows the two polar anglésind ¢ of a radial vector
on the surface of a sphere with radiBsn the xyz laboratory frame. The

Il. METHODS excitation light is polarized along thedirection. The fluorescence anisot-
ropy is calculated using the intensities along the parallel and perpendicular

A. Diffusion on closed surfaces directions with respect to the polarization of the exciting laser be@&n.

. . . . . . i This figure illustrates the selection of a random dipole vedfowhich
DI_foSI,On ofa p,amCIe in spape IS a C_la‘SSICal probl . makes an angle: with the radial vectoR with the selection of a random
The diffusion equation for a particle confined to a surface in, . nai vecto. See text for details.

three dimensions is written as

J
Ix treated as point dipoles oriented at a particular angle with
respect to the normal to the surface of the sphere. In this
ii)D i = section, the mathematical operations for the simulation of
(xy.zt), (1) : : e .
X dy 0z ay multiple dipoles diffusing on a spherical surface are de-
g scribed. This method can be easily modified to simulate the
translational diffusion on other curved surfaces based on the
geometry of the surface. The simulation procedure is divided
whereP(x,y,z,t) is the probability of finding the diffusing into three parts: selection of the initial distribution of the
particle at the coordinates, y, z at time t. Here, E the Molecular dipoles, diffusion of the dipoles on the spherical
diffusion coefficient, is a second rank tensor. When the surSurface, and calculation of the anisotropy function.
face is uniform, as in the case of problems studied here, one

replaces the tensd® with an isotropic diffusion coefficient
D, having the unit fis. The above diffusion equation is 1. Selection of the initial distribution of the point
sought to be solved for a given initial condition, namely, thatdipoles

the particle is located &y, yq, zo att=0, subject to appro-

priate boundary conditions to obtain the time dependen&re diffusing andD,, be the translational diffusion coeffi-

probability of finding the particle at any location on the sur- cient. Letd and ¢ be the standard polar angles of the dipole

fapet. Ifbthe Zurface Isd.at. clo'se?ho[\gt:ams Thour Ciseb’.lt.?e a:cpprg'ector[Fig. 1(A)] andz be the axis which is coincident with
pnate boundary condition 15 tha » (N€ Probabllity of -, polarization of the exciting laser pulse. The initial distri-

finding the particle at any location is equal t\livhereA is tion of the dipoles in the excited state was selected in the

. b
the surface area. There are three methods for solving Part'?tﬂlowing steps. A distribution of ground state dipoles mak-
differential equations. The first and the best method is t.qng an anglex with the respective radial vectors was selected

solvgblex?ctly to Iobtamf the mathﬁ matical E quat|(3lp. Th('js Ifsuch that the distribution of the dipoles is random over the
possible Tor reguiar surfaces, such as a sphere, elipsold, €lg, ;.o spherical surface and the dipole orientation is random

The second method is to solve the equation by numeric or the same angle.. Then the excited state distribution of

lrn(_ethi)ds.l I:I.umerlcal TithOdbst are (\jN'(_jl_ily Ltﬁ.eg thr? t:? atn?ﬁe dipoles was obtained after “excitation by a light pulse”
ytical solution cannot be obtained. The third method Is Opolarized in thez-axis, using the probability of excitation as

;)_bltlaln th_e S?"i.t'on k;ytrlzﬂogﬁﬁ C_arlo method Yg’h'ﬁh _'Iisheslse':'coé 6. The distribution of excited state dipoles thus obtained
ially a simuiation ot the dinusion process 1isell. Ihe 1ast, u he jgentical to that in a real experiment.

method can, in principle, be used to solve any diffusion . . — .
P P y The probability of a radial vectdR making an angled

problem and is particularly useful in the case of complicated . o . . . .

curved surfaces where the diffusion equation cannot be set ith thg;—axs IS proportional t.o sif. This probab!llty has to

under a convenient coordinate system or mathematically te2€ satisfied during the selection of random radial vectors. A
random number generatoan2 (from “Numerical Recipes

dious to solve. in C”?Y) is used to generate real numbers distributed uni-
formly between 0 to 1. From these uniform deviates, the
random numbers satisfying the required probability distribu-

The main theme of the Monte Carlo simulatfBosed in  tion, say, P(6) (here sin), has to be generated. For this
this study is to mimic the diffusion of the oriented molecular purpose, the “Transformation Method®?* was adopted.
dipoles on curved three-dimensional surfaces and to obtaithe method can be described briefly as follows. péx)
anisotropy decay due to depolarization on account of trangepresent the probability of the random numbers uniformly
lational diffusion. In these simulations, the molecules weredistributed between 0 and 1,

%l%

ePocy20=|
EP(x,y,z,t)—

<

0z

Let R be the radius of the sphere on which the dipoles

B. Monte Carlo simulations
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p(x)=1 for O=x=<1 plane perpendicular t8. This was done as follows. Initially,
. a specific normal vector was chosen depending on the values
=0 otherwise. 2 ) —
_ 3 . of the three components of the radial vedto# (r1,r,,r3).
The conservation of probability requires If all the components of the radial vector are nonzero, then
X 0 the normal vector chosen was-(,,r1,0). If some of the
J p(x)dx=f P(6)deé. (3 components are equal to zero, then the corresponding com-
x=m - ponents of the normal vector are taken as one and for other
The above equation becomes components which are nonzero, the corresponding compo-
nents were equated to zero. Using this specific normal vector
6 .
X= f P(6)de. (4)  and arandomly chosen angular variaplebetween 0 to zr,
0=0 the rotation matrixDg(¢,) was used to rotate the specific

