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Abstract 

In the era of precision medicine, digital technologies and artificial intelligence, drug discovery and development face 
unprecedented opportunities for product and business model innovation, fundamentally changing the traditional 
approach of how drugs are discovered, developed and marketed. Critical to this transformation is the adoption of 
new technologies in the drug development process, catalyzing the transition from serendipity-driven to data-driven 
medicine. This paradigm shift comes with a need for both translation and precision, leading to a modern Translational 

Precision Medicine approach to drug discovery and development. Key components of Translational Precision Medicine 
are multi-omics profiling, digital biomarkers, model-based data integration, artificial intelligence, biomarker-guided 
trial designs and patient-centric companion diagnostics. In this review, we summarize and critically discuss the poten-
tial and challenges of Translational Precision Medicine from a cross-industry perspective.
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Background

Traditionally, drug development in large pharmaceuti-

cal companies is regarded as a conservative and risk-

averse discipline with highly regulated processes and 

slow adaptation to external innovation. However, in a 

rapidly evolving healthcare ecosystem, new technolo-

gies and innovative concepts of how to leverage them are 

needed to accelerate clinical trials, lower attrition rates, 

mitigate research and development (R&D)-related risks 

and overall improve pharmaceutical R&D productiv-

ity [1, 2]. Critical for future R&D success is the combi-

nation of transformative therapeutic concepts and drug 

targets with first-in-class potential, tailored digital tech-

nologies and patient-centric drug development, linked 

to a broader paradigm shift from one-size-fits-all medi-

cine towards precision medicine (the right medicine, for 

the right patient, at the right dose, at the right time) [3, 4]. 

While precision medicine is an appealing concept, there 

are several core challenges for implementation from 

bench to the bedside, as discussed previously [5–7].

One of the major bottlenecks for drug development 

is translation [8], particularly at the interface of drug 

discovery and early clinical development, referred to 

as the Translational Gap [8–10]. To close this gap and 

foster translational science, the National Institutes of 

Health (NIH) has established the National Center for 

Advancing Translational Sciences, a core hub to drive 

and integrate innovative translational activities across 

academia, industry and non-profit organizations [11]. 

Translational medicine as defined by the European 

Society for Translational Medicine [12] integrates sev-

eral R&D tools to bridge the translational gap and guide 

early drug development. Since translational medicine 
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and precision medicine approaches in drug develop-

ment are overlapping and intertwined, we use here the 

term Translational Precision Medicine to refer to this 

emerging discipline.

�e Translational Precision Medicine concept inte-

grates core components from both translational medi-

cine (mechanism-based early drug development) and 

precision medicine (patient-centric late drug devel-

opment) into an end-to-end biomarker-guided drug 

development cycle. Critical success factors for Trans-

lational Precision Medicine are (i) the translation of 

mechanisms from research to early clinical devel-

opment (forward translation/bench-to-bedside), (ii) 

the back-translation from late clinical development 

insights to drug discovery (reverse translation/back-

translation/bedside-to-bench) [13], (iii) data-driven 

mechanism-indication pairing [14], (iv) the translation 

of omics signatures into clinically-relevant biomark-

ers and endotypes [15] and (v) the development of 

patient-tailored companion diagnostics and precision 

medicines [3]. Here we focus on the following key com-

ponents of Translational Precision Medicine (Fig. 1):

• Multi-omics profiling

• Biomarker-guided trial designs

• Model-based data integration

• Artificial Intelligence (AI)

• Digital biomarkers

• Patient engagement.

