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MINIREVIEW Open Access

Translational models for vascular cognitive
impairment: a review including larger
species
Atticus H. Hainsworth1,2*, Stuart M. Allan3, Johannes Boltze4,5, Catriona Cunningham3, Chad Farris6,7,

Elizabeth Head8, Masafumi Ihara9, Jeremy D. Isaacs1,2, Raj N. Kalaria10, Saskia A. M. J. Lesnik Oberstein11,

Mark B. Moss6,7, Björn Nitzsche12,13,14, Gary A. Rosenberg15, Julie W. Rutten11,18, Melita Salkovic-Petrisic16

and Aron M. Troen17

Abstract

Background: Disease models are useful for prospective studies of pathology, identification of molecular and

cellular mechanisms, pre-clinical testing of interventions, and validation of clinical biomarkers. Here, we review

animal models relevant to vascular cognitive impairment (VCI). A synopsis of each model was initially presented by

expert practitioners. Synopses were refined by the authors, and subsequently by the scientific committee of a

recent conference (International Conference on Vascular Dementia 2015). Only peer-reviewed sources were cited.

Methods: We included models that mimic VCI-related brain lesions (white matter hypoperfusion injury, focal

ischaemia, cerebral amyloid angiopathy) or reproduce VCI risk factors (old age, hypertension, hyperhomocysteinemia,

high-salt/high-fat diet) or reproduce genetic causes of VCI (CADASIL-causing Notch3 mutations).

Conclusions: We concluded that (1) translational models may reflect a VCI-relevant pathological process, while not

fully replicating a human disease spectrum; (2) rodent models of VCI are limited by paucity of white matter; and (3)

further translational models, and improved cognitive testing instruments, are required.

Keywords: Vascular dementia, Vascular cognitive impairment, VCID, Experimental models, In vivo models, Translational

models

Introduction

Vascular cognitive impairment (VCI) is a spectrum of

clinical disease states [1–4] that range from post-

stroke mild cognitive impairment or dementia following a

large artery stroke, through ‘sporadic’ small vessel dis-

ease (SVD), to pure genetic small vessel arteriopathy

(CADASIL, CARASIL, COL4A1/4A2 mutations) [1, 5, 6].

The most common pathology underlying VCI is cerebral

SVD, which leads to focal lacunar ischaemic infarcts,

diffuse white matter lesions, and small haemorrhages in

deep brain areas [3, 4]. These disease states manifest in a

spectrum of cognitive impairments. Further complexity

arises as most clinical dementia in older persons is likely

to be ‘mixed’ as a result of Alzheimer’s disease (AD) com-

bined with vascular pathology [7, 8]. While characterisa-

tion of the neuropathological and radiological features of

human VCI has improved over the last two decades (see

adjoining articles) the molecular changes that underpin

these characteristics remain elusive [6]. VCI currently

lacks symptomatic treatment (comparable to donepezil for

AD) and molecular targets (comparable to tau, amyloid

precursor protein (APP) and β-amyloid (Aβ)).

Because VCI arises from a spectrum of diseases, no single

model will reproduce all pathological and cognitive features

of SVD or VCI [6, 9–12] (Table 1). Furthermore, as with

any animal model for dementia, the behavioural-cognitive

phenotype of any given model can never fully represent hu-

man cognitive deficits. We define a ‘translational’ model as
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one that impacts on clinical practice [13]. Therefore, in

order to be translational an animal model should repro-

duce at least one of the pathological processes in human

VCI [6, 12, 14]. A fully translational model would permit

(1) prospective studies of the timescale and the sequence

of events during development of the pathological process,

(2) identification of novel molecular, cellular and physio-

logical mechanisms, (3) pre-clinical testing of drugs and

other interventions, for proof-of-concept studies, (4) pre-

clinical testing of safety profile of drugs, optimal dosing

and time-scale, and (5) validation of clinical biomarkers

and endpoints such as radiological or biochemical signa-

tures. Models representing the initiating factors would

allow translation of preventive strategies, whereas models

of advanced disease states allow testing of therapeutic

interventions. It is appropriate and timely to seek inter-

national accord on such models [15]. Following the recent

NIH-sponsored Alzheimer’s Disease-Related Dementias

2016 Summit (https://aspe.hhs.gov/alzheimers-disease-re-

lated-dementias-adrd-summit-2016-prioritized-research-mi

lestones), the number one recommendation for VCI was to

“Establish new animal models that: (i) reproduce small ves-

sel disease and other key pathogenic processes thought to re-

sult in cognitive impairment; (ii) are easily applicable to

both VCID and AD research for advances in mixed etiology

dementias; (iii) address vascular contributions to dementia

via both white matter and grey matter or (iv) include genetic

and acquired conditions that are associated with VCID”.