Therefore first a random number between 0 to 1 was normal vector through the angké, about the unit vector
chosen, then the value & for which the area under the along the radial vectdr, to obtain the random normal vector
probability curve from 0 tod is x times that of the total in the plane perpendicular to the radial vector. The selection
area under the probability curve was determined. The Cartedf random normal vectors to the radial vector makes sure
sian coordinates of the radial vector was calculated fronihat the dipole vectors are randomly oriented at the angle
this 6 value and a randomly selectedvalue between 0 and With the respective radial vectors.
2. The probability of a dipole getting excited is propor-
The dipole oriented at an angte with respect to the tionalto co$ 6, whered is the angle made by the dipole with

radial vectorR was obtained as follows. A random normal the€z-axis. In selecting the excited dipoles with this probabil-
ity, the same Transformation method described previously

unit vectorN perpendicular to the radial vect® was ob- . U

) — . was adopted. A random number is chosen and if this random
tained such thaR-N=0. If (x1,Xz,X3) represent the com- et matches with the fraction of the area under the prob-
ponents ofR on the three Cartesian axes, then the compogpility curve with the total area, then that dipole was re-
nents of the normal unit vectdt, (ny,n,,n3) has to satisfy  tained. Otherwise, the procedure was repeated from the ini-

the two equations tial step of selecting the ground state distribution.
X1N1+ XoN5+X3N3=0 (5) 2. Diffusion of the dipoles on the spherical surface
and Let V, R andV’, R’ represent the point dipole vector
and corresponding radial vector before and after the diffusion
n3+n2+n3=1. (6) in a single time stegone iteration in simulation The diffu-

i ) A ) ) sion length is the same in the case of radial vector and dipole
With the unit vectoN=(ny,nz,nz) as the axis of rotation,  yecior in a single time step. So the diffusion of the dipoles on
the radial vectoR is rotated through the angteto obtain a  the spherical surface was performed by rotation of the radial
new vectorV that is oriented at the angle with the radial and dipole vectors by the three-dimensional rotation matrix
vector [Fig. 1(B)]. The rotation was done using the three- ghout a randomly chosen vectomormal to the radial vec-
dimensional rotation matri©g(«) which is given in Sec. tor. This random normal vector was chosen by the same
I1B2. V is the unit vector along the dipole vectut procedure described in Sec. IIB1.1f=(n;,n,,n3) repre-

In selecting the normal unit vect®=(n;,n,,ns) using  sent the unit normal vector which is the axis of rotation and
Egs. (5) and (6), random numbers were used such that theg is the angle of rotation, then the three-dimensional rotation
selected normal unit vectors are randomly distributed in thenatrix D;(B) is given a&?

cosﬁ+(1—cos,8)nf (1—cosB)nin,—nzsinB (1—cosB)ninz+n,sinB
D;(B)=| (1—cosB)n;n,+nssing cos,8+(l—cos,8)n§ (1—cosB)n,ng—nysingB | . (7)

(1—cosB)nzn;—n,sinB  (1—cosB)nzn,+ny sinB cosB+(1— cos,B)n%

The angle of rotation3 was obtained as follows. The 1 Ir—rf2
probability of finding a particle at at timet given that the W(r,t;rq,0)= 27DI exp{ ~ Dt ) 8
initial position is r, at t=0 for diffusion on a two-
dimensional infinitely planar surfat&is given by whereD is the diffusion coefficient. In the case of diffusion
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on a spherical surface, the probability equation for the angleught to be quantitatively equétxcept for simulation noige
[ at timet given that3=0 att=0, is[Eqg. (20) with proper  which was used to check the algorithm. The anisotropy was
normalizatior calculated as

I P P B

I(1+1)Dyt _ _
— 2 T20 LD, Lt

R2

. (0= (12)

1
W(B)= mi.(ZI + 1)P|(cos,8)ex;{ —

(9)  The fluorescence anisotropy due to diffusion on the spherical
Since this is an infinite sum of Legendre polynomialsSurface ought to decrease to zero. Hence, the diffusion of the
P,(cosp), it is computationally intensive to calculatg.  dipoles was continued until the anisotropy decreases to a
Hence, an approximate equation was used in the simulatioy@!ue which is comparable to the accuracy@.1% of the
procedure that is valid only for extremely small time scalesinitial value) in typical experiments.
This was obtained from the probability equation for the pla- ~ The validity of each and every step in this simulation
nar diffusion [Eq. (8)] by replacing the displacemert ~ Procedure was checked with the help of computer graphics.
—ro| by R 8 (8 measured in radiansThe probability of the If the initial selection of excited dipoles follows cog dis-

angle of rotationg satisfies Eq(10), tribution, then the _initial_anisotropyo value should be inde-
5 s pendent of the orientation angte and should be equal to
W(RB)= exp( _ R°B ) (10) 0.4, which was observed. The selection of random normal
47Dt 4D, t)’ vectors and the use of the rotation matbg(8) in simulat-

ing the surface diffusion of dipoles were also tested. The
simulation was done for varying values af with about

85 000 dipoles diffusing on a spherical surface, using a DEC
RB,=2\DyT, (11)  Alpha OSF/1 Computer system. The simulation was also car-
ried out for varying values of radius of the sphere R and
translational diffusion coefficienD,,. The results are dis-
cussed in Sec. Il A.

The mean displacemeRB,, (wherepg,, is the mean angular
displacementper iteration is calculated as

where is the time per iteration. It is important to note that
the probability Eq.(10) is true only for very smallr and
mean displacements. Hence the time per iterati@chosen
appropriately such that this condition is valid. For example,C. Experiment
for the values oR=10 A andD,=1x10"° cn?/s, the time .
. . . 1. Materials
per iterationr is chosen as 1 ps such that the mean angular
displacemen3,,,~0.063 rad. Nile red (Nile Blue A Oxazone, Exciton Inc., USAand
The diffusion was carried out in two different ways. In SDS (Sodium dodecyl sulfate, Sigma Chemical Co., USA
the first method, the mean angular displacem@ptper it- ~ Were used as received. The structure of the dye Nile red is
eration was calculated and this value was used as the angi8own in Fig. 2. The fluorescence decay of Nile red in eth-
of rotation 8 in one iteration. In the second method, tge anol was single exponential indicating the purity of the dye.
values satisfying Eq(10) (t=r7) were calculated using the The fluorescence lifetime of Nile red was 3.57 ns in ethanol.
random numbers generated by the Transformation methotin® 2% SDS micelle solution was prepared by stirring the
described earlieflt may be noted that the probability in the surfactant in warm deionized water for about 1 h. The Nile
area e|ement betwe% and ﬁ+ dlB on the surface Of the red dye(|n ethanol SOIUtiOhWaS added and stirred. The dye
sphere is 2R2W(Rp)sinBdg.] After getting a value fog ~ (2.27 uM) to surfactan{0.069 M ratio was~1:30 000.
and the randomly chosen unit normal vector components, the
three-dimensional rotation matrix was computed. The new?. Fluorescence measurements

v_ectorsV’ andR’ were then obtained by multiplying and The steady state fluorescence and anisotropy measure-
R with the matrixD;(). The anisotropy decays generated ments were made using either Shimadzu RF540 or SPEX
using these two methods are very similar. Fluorolog 1681 T format spectrofluorophotometers. The time

