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Abstract. We calculate the translational friction coefficient and the translational diffusion 
coefficient of a permeable cylinder moving in a sheet of fluid which is embedded on both 
sides in a fluid of much lower viscosity. The result, which is an asymptotic expression valid in 
the limit of small ratios of the viscosities, is derived by the method of matched asymptotic 
expansions. 

1. Introduction 

In this paper we consider the following problem. A cylinder (radius a and height h )  of 
constant permeability is in a state of uniform translation with respect to a viscous fluid 
(viscosity 7). This fluid forms a sheet of thickness h in which the cylinder is constrained 
to move. The sheet is embedded on both sides in another fluid of a much lower viscosity 
(7’). We want to calculate, from the linearised Navier-Stokes equation, the trans- 
lational friction coefficient fT, which is defined as F/vo, where F denotes the total force 
on the cylinder, and oo the relative velocity between cylinder and fluid. 

This problem is relevant to the translational diffusion of a patch of cross-linked 
proteins in a cell membrane (Wiegel 1979b). For an impermeable cylinder in the limit 
(aq’lhq) + 0, this problem has no solution because of the Stokes paradox. It follows 
from the theory of the present paper that this problem has no solution in the limit 
(aq‘ /hq)  -+ 0 for any finite value of the permeability either, i.e. even when the cylinder 
has a certain porosity the Stokes paradox still obtains. It was pointed out by Saffman 
and Delbriick (1975), for the case of an impermeable cylinder, that this problem does 
have a solution as long as (aq’/hq) > 0. Saffman (1976) has presented the details of the 
calculation using a singular perturbation technique (cf Van Dyke 1975). In this paper 
we consider the case of a cylinder of finite length and with a finite permeability, and we 
calculate the leading term in f ~ .  For the sake of completeness, it should be pointed out 
that the rotational friction coefficient of a permeable cylinder in a viscous fluid has 
also been calculated. The result has been published elsewhere (Wiegel 1979a). The 
model considered in this paper is a generalisation of the model considered by Saffman 
(1976). Our model specifically enables one to study the effects of porosity on the 
translational diffusion coefficient of complexes in the cell membrane (cf Wiegel 
1979b, c). 

i. Based in parton aseminar for the Universityof Lausanne and the Ecole Polytechnique Fkdkrale, Lausanne, 
October 1978, and on a paper to be presented at the 26th IUPAC symposium on macromolecules, Mainz, 
September 1979. 
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An outline of the contents of this paper is as follows. In 0 2 we develop the general 
theory and show that the problem can be reduced to a single ordinary integro- 
differential equation. In Q 3 the asymptotic form of the solution for a radial distance 
r >>U is found. In Q 4 the asymptotic form of the solution for r << vh/v' is found. In Q 5 
the outer and inner asymptotic solutions are matched in the regime a << r << vhlv', 
which leads to an explicit expression for the translational friction coefficient. 

2. General theory 

Consider a Cartesian system of coordinates (x ,  y, z )  with the z axis along the axis of the 
cylinder. Shortly we shall also use cylindrical coordinates (r, q5,z). The sheet of fluid 
with viscosity 7 is located at - h < z < 0, while the other fluid with much lower viscosity 
17' is located at z < - h  and at z>O. 

First, we consider the pressure p and velocity o = (ux, U,, U,) of the fluid in the 
half-space z > O .  Putting the cylinder at rest, we have to solve the linearised, time- 
independent Navier-Stokes equation 

- V p + v ' A ~ = o  (1) 

div o = 0 (2) 

and the incompressibility equation 

under the boundary condition that at large distances from the z axis U, +. -uo, U, + 0, 
U, + 0. For pressure and velocity we make the ansatz 

U, = - u o + ( s ( r ,  z)+t(r,z))cos2 + - t ( r , z ) ,  (3) 

U, = ( s (r ,  z )  + t (r ,  z ) )  cos sin 4, (4) 

uz = 0, 

p = constant, ( 6 )  
where s and t denote unknown functions with cylindrical symmetry which vanish for 
r + CO or z +CO. Physically, (Su) ,  = s(r, z )  cos q5 equals the component in the direction 
of increasing r values of the perturbation of the asymptotic velocity field, and ( 6 ~ ) ~  = 
t(r ,  z )  sin 4 equals the component in the direction of increasing q5 values. Substitution 
into the continuity equation (2) immediately leads to 

(7 ) 
which relation reduces the number of unknown functions to one. Substituting the 
ansatz into (1) and eliminating t using the last relation, we find 

t = -s - r aslar, 

The general solution, which is finite at r = 0 and vanishes if r + a or z +. 00, is 
a 

s(r,  2) = lo f(k) exp( - k z )  dk, 

where the J, denote the Bessel functions of the first kind, and where f still has to be 
determined from the boundary condition at the interface at z = 0. 
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Second, we consider the fluid in the sheet - h < z < 0. In the biophysical application 
discussed elsewhere (Wiegel1979b, c) this fluid consists of rod-like molecules (lipids) of 
length h, directed along the z axis. Hence the flow in the sheet is truly two-dimensional. 