Multi-omics pro�ling

Clinical data can be classified as phenotypic (such as 

demographics, physiologic assessments, disease scor-

ings, imaging, health questionnaires, digital patient 

assessments) or molecular (such as genomics, transcrip-

tomics, proteomics, metabolomics). Capturing com-

prehensive phenotypic data associated with a certain 

disease can be referred to as phenotyping (or phenomics), 

which is the traditional and most common approach to 

classify diseases irrespective of the biological origins of 

disease. Utilizing datasets to define disease subtypes at 

the molecular level can be referred to as endotyping, as 

exemplified in respiratory medicine [16, 17] or oncol-

ogy [18]. �e National Academy of Sciences of the USA 

campaigned for a new, molecularly-informed taxonomy 

to define diseases based on molecular endotypes rather 

than traditional clinical symptoms [19]. However, endo-

typing requires deep pathophysiological disease insights 

and large molecular datasets to be successful. Within the 

last two decades, high-throughput omics technologies 

have provided the basis for endotyping and data-driven 

medicine [20, 21]. With the rapid advances of sequenc-

ing technology, genetics has revolutionized our under-

standing of monogenic diseases, such as cystic fibrosis 

[22] or mutation-driven cancers [23], but most human 

diseases are polygenic and consequently more complex 

to dissect. To approach these diseases at the genetic level, 

polygenic risk scores hold promise to predict genetic 

predisposition to disease or therapeutics [24], particu-

larly if combined with electronic health records (EHRs) 

[25]. Translational genomics aims to combine genetic 

and clinical data as a foundation for precision medicine 

approaches [7]. Besides genetics, particularly proteomics 

[26, 27] are gaining momentum for clinical biomarkers 

and drug development [28]. Unlike mass spectrometry, 

next-generation proteomic detection principles, such as 

aptamer-based technologies [29], typically require lower 

amounts of material (down to 1ul/sample) and can be 

more readily applied to large patient cohorts to identify 

causal proteins as candidates for therapeutic targeting 

[28, 30–33]. Compared to more established omics lay-

ers, such as transcriptomics, proteomics offer the benefit 

of measuring protein levels directly, thus facilitating the 

translation to the clinic where protein biomarkers are 

most commonly used.

Beyond single omics technologies, multi-omics pro-

filing platforms are emerging, including genomics, 

epigenomics, transcriptomics, proteomics, lipidom-

ics, metabolomics, microbiomics and others [34, 35]. 

Multi-omics profiling integrates several biological lay-

ers, allowing researchers to fully appreciate the interplay 

between genetics, gene regulation and proteins, and to 

obtain a more complete picture of the molecular patterns 
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underpinning complex diseases. �us, multi-omics are 

well positioned to enable the identification of key dis-

ease nodes where multiple layers converge, maximizing 

the chances to identify novel drug targets, endotypes or 

biomarkers. Networks offer an effective way to integrate 

and visualize the output of multi-omics analyses, particu-

larly when the evidence does not converge at the level of 

a single gene, but within a biological pathway [36], and 

network propagation approaches can be applied to lever-

age network topology for the identification of key nodes 

[37]. Multi-omics are further essential for N-of-1 trials 

[38], for understanding drug-drug interactions and for 

the design of therapeutic drug combinations [39–41]. 

Despite this potential, there are several caveats and limi-

tations of multi-omics when applied to clinical drug 

development:

• Omics technologies assess large numbers of genes/

proteins, often in a semi-quantitative manner, and are 

highly sensitive to pre-analytical processes [42] such 

as batch effects [43]. Consequently, to build robust 

cases for clinical adoption, it is essential to include 

appropriate controls in the experimental design and 

to validate top hits by orthogonal quantitative meth-

ods [43, 44].

• Merging different multi-omics datasets [45] into 

a single data repository poses challenges to data 

transfer, integration and harmonization given differ-

ent data formats and data fragmentation. Moreover, 

analyzing large complex datasets, such as single-cell 

multi-omics [46], increases the chance for false posi-

tives and necessitates appropriate data processing, 

normalization and analysis with appropriate statisti-

cal methods [44, 47].

• Clinical trial feasibility [15, 48], especially for multi-

center and tissue-derived omics, remains a challenge. 

Restricting the number of well-selected clinical sites, 

strict standard operating procedures (SOPs), cross-

site controls and qualified analytical core facilities 

are essential for robust data generation. Well-curated 

biobanks [49] are further pivotal to link multi-omics 

data to disease characteristics and clinical trial out-

comes. Alignment on human biosample accessibility, 

FAIR data principles [50] and dissemination policies 

are also key for successful multi-omics collaboration 

networks.