The selection of the time step per iteration is importantresolved fluorescence measurements were made using a high
such that the mean displacement is very small compared tepetition rate(800 kH2 picosecond dye lasgrhodamine
the radius itself and at the same time large enough such th&G) coupled with a time correlated single photon counting
the simulation of anisotropy decay is completed in a reason-
able number of iterations. The number of iterations can be

doubled to achieve the same level of anisotropy decay by (H5C2) oN o 0
reducing the iteration time by 4 or by reducing the diffusion
coefficient by 4. Anisotropy decays were almost independent P
of iterations forp,,<<0.08 rad. N
3. Calculation of the anisotropy function
The “fluorescence intensity” along the y, and z-axes :
were calculated as squares of the respective components of Nllered
the dipole vectorV. The components along and y-axes FIG. 2. Structure of the dye Nile red.
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(TCSPQ spectrometer described elsewh&é currently  corrected polarized fluorescence dedgarallel and perpen-
using a microchannel plate photomultipli€Hamamatsu dicular, F|(t) andF, (t)] were individually fitted to a four
2809. The samples were excited at the excitation wave-exponential function to give a good fit to the experimental
length of 570 nm and the fluorescence decays were collectathta. The good fits were judged by the randomness of residu-
at the emission wavelength of 640 nm which is the emissiorals using the following criteria(i) random distribution of
maximum of Nile red in SDS micelles. The sample was ex-residuals, (ii) value of chi-squargclose to 1.9, and (iii)

cited with vertically polarized light and the fluorescence de-distribution of autocorrelation function valuésThe purpose
cay was collected with emission polarizer kept at the magiof these fits is to simply represent the intensity decay curves
angle (~54.7°) with respect to the excitation polarizer for (I(t) andl, (t)) and no physical meaning is attributed to the
measuring fluorescence lifetimes. For the anisotropy medifetimes and amplitudes obtained in the fits. Using these two
surements, the fluorescence intensities were measured witttensity decay functions, the anisotropy decay is calculated
the emission polarizer set at parallel or perpendicular orienusing the equation

tation with respect to the excitation polarizer. Geometry fac-
tor (G-factor for the TCSPC setup was determined by using (D=1, (1)
the Nile red solution in ethanol whose rotational correlation ()= R
time (0.18 ng is faster than its fluorescence lifetinid.57 (D +21,.(1)
ns). The emission of Nile red is completely depolarized after

2 ns. The parallel and_perpendicular polarized componentgpig smoothly varying fluorescence anisotropy decay was
were collected for the timefj andt, seconds such that the seq for the final testing of the theoretical equation.

two decays overlap exactly in the tail regidafter 2 n. The analysis of data described above uses a strategy in
From these two valuess-factor is calculated ag /tj. For  yhich [)(t) or I,(t) are fitted to four exponentials even
the case of Nile red in SDS micelles, the two polarized deyyoyughr(t) is a six exponential function. The numerical ac-
cays were collected for the times that are in the same ratiqracy of this procedure was tested using simulated data.
The instrument response functi@iRF) was recorded using a I,(t) andl (t) were calculated at the intervel of 40 ps up to
nonqlairy creamer scattering _solution. The full Wic_ith at halfq» ns(300 points for typical values for the parameters rel-
maximum(FWHM) of the IRF is about 150 ps. Typical peak eyant to the problem of diffusion of the fluorophdftiores-

count in the emission decay for fluorescence intensity andence lifetime 2.5 nsin a micelle.1;(t) and1 () are de-
anisotropy measurements was about 200000 and the totghad as follows®

counts in the decay was typically 13 million. The time per
channel was 37.84 ps.

(15

The experimentally measured fluorescence decay data _1 ot

F(t) is a convolution of IRFR(t) with the intensity decay (V= 3 2.5n [1+2r(®],

function I (t) according to the equation (16)
Fv)= [ Res)(t-9)ds (13 1 !

The intensity decay data was fitted to the appropriate equa-

tions by iterative deconvolution procedure using Levenberg-where the anisotropy decayt) is defined by Eq(33). The
Marquardt  algorithm ~ for  optimization of the following values were used for the calculatior(0)=0.4,
parameter8??*?*%’In the case of systems studied here, theq=15°, 7, =15 ns,r,=1 ns,S=0.5, andr,,= 10 ns.r (t) is
fluorescence decay data was fitted to either a sifmiegic  a six exponential function and henggét) or I, (t) is a seven
angle decayor a multiexponentialpolarized fluorescence exponential function. For the above simulation values the
decays function as time constants of the seven exponentials were 2.5, 1.2, 1.111,
t 0.75, 0.545, 0.526, and 0.429 ns. The amplitudes of seven
I(t)=2 exp( -—, (14 exponentials were positive ih(t), whereas six of the am-
i plitudes were negative ih (t). It was found that(t) could

where; and ; are the amplitudes and the lifetimes. be fitted to a four exponential function with time constants