Here, we review published models relevant to VCI, in-

cluding rodents and emphasising larger species. This re-

view is the result of discussions between experts from 12

laboratories across seven countries. Relevant systematic

reviews are available [10, 12].

Overview of experimental species

Rodents

We have included models of focal ischaemia (middle

cerebral artery occlusion; MCAo) [16–19] as this is a

validated, translational model of cerebrovascular injury.

Global hypoperfusion models include bilateral carotid

artery occlusion (BCAo) in rats [20] and bilateral carotid

artery stenosis (BCAS) using wire coils in mice [21, 22].

A refinement of the BCAo protocol employs constrictor

cuffs to give a gradual arterial occlusion over approxi-

mately 1–2 days [20]. These global models produce is-

chaemic white matter lesions, likely reflecting the low

baseline perfusion of white matter. Other pathologies

can also occur, including hippocampal cell death, small

haemorrhages and vascular amyloid deposition. Genetic

alterations include inbred strains (e.g., SHR, stroke-prone

spontaneously hypertensive rats (SHRSP)) [23–26] or

transgenic manipulations (e.g., Notch3 mutant strains)

[27–29]. VCI-relevant animals can also result from ma-

nipulation of risk factors, such as age, hypertension,

diabetes mellitus, hyperhomocysteinemia or a high-salt/

high-fat (‘fast food’) diet [14, 25, 26, 30, 31].

Larger species

Larger animals have a longer natural life span than ro-

dents. Experimental ruminants (sheep, goats) are predom-

inantly used to simulate acute cerebrovascular pathologies

such as ischaemic stroke [32–34] and cerebral haemor-

rhage [35]. In domestic dogs, hypercaloric or unbalanced

diet, lack of physical exercise and dyslipidemia are preva-

lent [36]. As in humans, hypertension [37] and cerebral

arteriosclerosis [38] are often observed in older subjects.

Consequently, a canine cognitive dysfunction syndrome,

featuring some clinical aspects of VCI, has been described,

particularly in breeds living long enough (>9 years) to fully

develop a neurological phenotype [39–42]. In cats, less is

known about the relation between aging, vascular patholo-

gies and cognitive decline. Aβ and tau pathologies have

been described in cats showing clinical signs of cognitive

decline [43–45]. Hypertension associated with arterio-

sclerosis, as well as small, multifocal cerebral haemor-

rhages, have also been reported for felines [46].

Behavioural paradigms for cognitive assessment in lar-

ger species have been reported from specialist centres for

sheep, pigs and cattle [41, 47–51]. The most advanced

cognitive abilities are seen in primates, for which so-

phisticated cognitive tools have been developed [52, 53].

Hypercaloric diet can decelerate aging and prevent

microvascular pathologies and cognitive decline in

primates [54, 55], without changing the lifespan [56].

Nevertheless, physiological aging can take decades in

primates, and studies relevant to VCI may be re-

stricted to specialised colonies [57, 58].

Large animal models allow clinical neuroimaging with-

out significant limitations in resolution, acquisition time

or data analysis. MRI protocols are now available for

dogs [59], cats [60], non-human primates [61–63], pigs

[64, 65] and sheep [66]. MRI (T1, T2, FLAIR) is advanta-

geous for analysis of tissue volume and lesions [66], as

well as for anatomical evaluation of particular brain

areas [67]. Perfusion and diffusion-weighted sequences

reveal cerebral blood flow (CBF) dynamics and vascular

permeability [68]. Templates, automatic segmentation

and labelling routines for larger species are essential for

studies aiming at quantitative morphometric analysis of

MRI and/or PET images. Automatic labelling and process-

ing routines have been developed for rhesus and cynomol-

gus monkeys [61, 69, 70], sheep [67], pigs [71, 72], and

dogs [73]; this enables efficient, observer-independent

analysis of grey and white matter regions.