In the presence of a porous cylinder one has to use the (space-time) average 
pressure P and the average local velocity V of the fluid in the sheet. If the two fluids did 
not interact at their interfaces z = 0 and z = -h, the flow would follow from the 
Debye-Brinkman-Bueche equation 

- V P  + T A  V - ( T / K )  V = 0,  (10) 

where K = K ( r )  denotes the permeability. A microscopic derivation of this equation 
has been given by Felderhof and Deutch (1975a) and a macroscopic derivation by 
Wiegel and Mijnlieff (1976). Recent applications to the flow through polymer coils are 
due to Ooms et a1 (1970), Felderhof and Deutch (1975a, b), Felderhof (1975a, b), 
Wiegel and Mijnlieff (1977a, b) and Mijnlieff and Wiegel (1978). 

In the presence of interaction between the two fluids at their interfaces, the fluid 
located at z > 0 exerts a force on the fluid in the sheet which has components (per unit 
area) 

and an identical force derives from,the second interface at z = -h.  Hence P and V have 
to be determined from 

- V P + ~ A V - ( ~ / K ) V + ~ U / ~  = O ,  (12) 

div V = O .  (13) 

Vx = -UO+ ( S ( r )  + T(r) )  cos2 4 - T(r ) ,  (14) 

V, = ( S ( r )  + T ( r ) )  cos 4 sin 4, (15) 
P = Tll(r) cos 4, (16) 

For pressure and velocity in the sheet we now make the ansatz 

where S, T and ll denote unknown functions with cylindrical symmetry which vanish in 
the limit r + CO. Substitution into the continuity equation (13) leads to 

T = -S  - r dS/dr. (17) 

Substitution of the ansatz into (12) leads to two equations which, after some straight- 
forward but tedious algebra, can be rewritten in the form 

-rII"-ll '+II/r-r(K-l)'S+r(K-l)'uo=O, (19) 

where the prime denotes differentiation with respect to r. These equations have to be 
solved under the boundary conditions: (i) n(0) and S(0) should be finite; (ii) ~ ( C O )  = 
S(m) = 0; (iii) s(r, 0) = S ( r ) ,  which condition expresses the continuity of the flow field in 
the sheet with the two other flow fields at z = 0 and z = -h.  The last term on the 
left-hand side of (18) is determined uniquely by the function S ( r )  through (9) and 
boundary condition (iii). 
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In the rest of this paper we shall consider the special case of a homogeneous 
cylinder: 

(20a) 
(206) 

The dimensionless parameter 

u ' a / J Z  (21) 

measures the ratio of the radius of the disc and the penetration length JE over which 
fluid flow effectively penetrates the porous material (this quantity should of course not 
be confused with the shear force U in (11) and (12)). With a discontinuity in K ( r )  at 
r =a,  equation (12) shows that the pressure, velocity and all first derivatives of the 
velocity should be continuous at the surface of the disc, but that the derivative of the 
pressure and/or the second derivatives of the velocity may be discontinuous. Equation 
(19) now reads 

II" + II' / r - II/ r2 = 0, (22) 

with the solution 

where L is a constant. Equation (18) then reads 

It is easy to verify that these equations have no solution which satisfies the boundary 
conditions at r = 0 and r = CO in the limit ( a v ' / h v )  + 0. Hence the Stokes paradox also 
holds for a porous cylinder of infinite length. For 0 < ( a v ' / h q )  << 1, however, the 
equations do have a solution which can be found using singular perturbation theory. 

3. The outer asymptotic expansion 

For r >>a, the force density - ( v / K )  V in the Debye-Brinkman-Bueche equation (12) 
can be replaced by a sharply peaked force density F in the origin, with components 

F, = (F/dzr)S(r ) ,  ( 2 7 ~ )  

Fy = 0. (276) 

Here F denotes the magnitude of the total force which the cylinder exerts on the fluid, 
and we have made use of the fact that the delta function S ( r )  is an even function. The 
asymptotic behaviour of the flow field for r >> a can thus be found from the equation 

- V P  + 77 AV + F + 2 ~ / h  = 0. (28) 
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It is straightforward, but somewhat tedious, to solve this equation by the methods of the 
previous section. Instead of (18)  and (19)  we now have the equations 

3 F 
- n' + S"+- S' +- S ( r )  + 2771 (2) = 0, r aqhr hq az z=o 

The last equation can be integrated immediately; using the boundary condition on Il at 
infinity one finds 

- nr + (F/aqhr)S(r)  = n/r. (31)  

The solution of the equation which has the appropriate behaviour near r = 0 is 

n(r) = F/2aqhr ( r  >>U) .  (32)  

Note that this asymptotic behaviour of the pressure has the same form as the exact result 
(23b) .  