The polarized fluorescence decdypsrallel and perpen- 2.619, 2.372, 1.053, and 0.527 ns with positive amplitudes
diculan were usually fitted simultaneouslypr globally) to  for all. The deviation of the fitted value from the true value,
appropriate functions defining the population de¢age or (I yue— ! caid/lrue: Was less than %1075, Similarly, 1, (t)
two lifetimes as determined by the decay at magic greghel  could be fitted to a four exponential function with time con-
anisotropy decayr(t).?873° As will be noted elsewhere, the stants 2.501, 1.130, 0.544, and 0.522 ns with negative am-
anisotropy decay of micelle-bound fluorophore is a multipli- plitudes for the last three time constants. The deviation of the
cation of contributions from three independent depolarizingdfitted value from the true value was less thax 10~ °. The
motions. For this reason it was decided to extract the besleviation of the differencel ((t) -1, (t)) from the true value
representation af(t) from experimental data rather than fol- was also less thanx10 °. We therefore conclude that the
low the conventional procedursee below For the calcu- fitting procedure described above for obtaining numerical
lation of the anisotropy decay(t), one requires the polar- representations df(t), I, (t), andr(t) from the experimen-
ized intensity decay functionig(t) andl, (t). The G-factor  tal data are satisfactory.
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FIG. 4. Translational diffusion of the excited dipoles oriented along the
radial vectors on the surface of the sphere as projected oyzthéane. The
excited dipoles are initially selected with the probability éswhered is

e angle made with the-axis which is the axis of polarization of the
excitation light.(A)—(F) show the distribution of the dipoles on the surface
of the sphere at different stages of the translational diffusion. The simulation
parameters were radius of the spheRe; 10 A, translational diffusion co-
efficient, D,=1x10"° cn?s and time step per iteratiom=1 ps. The
corresponding fluorescence anisotropy decay curve is shown in Fig. 5.

FIG. 3. Translational diffusion of the dipoles oriented alangxis on the
surface of the sphere, as viewed from abawaxis (projected in the
xy-plang. (A)—(F) show the distribution of the dipoles on the surface of the
sphere at different stages. The simulation parameters were radius of t
sphere,R=10 A, translational diffusion coefficienD,=1x10"° cn/s
and time step per iteratior;=1 ps.

I1l. RESULTS AND DISCUSSION
=0 (see below. The deviation of the simulated data from the
exponential fit is shown in the bottom panel of Fig. 5.

The translational diffusion of 85 000 excited dipoles ori- The fluorescence anisotropy decays for the translational
ented along the normal to the spherical surfaae=Q) is  diffusion of dipoles tilted at an angle (from 0° to 90°)
shown in Figs. 3 and 4 at different stages of the Monte Carlavith respect to the surface normal are shown in Fig. 6. These
simulation(refer the figure captions for details of simulation curves clearly show that the anisotropy decay depends on the
parameters Figure 3 shows the surface diffusion for the orientation anglex. This is an unanticipated new result. All
case when all the dipoles are oriented parallel tazthris, to  these decays can not be fitted to single exponential functions.
illustrate the random diffusion process modeled in the MontéAt the extreme case of=90°, the anisotropy decay fits
Carlo simulations. Figure 4 shows the distributions for theadequately to a double exponential function with the corre-
case when the excited dipoles are initially distributed withlation timesR?/6D,, and R?/2D,, and the respective ampli-
the probability co$6. The latter case is identical to the fluo- tudes 0.25 and 0.75. It was not possible to fit the anisotropy
rescence anisotropy experiment using fluorophores embedecays at othewtr values to two exponential functions with
ded in spherical micelles. The components of intensitieshe two correlation times fixed at these values. The fits were
along the three axed,, I,, andl,, and the anisotropy, particularly bad at the intermediate valuesaf The com-
r(t)y=(,-1y)/(1x+1y+1,), as a function of time are shown bined analysis of all the anisotropy decays at the seven val-
in Fig. 5. The anisotropy decay is identical for both the initial ues of ¢ to a three exponential function with common cor-
distributions except that(0)=1 in the former caséFig. 3 relation times (and varying amplitudgs indicated the
andr(0)=0.4 in the latter casé-ig. 4). The anisotropy de- presence of a third correlation time. From the obtained val-
cay is single exponential with the decay constant equal taes of the amplitudes, it was difficult to identify the relation-
R?/6D,,. The decay constanR?/6D,,, is found to be inde- ship between the amplitudes of the correlation times and the
pendent of the value dR andD,, used in the simulation as orientation anglex.
long as 7 is chosen such thgB<0.1. Single exponential As described in the next section, the diffusion equation
decay is the one predicted by the theoretical equatiorxfor for a tilted dipole on the spherical surface was solved ex-

A. Results of the Monte Carlo simulations
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& 0.00 FIG. 6. Fluorescence anisotropy decays obtained from the Monte Carlo

M simulations of the translational diffusion of tilted dipoles on the surface of a
-0.01 X X X - sphere at different orientation angles=0°, 30°, 45°, 60°, and 90°, are
0 200 400 600 800 1000 shown. The decays were simulated for the valRes10 A, D,=1x10"5
Time Steps cnf/s, and7=1 ps. The figure shows two decays for each valuenpf

simulated using different sets of random numbers. Inset shows the fits of
FIG. 5. Simulated fluorescence anisotropy decdy), due to the transla- these decays to Eq17), plotted on log scale.
tional diffusion of dipoles oriented along the radial vectors on the surface of
a sphergsee caption for Fig. 41, 1, andl, are the intensities along the

three directions which were used to calculet®) using Eq.(12). The decay
was simulated for the values of the radius of the sphRre10 A, transla-  R?/6D,,, not R?/4D,, as assumed in interpreting the experi-

tional diffusion coefficientD,=1X 10"° cn/s and time step per iteration, mental fluorescence anisotropy decay data of fluorescent
7=1 ps. The number of iterations can be doubled to achieve the same Ievayes in micelle§ For «=90°. the decay is two exponential
of anisotropy decay by reducingby 4 or by reducind,, by 4. The single N ’ 2N -

and more significantly, the slowest componenD(2R°), is

exponential anisotropy decay for the calculated correlation tiR%6D,, ] !
=166.67 ps is overlaid on the simulated curver (. Deviation of calcu- ~ predominant. The decay component with the decay constant

lated and simulated values are shown in the bottom panel. (5Dtr/R2): is significant only at intermediate angles with
maximum component at=45°. As explained in the next
section, the origin of slow decay components is due to the
actly. The anisotropy decay due to translational diffusion ofgeometric phase factor which arises due to the diffusion of a
tilted dipoles with an initial distribution as in the fluores- vectorial property on a spherical surface.
cence experiment on the spherical surface is the sum of three  Although Eq.(17) contains three exponentials, there are
exponentials, only two fitting parameters, translational diffusion timg
r(t)=2(cof a— Lsir? a)? exp — 6D, t/R?) deﬁne_d aﬂR_’let, and the_orientation angl@, that have to be_
optimized in the analysis of the experimental data. Section