Review methods

For each model, expert practitioners used web-based

searches and their own expertise to write a section of
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the review. All synopses were circulated for editing by

all authors, and subsequently by the scientific committee

of an international conference (International Conference

on Vascular Dementia, ICVD2015, Ljubjiana, Slovenia).

Only peer-reviewed sources in English were included.

Ethical statements on animal data

Sheep experiments from which data were derived were

approved by the responsible authorities for University of

Lübeck and University of Leipzig, Germany (animal

protocol numbers TVV33/09, TVV09/11, TVV33/12).

Experiments using monkeys were approved by the Insti-

tutional Animal Care and Use Committee of Boston

University Medical Center. All procedures with dogs were

conducted in accordance with University of Kentucky ap-

proved animal protocols (2009-0483) and the NIH Policy

on Humane Care and Use of Laboratory Animals.

Expert reviews of specific models

Large Vessel Ischaemia – Middle Cerebral Artery Occlusion

(MCAo) in Rodents

MCAo induces acute focal ischaemia bordered by a par-

tially ischaemic penumbra [74, 75]. While recovery of

sensorimotor function is well-characterised using behav-

ioural tests, there is less literature on cognitive impair-

ment [76]. Spatial learning, assessed by Y- and T-maze

tests, is hippocampus-dependent, but as other regions

are also required, including prefrontal cortex and basal

forebrain, these tests are relevant to the MCAo model

[77]. Following MCAo, male rats showed decreased rates

of spontaneous alternation compared with sham-operated

animals at day 21 post-stroke [78]. At 4 days post-MCAo,

male mice spend less time exploring a novel object than

sham animals [79]. Fear-motivated tasks such as passive

avoidance have also been used to assess cognitive impair-

ment after stroke [80]. While passive avoidance is a simple

task, it is stressful so could confound results of other be-

havioural tests [76].

Larger species: sheep with vascular ischaemic lesions

Permanent [32] and transient [34] MCAo have been per-

formed in sheep, resulting in well controlled and reprodu-

cible lesion sizes (Fig. 1). Histopathological investigations

revealed both grey and white matter changes, including

glial scar formation, microglial activation and replacement

of the tissue by new formation of blood vessels and foamy

fat cells [33]. Moreover, ovine models have been success-

fully employed to test experimental therapeutic paradigms

in short- [81] and longer-term (up to 7 weeks) approaches

[33], during which benefits of single- and multi-mode im-

aging protocols became evident.

A caveat in this species (and other domestic mammals)

is the rete mirabile epidurale rostrale, a local arborisation

within the carotid artery [82]. This often necessitates a

transcranial approach for MCAo. Leaving the trepanation

covered only by soft tissue reduces intracranial pressure,

which greatly increases long-term survival. In mild and se-

vere global cerebral ischaemia models in sheep, it became

evident that the basilar artery can contribute a higher pro-

portion of CBF than in humans [83]. After prior bilateral

clamping of both common carotid arteries for 4–30 min,

no lesions were found in brains of sheep subjected to the

method for less than 10 min. Longer duration produced

neuronal changes of several brain regions, similar to those

described in other species.

Primates and rodents: chronic brain hypoperfusion

With the assumption that reducing CBF is a common

feature of VCI [3, 84, 85], the original mouse BCAS

model was developed by placing microcoils on the ca-

rotid arteries to induce cerebral hypoperfusion [86].

While complete ligation of the carotid arteries (i.e.,

BCAo) substantially increased mortality, mice can with-

stand up to 50% BCAS [22, 87]. Monitoring cognitive

function using the Y, radial arm, Barnes maze and

Morris water maze has provided robust evidence that

the BCAS model replicates some features of VCI, in

Fig. 1 Focal ischaemic lesions in ovine brain. a Adult sheep brain in

coronal section. T1-weighted population-averaged brain template

(left), depiction of grey and white matter, as well as cerebrospinal

fluid (middle panel, overlay on template) and surface reconstruction of

white (white) and grey matter (yellow) in stereotactic space (right). Grey

and white matter spaces are derived from a priori tissue probability

maps. b Focal ischaemic lesion, 6 h after permanent middle cerebral

artery occlusion (MCAO). Hyperintense area is seen in the left temporal

cortex and medulla in T2-weighted TSE MRI (left-top). In this area, a

decreased diffusion in apparent diffusion coefficient maps of

diffusion weighted imaging (DWI-ADC, left-bottom) is visible. Fractional

anisotropy map of diffusion tensor imaging (DTI-FA, middle panel)

reveals a loss of fibre integrity. Following sacrifice and brain removal,

the mitochondrial marker TTC labels living cells (red). The ischaemic

lesion is unlabelled by TTC (right)
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particular the deficit of working memory [10, 86, 87]. In