Upon substitution of the last two equations, (29)  takes the form 

Taking the Hankel transform and using ( 9 )  and (26)  we find the solution in the form of a 
definite integral: 

The solution also obeys the proper boundary condition for r + 00. Using the recurrence 
relations for the Bessel functions (Abramowitz and Stegun 1968, equation 9.1.27) the 
integral can be written as the sum of two terms: 

The second integral on the right-hand side converges even for r = 0, and has the value 
(Gradshteyn and Ryzhik 1965, equation 6.561.17) 

The first integral on the right-hand side has the value (Gradshteyn and Ryzhik 1965, 
equation 6.562.2) 

- 1 I, " ( 5  +%) 217'1 -1 Jo(8 d5  = f 4 H o ( - i ; ; ; )  277'1 -No( -)), 277'1 
2 h v  (37)  

where the N, denote the Neumann functions and the H, the Struve functions. Using 
the asymptotic expansions of these functions for small arguments, as given by Grad- 
shteyn and Ryzhik (1965, equations 8.550 and 8.403.2), and combining the last four 
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equations, we find for the inner limit of the outer asymptotic expansion of the flow 

S(r) = (F/4vqh)[ln(hq/q'r) - y +1] (a  << r << hq /q ' ) ,  (38) 

where y = 0.5772 denotes Euler's constant. The constant F will be determined shortly. 

4. The inner asymptotic expansion 

For r << hq/q ' ,  the last term on the left-hand side of (24) and (25) can be neglected with 
respect to the terms S"+(3/r)S'. Hence the inner asymptotic expansion can be 
obtained from the equations 

- L + S " + ( 3 / r ) S ' - S / K o + v ~ / K ~ = 0  (0< r < a) ,  (39) 

L U ~ / ~ ~ + S ~ ~ + ( ~ / ~ ) S ' = O  (a  < r). (40) 

The solution of these equations which is finite for rL0 (the inner asymptotic expansion) 
is 

S(r)  = vo-LKo+A Il(r/JKo)/(r/dKo) (O< r < a ) ,  (41) 

S(r)  = a / r 2 + p  -&z2 In r (a  < r), (42) 

where A, a and p are constants and where the I, denote the modified Bessel functions. 
As has been noted already in the Introduction, the pressure, velocity and all first 

derivatives of the velocity should be continuous at r = a. With (14), (15) and (17) this 
implies that S, S' and S"shou1d be continuous at r = a. With the explicit results (41) and 
(42) this leads to three equations from which the three constants a, p and A can be 
determined as functions of L. This results in 

The outer limit of the inner asymptotic expansion is found from (42): 

S(r)-p-1La21nr  (a K r << hq /q ' ) .  (46) 

The unknown constant L is determined in the next section. 

5. Asymptotic matching and concluding remarks 

The method of matched asymptotic expansions has been discussed in full detail by Van 
Dyke (1975). The method relies essentially on the observation that, for 

qhlq'a >> 1, (47) 

a regime of r values (a << r << hq/q ' )  exists in which both the outer asymptotic expansion 
(34) and the inner asymptotic expansion (41), (42) are good approximations. Asymp- 
totic matching is accomplished using the rule 

(inner limit of the outer expansion) = (outer limit of the inner expansion). (48) 
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Substituting (38) and (46), one finds two equations in the two unknown quantities L and 
F, which can be solved to give 

F = 4a77huo[ -y+ln(77h/77’a)+Z/a2+I~(a)/a11(a)]-’, (49) 

LaZ = 2u0[ - y  +ln(~h/~’a)+2/a2+Io(a)/aI~(a)1~’. 

~ T Z  4~77h[ - y +ln(qh/q’a) + 2 / a 2  + Io(a)/~Ii(a)]-’. 

(50) 

Hence, if (47) holds, the translationa! friction coefficient is given by 

(51) 

Using the Einstein relation (52), this gives for the translational diffusion coefficient 

DT = kB T/fT (52) 

(53) = ( k ~ T / 4 r q h ) [  - y +ln(?$t/77’a) +2/a2+I~(a) /a11(a)] ,  

where kB denotes Boltzmann’s constant and T the absolute temperature. 
In the limit a + 00 the cylindrical disc becomes impermeable, and we find 

D T ( ~ ) = ( ~ B T / ~ T V ~ ) [ -  y+ln  ( v h / ~ ’ a ) l .  (54) 

This is the result of Saffman and Delbruck (1975) and Saffman (1976) for the diffusion 
coefficient of a hard disc. Our method, therefore, generalises Saffman’s method to 
permeable objects. If, on the other hand, a<< 1, our result simplifies to 

DT= kBT/rqha2 (a << 1). ( 5 5 )  

This expression can also be found using ordinary perturbation theory. 
Equations (51) and (53) form the main results of this paper. They can be used to 

calculate translational diffusion coefficients of permeable complexes of cross-linked 
immunoglobulins in the cell membrane-a calculation which was not possible up till 
now. These more biophysical applications of our results form the subject of two 
separate publications (Wiegel 1979b, c). 
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