+ & sir? a cog a exp( — 5D t/R?) Il C describes the application of this equation in interpreting
3 _ 2 the anisotropy decay of a fluorescent probe embedded in mi-
+fosin aexp(—2Dt/R?). 17 celles. Micelles are the smallest possible curved biological

The simulated anisotropy decays for different orientationsurfaces where the translational diffusion contributes signifi-
anglesa are fitted to the theoretical equation and the fits arecantly to the fluorescence depolarization during the lifetime
shown in the inset of Fig. 6. The simulated decays fit well toof the excited fluorophore.

the analytical equation indicating the correctness of the

Monte Carlo method to simulate the translational diffusion
on the sphere. B. Analytical solution for the translational diffusion of

It may be noted that the coefficients of the exponentialgriented dipoles on a spherical surface
in Eq. (17) are fur21ct|ons ofa f‘”d the decay constantg are  When the dipoles are oriented parallel to the radial vec-
functions of Dy /R For a=0°, r(t)=0.4exp-6Dyt/R%) (o5 the diffusion equation becomes the usual spherical har-
which is the well known result for the fluorescence anisot-mqnics equatioft with the radial coordinate being a constant
ropy due to rotational diffusion of a spherical solute in 4t the radius of the spherB
liquids® with the following equivalence between the rota- '
tional and translational diffusion coefficient®;,=D,/R?. 7 [,
It may be noted also that the translational correlation time is ~ dt P(6,4.1)=DyV"P(0,4,0), (18
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whereP (0, ¢,t) is the probability of finding the dipole at the allel to the radial vector and the dipole is tilted at an angle
angular coordinate8 and ¢ at timet, V2 is the Laplacian in  with respect toc in the plane of the vectors andc. Hence
the spherical polar coordinates. Heteand ¢ represent the the unit dipole vector that is undergoing translational diffu-
polar and azimuthal angles of the dipole, respectively. Thision becomes cosa+bsina. The model for translational
equation can be easily separated into the two angular parts (diffusion which was simulated here by the Monte Carlo
and ¢ part9 using the method of separation of variabtés. methods gives thiabc frame infinitesimal random rotations

The 6 part becomes around the body fixed andb axes. In this process, theaxis
1 3 P N moves and with it the location of the dipole on the surface of
—— _( sin 9_) P(6,t)=— —P(6,t). (190  the sphere. It returns to its original value in this process of
Rsin6 0 99 Dy diffusion, the dipole has returned to the same point on the

The general solution which satisfy the above equation is SPhere, but because of the geometric phase effect discussed
before, thea andb axes need not, in general, return to their

original values, and hence the dipole will be different. By
working on this formalism of two frameéspace fixed and
body fixed, we have ensured that the extra degree of free-
where Pi(cos6) are thelth order Legendre Polynomial and dom required to take account of the geometric phase factor is
A, is the corresponding scaling factor. explicitly included.

In this case where the dipoles are oriented parallel to  with the excitation light polarized along theaxis, the
r_adial vectors, the fluorescence anisotropy equation is deyrobability of excitation of the dipole located at b, ¢ is
fined by equal to the square of the component of the dipole vector on

F(t)=(P4(cosQ))=(Py(cos));, (21) the z—axi_s, i.e., €,cosa+b,sina)?. After timet, let the_di—

pole diffuse to a’, b’, ¢ with the probability
where () is the angle made by the dipole with teaxis.  p(a’ b’ c’:a,b,c:t). Projecting it back onto the space fixed
USing the above SOlUtiOII'Eq. (20)] for the @ part, the anisot- 7 axis and Squaring, the intensi[y becomes
ropy equation becomes a single exponential as

B 6Dt
r(ty=cexp — R?

wherec is a constant. That means, the fluorescence anisot- r(t)= - - =, (24)
ropy decays exponentially with a correlation timeR56D,, 21t 2
when the dipoles are oriented parallel to the radial vectorsyhere| =1,+1,+1, is the total fluorescence intensity.

The theoretical derivation of the fluorescence anisotrop;&verage of,. That can be obtained by multiplying the ex-
equation becomes CompleX in the case where the dipoleS aﬁessions fo"z [Eq (23)] and the probabmt)P and integrat_
oriented at a particular angle with the radial vectors. A ing overa, b, canda’,b’,c’. The conditional probability
diffusion equation similar to E18) has to be set up for the s the solution of the diffusion equation which &8¢0 is a
translational diffusion in such a case and has to be solved tge|ta function centered around the initial frame. This is the
Obtain the SO|uti0n Similar to EC(ZO) The ma.in difference Green’s function Of the diffusion equation_ It can be ex-
that arises whem#0 is the geometric phase factr’®  pressed in a similar manner to the Green’s function of the

When the dlp0|e is oriented at an angle with the respectivgchrodinger equation' in terms of eigenfunctionS'
radial vector, the direction at which the dipole points at a

given time during the translational diffusion depends on the ~ P(a’,b’,c":a,b,c:it)=%,¥(a’,b",c’)

path it followed to arrive at that particular position. That _

means the phases of the different dipole vectors starting at *Wpabo)exp~Epb). (29

the same initial position and arriving at the same final posiHereV , ,E, are the eigenfunctions and eigenvaluéaheled

tion but following different paths will be different. A recent by the indexp) of the corresponding diffusion operator.

study was focused on understanding the distribution of these For the case of interest, i.e., absence of rotation about the

geometric phases during the Brownian motion on a spfrere. radial direction to the spherical surface, the diffusion opera-