BCAS, global CBF drops rather abruptly. With the same

principle as BCAS, ameroid micro-constrictors made of

casein (which swells on absorbing water) were placed

around the carotid arteries to provide a more gradual

stenosis [20]. Ameroid constrictors have also been ap-

plied to spontaneously hypertensive rats [20]. Further re-

finements have allowed the development of mice models

that exhibit subcortical infarcts and white matter dam-

age by surgical implantation of an ameroid constrictor

to the right common carotid artery and placement of a

microcoil to the left common carotid artery to induce

approximately 50% arterial stenosis; this is referred to as

gradual carotid artery stenosis [88]. There was gradual

reduction of CBF over 28 days, and multiple infarct

damage in right subcortical regions, including the cor-

pus callosum, internal capsule, hippocampal fimbria, and

caudoputamen in 81% of mice [88, 89]. These hypoper-

fusion models are discussed further elsewhere [12].

A baboon (Papio anubis) model evaluated whether

partial cerebral ischaemia or oligaemia resulting from re-

duced blood flow to the brain induces white matter

pathology consistent with SVD or AD-like changes. The

baboon model is ideal to relate to AD because it exhibits

both aβ and tau pathology with ageing and carries APOE4

associated with AD pathology. Adult, male baboons were

subjected to three-vessel occlusion by complete ligation of

the internal carotid arteries bilaterally, and occlusion of

the left vertebral artery. We have recently reported

subcortical and white matter changes in animals to

28 days after three-vessel occlusion [90]. This model

is useful to evaluate interventions at various stages

and specifically examine the effects of ageing, high-fat

diet, hypertension and neuroinflammation. Ameroid

constrictors to replicate a gradual reduction in CBF

may be a future refinement [84, 85].

SHRSP with modified diet or hypoperfusion

Hypertensive rat strains can undergo white matter

changes [23–26, 91]. SHRSP typically live for 9–12

months before developing ischaemic and haemorrhagic

stroke lesions [12, 92]. When a low-protein, high-salt diet

is given to the SHRSP, lesions and death are accelerated

[93]. Starting the diet after 6 weeks of life leads to haemor-

rhagic strokes, but delaying the onset of the diet until the

12th month slows the onset of strokes and allows the

damage to the white matter to occur earlier [25]. The

white matter damage results from hypoxic hypoperfusion

[94]. In a recent study, minocycline, a tetracycline deriva-

tive with the ability to inhibit matrix metalloproteinases,

reduced white matter damage and reversed the behav-

ioural changes in SHRSP [26]. For a more extensive dis-

cussion of SHRSP, see [12, 92].

Dietary induction of hyperhomocysteinemia

Elevated circulating homocysteine (hyperhomocysteine-

mia) is caused by a variety of genetic, physiologic and diet-

ary conditions extensively studied in rodents [95–98].

These cause cognitive impairment in ApoE null mice,

transgenic mouse models of Alzheimer’s disease, and wild-

type mice and rats [31, 99, 100], with surprisingly little

neurodegeneration or inflammation. Feeding wildtype

C57BL6J mice a diet deficient in three B-vitamins (folate,

B12 and B6) for 10 weeks resulted in hyperhomocysteine-

mia, microvascular rarefaction and impaired performance

in the Morris water maze [31, 100]. The same dietary

regime in APP transgenic mice worsened cognitive

impairment [101], and in combination with excess

methionine in dual mutant APP/PS1 mice, the diet

induced the redistribution of amyloid from brain par-

enchyma to the microvasculature along with micro-

haemorrhages, as determined by histology and MRI

[30, 102]. In Sprague–Dawley rats, folate-deficiency alone

was sufficient to induce homocysteinemia and cognitive

impairment, and to reduce cerebral blood volume and re-

activity measured by absolute, non-invasive, near-infrared

spectroscopy [103–105]. For further discussion of hyper-

homocysteinemia models, see [12].