Biomarker-guided trial designs

Biomarkers are defined by the Biomarkers Definitions 

Working Group of the NIH/FDA, as “a characteristic 

that is objectively measured and evaluated as an indica-

tor of normal biological processes, pathogenic processes, 

or pharmacologic responses to a therapeutic intervention” 

[51]. In drug development, biomarkers are broadly used 

to inform on target engagement, pathway activation, 

pharmacokinetic/pharmacodynamic (PK/PD) modeling 

and dosing rationales, diagnosis/patient selection, disease 

stratification, prognosis and prediction as well as moni-

toring disease, safety and treatment efficacy. Biomarkers 

are classified into molecular, cellular, physiological, imag-

ing and digital modalities. As clinical trial endpoints, 

biomarkers provide the advantage of being quantitative 

and objective measures of (patho)biology in contrast to 

physician-based assessments which tend to be subjec-

tive and variable. Biomarkers are key to translate PD 

responses across species and to bridge the translational 

gap in early drug development [9, 10, 52], particularly 

for multifactorial systemic diseases [53] such as systemic 

immune-mediated diseases. From a drug development 

perspective, the longitudinal analysis of the AstraZeneca 

small molecule portfolio (five-dimensional (5R) frame-

work) demonstrated that the inclusion of biomarkers 

into early drug development (Ph2 studies) was associated 

with active or successful projects in contrast to compara-

ble projects without biomarkers [2].

�e development of a new biomarker is a complex, 

multistep and iterative process, including biomarker dis-

covery (often based on omics data), pre-analytical valida-

tion, assessing different biofluids (best proximal to the 

disease), analytical validation and finally clinical valida-

tion and utility [48]. For each new drug target and disease 

indication, several biomarker modalities and candidates 

are usually explored to narrow-down on the drug target- 

and indication-relevant ones, as discussed here for auto-

immune diseases such as rheumatoid arthritis [54]. For 

biomarker use in clinical trials it is critical to define the 

context-of-use (CoU) [15, 55, 56]. CoU range from diag-

nostic, safety monitoring, PD response, to predictive and 

prognostic biomarker applications. For a detailed list of 

biomarker CoU, the reader is referred to the FDA-NIH 

biomarker working group and its related online resource 

BEST (Biomarkers, Endpoints and other Tools) [51]. 

Prognostic and predictive CoU are essential for clinical 

drug development: prognostic biomarkers at baseline are 

indicative of disease outcome independent from inter-

ventions (important to identify patients on high-risk 

for trial enrichment), whereas predictive biomarkers at 

baseline are indicative of response to a specific treatment 

(response prediction).

�ere are two basic paths how to integrate biomark-

ers in drug development: (1) within the context of a 

specific drug development program or (2) the official 

FDA biomarker qualification program (BQP). �e spe-

cific drug development program path is the most com-

mon strategy pursued in pharmaceutical industry, 
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where the drug developer / sponsor includes selected 

biomarkers in clinical trials, mainly for internal deci-

sion-making and is responsible for all aspects of the 

biomarker development. �e FDA BQP is required to 

qualify biomarkers as general drug development tools 

[57] to make them applicable for multiple drug devel-

opment programs and to qualify them as regulatory 

drug approval tools, which is a formal and lengthy pro-

cess usually involving consortia composed of multi-

ple academic and industry partners. In the FDA BQP, 

the candidate biomarker is qualified for a pre-speci-

fied CoU. �e FDA provides an updated online list of 

BQP-qualified biomarkers [58]. Of note, qualifying a 

biomarker for a CoU via the BQP or qualifying a spe-

cific test measuring a biomarker are two different and 

independent approaches. For biomarker test/assay 

qualification, e.g. to develop a companion diagnostic 

assay (see below), pre-analytical and assay performance 

characteristics  are key. Beyond the US/FDA, other 

regional/national biomarker guidances and regulatory 

frameworks, such as guidances from European Medi-

cines Agency (EMA), Asian-Pacific (APAC) regulators, 

National  Medical  Products Administration (NMPA) 

and/or Pharmaceuticals and  Medical  Devices Agency 

(PDMA), have to be taken into account for biomarker 

qualification and clinical implementation.

In general, the level of impact that biomarkers can have 

depends on three key factors: (i) the validation and quali-

fication status of the biomarker, (ii) the CoU and (iii) the 

scientific evidence linking the biomarker with the CoU. 

Biomarkers in clinical trials are mostly used as explora-

tory endpoints to explore new mechanistic hypothesis 

and inform internal decision making. If biomarkers are 

deemed more impactful and clinically relevant, biomark-

ers are used as secondary or primary clinical endpoints. 