This geometric phase factor has to be taken care of in settingr will be proportional taJ2+ JZ. The absence af? shows

up and solving the diffusion equation. This requires a differ-that we have built-in the constraint of no rotation about the

ent formalism which should include one extra degree of freenormal to the sphere. This operator is similar to the Hamil-

dom which takes account the phase factor for the diffusiorionian of the symmetric top molecule. Hence the eigenvalues

process on the surface of a sphere. This was done as followand eigenfunctions will be similar to those which occur in
For solving the problem of translational diffusion of ori- the quantum-mechanical treatment of the symmetric*%op.

ented dipoles, we consider an additional frame associatethe appropriate quantum numbers &pel which enters the

with the dipole in addition to the space-fixgdy, andzaxes. eigenvalue of the square of the angular momentund(ds

Let an orthonormal set of three vectasb, andc be the  +1), (i) M, which is the eigenvalue of thecomponent of

frame attached with the dipole that is undergoing translathe angular momentum, i.e., along the space fixexis, and

tional diffusion. The vector is selected such that it is par- (iii) K which is the eigenvalue of thecomponent of angular

I(1+1)Dy

= t], (20

P(B,t)zE,A|P|(cosa)exp( -

| ,<(c, cosa+ b, sina)?(c, cosa+ b, sina)?. (23

, (220  The expression for anisotropy can be written as

EEIEGIE
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momentum, i.e., along the body fixeraxis. These three 2 1 2 — 6Dt
operators commute and their eigenvalues are sufficient to T'(t)= g(COS?' a—ismz a) €X —Rz—)
label states for the top, whose wave functions depend on
three variables. The conventional choice for these three vari- 6 . —5D,t
ables is the set of Euler angles giving the orientation of the + ES'”Z a oS’ exp( R2 )
body fixed frame with respect to the space fixed frafrgut
for the problem considered here, it is convenient to use the n 3 .4 ;{_ZDtrt)
o . —=Sin" a ex 5 (28
components o8, b, andc which in turn can be expressed in 10 R

terms of Euler angles. The intensityis already expressed in
terms of these componerii&q. (23)]. The eigenvalues of the
diffusion operatorJ2+J2 are obtained by adding and sub-
tracting J2 (sinceJ?=J2+J2+J2) and hence these adéJ
+1)—K?2. Taking account of the angular diffusion coeffi-
cient D,,/R?, the eigenvalues of the diffusion equation be-
comes ((J+1)—K?)D,/R?.

Each of the factors i, can be expressed as a sum of

The constand=0 term cancels against the in the expres-
sion forr(t) [Eq. (24)].

This is the expression tested in Sec. Ill A against the
results obtained from the Monte Carlo simulations of the
translational diffusion of oriented dipoles on the surface of a
sphere. At zero time,(t) takes the value 0.4 independent of
a [Eg. (28)], as expected. The slower decays occur only if

Elg?ii. ijlénc;lcfgs. ('I;él)s] z:guir:?: t:]a?te(\j'\/:?gfrﬂ' ft?]tr:z ;nvuel;a eis nonzero. Although the translational diffusion is happening
P y q: 9 P 9€\vith the same diffusion coefficient, the depolarization of the

of I, over the ensemble, only those eigenfunctions will con-, . . . .
. L . fluorescence anisotropy is slower for the case of dipoles ori-
tribute and the rest will disappear by the orthogonality rela- .
. . . ented away from the normal to the spherical surface because
tions. The four relevant eigenfunctions are e
of the presence of nonzef&| modes of diffusion. For the
case of the dipole normal to the sphere, oKly 0 contrib-
Vo=1, utes, and the equation for the time resolved fluorescence an-
isotropy is expf 6D, t/R?) which can also be obtained more
simply from the eigenvalug(l +1) of the Laplacian on the

v, = \/¥(c§— 1/3), sphere, fol =2 [Egs.(18) and (20)].

C. Diffusion of Nile red in SDS micelles

W,=1150,C,, SDS micelles were prepared by stirring the surfactant

solution at a concentration above the critical micellar con-
and centration(cmo of 8 mM in warm deionized water for about
1 h. SDS micelles prepared thus are known to be spherical
(core radius of approximately 16.7)4&nd the aggregation
number is~ 62833 Nile red being a hydrophobic molecule
it is insoluble and nonfluorescent in waf&rlt solubilizes
The eigenfunction¥, corresponds to that of the quantum readily in SDS micelle§.The distribution of the dye among
numbersJ=0, M=0, andK=0 and have the zero eigen- micelles is governed by Poisson statistics. At a low concen-
value. The three eigenfunctionk,, ¥,, and ¥ haveJ tration ratio of the dye to micelle used in the experiments
=2, andM =0, but have differenfK| values as 0, 1, 2, and (2.27 uM of dye and 0.99 mM of micellethe probability of

Wa= 202~ a2). (26)

hence the corresponding eigenvalues are 6, 5, and 2. finding more than one dye per micelle is extremely small,
One of the factors in the intensity express|&my. (23)] i.e., <0.2%28 The fluorescence is therefore from the dye
can be written as molecules that are present as one per micelle. The fluores-

cence decay of Nile red in SDS collected at the emission
maximum is single exponential with a lifetime of 2.53 ns.
The G-factor corrected parallelH) and perpendiculari, )
. components of fluorescence are shown in Fig\)7 Figure

+ \/%(sma cosa) ¥, 7(B) shows the smooth polarized intensity decaysad! )