Dietary modification can be applied to most species,

models and co-morbidities. Caveats are that dietary

models typically have higher variability and more subtle

effects than genetic or pharmacological models. Out-

comes are sensitive to dietary formulation and feeding.

This underscores the need for biochemical and meta-

bolic verification of the diet in brain and the periphery.

While chronic folate and B12 deficiency in humans

causes macrocytic anaemia and myeloneuropathy, these

outcomes are almost never observed in rodent models.

Associations between microvascular rarefaction and cog-

nitive impairment, in the absence of neurodegenerative

changes have been observed in other models, including

mice fed a high-fat diet [106], aged rats [107], and irradi-

ated rats [108].

Primates with chronic hypertension

The basis of this model is the induction of hypertension

by surgical coarctation of thoracic aorta in the rhesus

monkey [52, 109–111]. A segment of the thoracic aorta

is mobilised and dissected without injuring the medias-

tinal and intercostal branches. The external diameter of

the same segment is measured and then narrowed to a

luminal diameter of 2.0–2.5 mm (Fig. 2). A pressure

transducer inserted into the femoral artery is advanced

through the surgical site. Typically, systolic/diastolic

pressure is 170/100 mmHg above the coarctation and

80/50 mmHg (normal for rhesus monkeys) below.

Given the known effects of chronic hypertension on

attention, memory and executive function in humans,
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these domains were assessed in adult primates (5–11

years of age). The tasks consisted of an automated task of

simple attention, two tasks of memory function, the de-

layed non-matching to sample task (DNMS) [112, 113]

and the delayed recognition span task [114, 115], and a

primate analogue to the Wisconsin Card Sort task, the

Conceptual Set-Shifting Task (CSST) [116]. Performance

was compared with sham-operated controls that under-

went every stage of the surgical procedures up to, but not

including, narrowing of the aorta. Animals with coarcta-

tion were grouped into borderline (135–150 mmHg) or

hypertensive (> 150 mmHg).

On the task of simple attention in which monkeys are

required to select the same target stimulus on the touch-

screen, there was a positive correlation between response

time and systolic and mean blood pressure; hypertensive

(but not borderline) animals were significantly impaired

relative to the sham-operated group. Hypertensive mon-

keys were impaired on a task that required orienting to,

and then responding by touching, a randomly-presented

visual stimulus. Unlike normotensive animals, hyperten-

sive monkeys did not benefit from the presentation of a

cue that preceded the target stimulus. The effect did not

appear to be related to motivational state as there was no

difference in the number of missed trials. These findings

suggest a reduction in the speed of processing in the

stimulus–response chain.

The findings on memory assessment revealed a signifi-

cant difference among the groups on the DNMS up to

12 months post-surgery. Hypertensive monkeys re-learned

the DNMS task less efficiently than sham-operated con-

trols (Fig. 2). On both the spatial and pattern conditions

of the delayed recognition span task, the performance of

the hypertensive monkeys was significantly impaired with

Fig. 2 VCI in adult monkeys with surgically-induced chronic hypertension. a Arteriogram showing surgical coarctation of the thoracic aorta

(arrow) in the monkey. b Delayed non-matching to sample (DNMS) scores for re-acquisition of the basic task. Y-axis: errors to criterion for control

(sham-operated, black bar) and hypertensive monkeys (grey bar). c Delayed recognition span (DRS) test scores. Y-axis: group mean span, for

control (black bars) and hypertensive monkeys (grey bars). d Blood pressure correlates with overall cognitive function. Y-axis: blood pressure (mmHg).

X-axis: cognitive function index. The level of impairment on this index was significantly and linearly related to both systolic (black symbols, solid line;

r = 0.80, P < 0.005) and diastolic blood pressure (open symbols, dashed line; r = 0.75, P < 0.005). Modified from [52] with permission
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respect to the control monkeys, suggesting that, in

addition to affecting attentional function, hypertension

produced an impairment in ‘rule learning’.

The CSST requires the monkey to establish a cognitive

set based on a reward contingency, to maintain that set

for a period of time, and then shift the set as the reward

contingency changes. A subset of hypertensive monkeys

was unimpaired on the initial phase of the CSST (a simple

three choice discrimination). In contrast, hypertensive

monkeys were impaired at abstracting the initial concept

of colour on the CSST and were subsequently impaired

when shifted to the concept of shape, when shifted back

to the concept of colour, and again when shifted back to

the concept of shape. The findings from this task suggest

that the two groups of monkeys were able to learn a

stimulus reinforcement contingency at the same rate and

that the impairment seen on the CSST is most likely one

of abstraction and cognitive flexibility.

Overall, hypertension significantly influenced higher cog-

nitive function. Blood pressure correlated with a composite

z-score (similar to an IQ score), suggesting a direct rela-

tionship between blood pressure and cognition (Fig. 2).

Various neuropathologies are seen in this primate

model, including tortuous small vessels, hemosiderin-

filled macrophages and, most conspicuously, micro-

infarcts in both grey and white matter [110, 111]. The

micro-infarcts are of irregular shape and relatively uni-

form size (average maximum diameter ~ 0.5 mm). In the

grey matter, these lesions were characterised by a total

loss of neurons, and in white matter by marked loss of

myelinated fibres.

Larger species: aged canine model

Aging dogs spontaneously develop cerebrovascular path-

ology linked to cognitive decline [41, 42], including

cortical atrophy and ventricular enlargement (Fig. 3).

Cognitive impairment was evident on measures reflect-

ing learning and memory, and a subset of aged animals

became severely impaired [41, 42]. A strength of the

model is that Aβ, critically involved with plaque accu-

mulation and cerebral amyloid angiopathy (CAA), is very

similar in dogs and humans [117–119]. Vascular and peri-

vascular abnormalities and cerebrovascular Aβ pathology

are frequently found in aged dogs [40, 120–124]. Dogs

may be a suitable model system in which to examine the

consequences of CAA on cognition [125]. As in humans,

canine CAA is associated with cerebral haemorrhage

[40, 121], the occipital cortex being particularly vulner-

able [126]. Several environmental manipulations and

pharmacological studies that modify lifestyle factors have

been successfully implemented in canine models, with

some showing significant benefits to cognition [41].

Canines have also been used as a model for ischaemic

stroke. Both FLAIR and T2* (sensitive to hemosiderin)

imaging show significant white matter hyperintensities

[127]. Loss of white matter integrity may be a conse-

quence of CAA; for example, dogs aged from 1 to 20 years

exhibited a progressive loss of myelin basic protein, corre-

lated with age and with increasing CAA [128].

The canine brain displays substantial age-associated

morphological changes [129–131]. Gadolinium-enhanced

MRI revealed reduced blood–brain barrier function with

age, as well as reduced cerebrovascular volume [129].

Characterising cognitive function in aging dogs requires

many months, and treatment studies may take several

years. In comparison to rodent models, they require

significant veterinary care as they become older. Radio-

logical outcome measures that reflect in vivo CAA (e.g.,

SWI scans) have not yet been published.

Mouse models for monogenic small vessel disease

(CADASIL)

CADASIL (Cerebral Autosomal Dominant Arteriopathy

with Subcortical Infarcts and Leukoencephalopathy) is a

monogenic archetype for SVD, caused by cysteine-altering

missense mutations in NOTCH3. CADASIL patients

develop progressive white matter lesions from early adult-

hood, followed by cognitive decline and recurrent subcor-

tical infarctions [132]. Conventional transgenic murine

models expressing mutant human NOTCH3 from a cDNA

construct [133–135] recapitulate some aspects of the

CADASIL vascular phenotype (vascular Notch3 accumu-

lation and granular osmiophilic material on electron

microscopy) [12, 92]. In only one transgenic model, with

4-fold overexpression of mutant Notch3, the mice devel-

oped disturbed cerebrovascular reactivity (from 5 months

of age), reduced CBF (from 12 months) and white matter

Fig. 3 Structural MRI of canine brains. Coronal MRI scans (1.5 Tesla)

of 4-, 9-, and 15-year-old dogs, taken from locations at the level of

thalamus (upper row) and hippocampus (lower row). Older animals

show marked increase in ventricular volume (black arrows) and

cortical atrophy, with deep gyri and widened sulci (white arrows).