T 1 obtained by fitting the fluorescence curves to the convolution
+ \/1:53|n2 a¥st 5%o. @7 equation[Eq. (13)] as described in the Methods. The anisot-
ropy decayy(t) obtained using Eq.15) is shown in Fig. 8.
The constant term¥ , term) corresponds to the nondecaying The fluorescence anisotropy decay of fluorophores em-
term under diffusior(zero eigenvalue The second factor in  bedded in micelles and its origin in terms of molecular dy-
|, can be similarly written in terms of primed quantities. namics have been studied and discugsetihe fluorescence
Multiplying 1, by P and integrating over the initial and final anisotropy decay for the dye molecule in a spherical micelle
parameters of the frame, the expressionlfowas obtained is caused by three independent depolarizing motiGnghe
as the sum of the squares of the coefficients of eigenfundranslational motion of the dye on the spherical surface of the
tions in Eq.(27). It can be calculated that= 3 and is inde-  micelle, (i) wobbling dynamics of the dye about the local
pendent ofa and time. Hence the anisotropycan be com-  symmetry axis in the micell&;*?and iii) the rotational dy-
puted as namics of the spherical micelle as a whole. The decay time

(c,cosa+b,sina)’= \/%(co§ — 1sif o)V,
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FIG. 7. (A) G-factor corrected experimental polarized fluorescence decays
(Fy andF, componentsof Nile red in SDS micelles. The instrument re-
sponse functionR(t) is also shown in the figurgB) Polarized intensity
decays [ andl, ) obtained by deconvoluting the fluorescence decays using
the convolution integralEq. (13)] usingR(t) and a four exponential func-
tion for I} andl, . The fitted equations werg(t) =0.6267 exp{-1/0.2690
ns+1.1976 exp{-t/0.8059 ns) 1.5506 exp{-1/2.4798 ng+ 1.1865 exp
(—-t/2.4825 ng and I, (t)=—0.7636 exp{-t/0.5035 n$+0.9712 exp
(—1/2.5463 n$+0.9193 exp{-1/2.5471 n¥+0.6532 exp{-t/2.5473 ng.

FIG. 9. The three depolarizing motions for the fluorescent probe in a mi-
celle; (i) wobbling dynamics of the dye in the micelle,f), (ii) the lateral
diffusion of the dye on the surface of the micellg,), and(iii) the rota-

tional diffusion of the spherical miceller). 7,,, 7, andr, are the decay
constants that can be associated with the physical parameters related to the
three processes, respectively.

constants associated with the three motionsgrétransla-

tional diffusion, 7, (wobbling dynamicsand r,,, (rotation of

the micellg. These three motions are shown in Fig. 9. As r(t) ) )

described earlier, the fluorescence anisotropy decay due to mZ[S +(1-S)exp(—t/7y)], (29

translational diffusion on the spherical surface is given by

Eg. (17). The mathematical equations for the fluorescencevhereSis the order parameter ang, is the wobbling time

anisotropy decay due to wobbling dynamics and rotation ofonstant. The order parametgis related to the cone semi-

the micelle are as follows. angle 6, according to the equation

_ The fI_uorescence ani_sotropy due to the wobb_ling dynam- S=1(cosf)(1+ cosfy). (30

ics of a linear molecule in a planar membrane is generally

described in terms of the wobbling-in-a-cone model wheréNobbling dynamics of the dye molecule in micelle may be

the molecule wobbles within a cone of semiangjethat is  considered similar to that in the membrane. The wobbling

related to the order of the environméhf? According to this  time constantr, is related to the wobbling diffusion constant

model, the anisotropy decay equation becomes Dy bf)(z) the relation (according to the wobbling-in-cone
modef*),

Dy 7w(1—S?) = —x3(1+xo)[log[ (1+x¢)/2]
+(1=Xo)/2]/[2(1—X)]
+(1—Xo)(6+8xg—x5— 123 —7x3)/24,

0.4

0.3 2
[ 31
> £ (3D
2 g wherex,=cosfj.
02 The rotational motion of the spherical micelle leads to a
g single exponential anisotropy decay,

o
-
T

, (32

r(t)_F{ t
T e

where 7, is the rotational time constant for the spherical

0 2 4 6 micelle. 7, is calculated to be 8.3 ns in water at 25 °C using
Time/ns the Stokes—Einstein equation,= »V/kT, whereV is the

molecular volume of the micellehydrodynamic radiust

FIG. 8. Fluorescence anisotropy decay of Nile red in SDS micelles, gener-_ ; ; ; ;
ated using the polarized fluorescence intensity decays that are shown in the 21 A (Refs. 8,13] and 7 is the VISCOSII)}S' This value was

Fig. 7(B). The inset shows the fitting of this anisotropy decay to different kept constant in the data analysis to if{t) which is de-
models, plotted on log scale. The solid curve is the experimental anisotropgcribed below.
decay. The dashe@urve g and dashed—dotte@urve b curves are the fits The three motions described above which depolarize the

0 Bq. (33 with S=1 (no wobbling dynamicsand with D=0 (no trans- ., rescance are independent of each other and hence the
lational diffusion. The dotted curve overlapping with the experimental

curve shows the fitting to Eq33) that includes all the three depolarizing a_nisotropy decay is the multiplication of the three parts as
motions forS=0.471(see text for details given below,

0.0
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r(t) 1 2 — 6t cient was calculated to be 1.21.03< 10" m?s. The wob-
r(0) cos a— Esmza exr{ = ) bling diffusion coefficient was calculated to be 2:10.02
' % 10° s7* using the values o8 and r,, and Eq.(31). From
. =5t} 3 —2t the value ofS, the cone semianglé, (Refs. 41, 42 was

+3 S”’]2 o CO§ o eXF{ Ttr ) + ZSIH4 o eXF{ Ttr ):| CaICUIated tO be 53.70.

The application of Eq(33) to interpret the experimental

X[SP+(1—S?) exp(—t/TW)]exp( _i) (33) anisotropy decay for Nile red in S_DS micelles has given
T good estimates for the value of the tilt angle of the molecular

Here, 7, represents the translational diffusion time which isdiPoles as 1%2°. From this value, one may consider that

defined aR?/D,,, whereR is the radius of the micelle and the molecular dipoles are aligned parallel to the radial direc-

D, is the transléytional diffusion coefficient tion. However, the molecule wobbles in a cone of large
r .