Three-dimensional images across the whole brain were acquired

using a spoiled gradient recall (SPGR) sequence to obtain detailed

anatomic images. Modified from [129] with permission
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damage (from 18 months) [27]. A novel transgenic mouse

strain containing genomic human NOTCH3 has recently

been developed [136]; these animals show early-onset vas-

cular Notch3 accumulation (from 6 weeks). A knock-in

model, made by introducing a mutation in endogenous

Notch3, developed a CADASIL clinical phenotype (at

20 months) [137]. Stroke lesions, microbleeds and motor

deficits were seen only in a minority of mutant mice

(5–12%). Despite the fact that cognition has not yet been

characterised in these murine models, they offer a valid

pathogenetic representation of human CADASIL and may

be an important pre-clinical model in which to test VCI

therapies for efficacy.

Discussion and conclusions

As noted previously [9–11, 14], no experimental model

replicates all pathologic and cognitive aspects of human

VCI (Table 1). Animal models are useful to reflect a

pathological process (e.g., white matter hypoxia, arterial

fibrosis, amyloid accumulation) rather than a human dis-

ease. Old dogs with canine cognitive dysfunction syn-

drome and aged primates (> 20 years of age) being

possible exceptions, none of the models discussed here

results in a ‘demented’ animal. That said, all the animal

models considered above reproduce at least one of the

pathological processes in human VCI. Because the se-

quence of events leading from experimental challenge to

brain pathology, and thus to VCI, can be characterised in

animal models (and interventions imposed), the models

may help to identify pathways that lead to VCI. As the

pathogenesis of SVD, the most common cause of VCI,

remains unknown, a valid model of SVD-dependent VCI

remains a challenge. Making these conceptual and bio-

logical limitations explicit will expedite the development

and appropriate use of translational models for VCI.

There are several general limitations in the extant

literature. Most animal studies involve short-term follow-

up (typically, less than 4 weeks). Male animals are gener-

ally used and females usually avoided due to influences of

the reproductive cycle. Few studies have correlated cogni-

tive changes with anatomical changes, as seen by path-

ology or MRI. Most of the available cognitive paradigms

are derived from AD models. Many experimental studies

are under-powered (i.e., use a small number of animals)

and few are replicated.

We have a number of recommendations for the VCI

research community. First, it would be advantageous to

increase our knowledge and experience in larger species

with more abundant white matter and gyrencephalic brain

anatomy. This is especially important given the central

role of white matter lesions in human VCI. Second, robust

neuropsychological methods for assessing VCI in experi-

mental animals (particularly larger species) would be

beneficial. Cognitive impairment (and recovery) are the

most complex aspects of human VCI, and will likely differ

between animals and humans (for example, experimental

species lack spoken language). Thus, aspiring to a precise

behavioural replication in an animal may not be possible.

Nevertheless, a core toolkit of validated, reproducible,

species-appropriate tests of a cognitive phenotype is

required. With respect to SVD, simple behavioural indica-

tors analogous to the key cognitive features of the

syndrome in humans (impaired processing speed, apathy

and executive dysfunction) should be welcome. Third,

progress on translational VCI models will be more rapid if

high standards of ‘Methodological quality’ [15] outlined in

ARRIVE guidelines [138] and in previous translational

consensus documents [139, 140] are followed. Specifically,

random allocation of animals to experimental groups and

blinded assessment of outcomes was quite rare in earlier

studies (prior to 2010) [10]. Future experimental studies

should adhere to available guidelines on experimental

design, regarding a priori statistical power calculation,

randomisation, blinding of observers, and confirmation by

at least two independent laboratories [15, 138–140]. It

appears likely that negative outcomes of animal studies

are rarely published. Fourth, as neuroimaging (particularly

MRI) has a central role in human VCI, future pre-clinical

studies will be enhanced by brain imaging data. Radio-

logical features (diffuse white matter lesions, lacunar in-

farcts) are the main clinical biomarkers of SVD. Hence,

correlative studies relating MRI to brain pathology in

animals will continue to be informative.

Experiments using gyrencephalic species may be costly

and long in duration to afford sufficient statistical power.

A possible solution is a step-wise approach that employs

rodents to study fundamental aspects of cerebrovascular

disease common to all species, and large animals to

study aspects of VCI that require a large gyrencephalic

brain. Extending studies across species will clarify

molecular, cellular and physiological events that lead

from vascular disease to neuronal injury and cognitive

dysfunction in humans, and improve the likelihood of

achieving new preventive and therapeutic interven-

tions in VCI.
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