The experimental anisotropy decay shown in Fig. 8 wasemiangle of 53.7° indicating consio!erable mobility for the
initially fitted (using Jandel Scientific Sigmaplot V. 3.y  dye molecule. The values of the different parameters ob-

assuming that the translational diffusion is absent; that isi@ined above using a fixed value 8fare only indicative
D,=0 in Eq.(33). The best fit(curve a in Fig. $ for this since S was obtained from a different system and viscosity

equation was obtained f@=0.2 andr,=1.01 ns. Clearly, dependence, if any, has not been included in the analysis.

neglecting the translational diffusion leads to a misfit of ex-AlSO, in deriving the expression for the anisotropy decay of
perimental data. the system, the anisotropy is written as the product of the

Next, the effect of neglecting wobbling dynamics was three terms as contributions from the three independent mo-

examined by setting=1 in Eq.(33). The best fit values for tions in the case of the micel[gefer to Eq.(33)]. The rota-
a and 7, were 63.01° and 3.54 ns but the fit was unsatisfactional motion of the micelle is independent of the molecular
tory as seen by the deviation of the fitted curearve b in  dynamics of the probe and hence it can be decoupled from
Fig. 8 from the data. Thus, it is necessary to include boththe other two motions. On the other hand, the decoupling of
wobbling and translational diffusion in the equation. Thisthe wobbling(rotation and translational motion of the mol-
required optimization of four unknown parameters in Eq.ecule is assumed in liquid solutions which may not be valid
(33), namely,S 7, a, andD,,. The experimental data of for molecules in interfaces. Indeed, there exists enough ex-
r(t) was fitted to Eq(33) by optimizing these four param- Perimental evidence, the so-called “translation rotation
eters. It was found that the optimized values for the fourParadox,®® or non-Brownian dynamiésto suggest that the
parameters varied substantially. The range for each of thegtecoupling may not be correct. On the other hand, the un-
parameters was obtained from the fits3xs0.60+0.16, 7, ~ coupling of the translational and wobbling diffusions may be
=15.26+9.14 ns,a=0.36+37.52°, andr,,=0.73+0.19 ns. valid when the time scales of these two motions differ sub-
In order to determine these parameters accurately, it wastantially which is the case here as can be seen from the
decided to make use of the value of order param@teter- obtained values of the two time constants. The method em-
mined by an independent meth¢gske below as a fixed pa- ployed here also gives estimates for the wobbling diffusion
rameter. coefficient D,, and translational diffusion coefficierid,.
SDS micelles swell to a large size in the presence ofluorescence anisotropy dynamics in micelles and the analy-
NaCl and form large wormlike/rodlike micelles at high salt Sis of data is perhaps unique because one obtains values for
and surfactant concentratiofs:>~*° Because of the large D,, and Dy in a single experiment. There is however no
size, 7, and 7, are also large compared to fluorescence life-independent method by which the accuracy of these values
time and hence these contributions in E§3) are absent. can be checked. On the other hand, the values of the trans-
Hence, the order parametBican be determined in this case lational and wobbling diffusion coefficients compare reason-
from the ratio of the fluorescence anisotropy at zero timeably well with those reported for organic molecules in mi-
(ro) and the limiting value at long timer() as S celles and membrané§:*21349-52
=(r./ry)°° (Refs. 42, 46 and 47 Highly viscous micelles It is interesting to speculate on the possible use of the
containing the dye were prepared by mixing the d¥&73  experimental and simulation methods described in this paper
mM) with the concentrated solution of the surfactahf73  for a quantitative understanding of the characteristics of the
M, dye to surfactant ratio of 1:100Gnd then drying the surface of irregular objects of small size such as proteins and
solution on a glass plate until it became a film of thick pastebiological membranes. The fluorescence anisotropy decay of
The anisotropy decay was obtained for this film by placinga fluorophore which is noncovalently bound to the surface of
the glass plate at an angle of 45° to the exciting laser beanthe protein would have contributions from translational dif-
From the values of (0.365 andr., (0.08), the order pa- fusion and rotation of the entire surface. Unlike micelles, the
rameterS was calculated to be 0.471. probe cannot intercalate into the protein and hence the wob-
The experimental anisotropy decay data of Nile red inbling dynamics is absent except in the case of covalently
SDS micelles was fitted to E@33) by fixing the value ofS  linked fluorophores. The analysis of experimental data be-
at 0.471. The best fit values were=0.98+1.91°, =,  comes simple if experiments are designed such that rotation
=21.89+0.48 ns, andr,=0.89+0.01 ns. Figure 8 shows of the protein is prevented by immobilization. In which case,
the best fit curvédotted curve overlapping with the experi- the anisotropy decay is purely because of the lateral diffusion
mental curve. From the values ef and the core radius of of the fluorophore on the surface of the protein. The surface
the micelleR=16.7 A238 the translational diffusion coeffi- characteristics of the protein and the tilt angle of the probe

m
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are contained in the fluorescence anisotropy decay. The size Fluorescence anisotropy decay of molecules intercalated
and shape of the protein can be determined only by comparin nanometer size spherical micelles has contributions from
son with the theoretical equations for regular shagpbere, three independent dynamical motions; translational diffusion
ellipsoid, etc) or simulated functiongfor irregular shapes as described above, wobbling of the molecular axis spanning
for fluorescence anisotropy. If there are regions in the surfaca cone(wobbling-in-cone modeg) and rotation of the spheri-

of the protein(for example, the active sitavhich are forbid-  cal micelle. The anisotropy decay obtained from experimen-
den for the lateral diffusion of the fluorophore then one ex-tally determined polarized fluorescence responses of Nile red
pects that anisotropy does not decay to zero but to a constaimt SDS micelles was fitted to the theoretical equatfifg.
value which is proportional to the excluded area. Somg33)] which required optimization of the values fe, 7,
knowledge of the shape and size of the protein will be helpande«. Nile red in SDS micelles is oriented at=12° with the

ful in such cases to carry out Monte Carlo simulation and tonormal to the micellar surface and the translational diffusion
obtain quantitative data on excluded area. In the case of fluaoefficient is estimated to be 1:®.1x 10 1% m?s.

rescence dynamics in lipid bilayer vesicles, the contribution

of translational diffusion is negligible to the total fluores-

cence depolarization because of the larger valueR ahd
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