Typical examples here are physiological biomarkers like 

blood pressure, clinically-established protein biomarkers 

such as C-reactive protein, or imaging readouts. If there 

is convincing evidence from independent epidemiologi-

cal studies and clinical trials that biomarkers correlate 

closely with clinical outcome assessments, biomarkers 

can be considered to substitute for a clinical endpoint as 

surrogate endpoints, which have a major relevance for 

diseases with outcomes that take a long time to capture 

using traditional clinical endpoints. Examples here are 

systolic blood pressure for occurrence of stroke or low-

density lipoprotein cholesterol levels for occurrence of 

heart attacks. For implementation of biomarkers in phar-

maceutical industry trials, several drug development 

aspects have to be further taken into account, including 

informed consent/data protection considerations, clinical 

trial logistics/feasibility, impact on clinical decision-mak-

ing and cost-effectiveness [48, 59–61].

To actively guide clinical trial flows, biomarker-guided 

trial designs are the method of choice [62, 63], which are 

particularly useful for novel clinical trial designs using 

master protocols (basket, umbrella and adaptive platform 

trials) [64]. For a comprehensive overview on biomarker-

guided trial designs, the reader is referred to the BiGTeD 

online resource [65]. For biomarker-guided trial designs, 

biomarkers should be analyzed in Clinical  Labora-

tory Improvement Amendments (CLIA) certified (for US) 

or equivalent (non-US) labs. �e two most commonly 

applied biomarker-guided trial designs are stratification 

[66] and enrichment [67]. Biomarker-based stratification, 

or stratified randomization, means that biomarkers are 

measured in all patients prior to randomization and are 

used to proportionally/equally balance treatment vs pla-

cebo arms with respect to biomarker status. Biomarker-

stratified designs have the advantage that patients are 

not excluded if they are biomarker-negative. �e next 

more stringent level of biomarker trial design is enrich-

ment. For that design, inclusion of the individual patient 

into the clinical trial is depending on a defined biomarker 

assessment. Quality requirements for biomarkers and 

analytical labs are higher when using this approach, as 

protocol-defined treatment decisions depend directly 

on the biomarker. Enrichment designs can be especially 

useful for situations when it is not ethically justified to 

treat biomarker-negative patients based on biomarker-

response and/or biomarker-safety relationships, such as 

CYP metabolism. �e recent FDA guidance on enrich-

ment [68] should be taken into account that recommends 

smart enrichment, adaptive enrichment and the inclu-

sion of a biomarker-negative population in at least one 

trial before NDA/MAA submission (with defined excep-

tions). Besides stratification and enrichment designs, 

other more complex biomarker-guided trials designs 

are summarized as biomarker-strategy designs [65]. All 

biomarker-guided trial designs can be implemented in 

non-adaptive or adaptive settings. �e latter provides 

more flexibility for the trial, yet is also more challeng-

ing to implement. Apart from interventional biomarker-

guided trial designs, non-interventional (observational) 

biomarker-guided trial designs using master protocols 

have been proposed recently in the oncology field (Mas-

ter observational trials) [69].

Biomarker-guided trial designs ultimately pave the 

way towards precision medicine, i.e. tailoring drug 

development to specific patient characteristics [3, 70]. 

In 2015, the US government launched a Precision Medi-

cine Initiative [71, 72]. Precision medicine focuses on 

individual rather than average responses to therapy and 

led to the concept of N-of-1 trials [38], ideally based on 

longitudinal multi-omics data. While precision medi-

cine approaches are already widely implemented in 
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oncology and rare genetic diseases, other therapeutic 

areas have just begun to tailor drug development based 

on these principles [3]. Biomarkers can enable precision 

medicine through the development of companion diag-

nostics [73–75], mainly established in oncology [76]. 

Companion diagnostics are classified as in  vitro diag-

nostic (IVD) medical devices (IVD class I, II or III) and 

are typically co-developed with the drug to increase 

response rates by lowering the numbers-needed-to-

treat and/or to spare patients exposure to drugs that 

have a high probability to fail or even cause harm. �e 

development path for an exploratory biomarker to a full 

IVD companion diagnostic is complex, requires at-risk 

investments and should start early in drug development 

in close alignment with health authorities [74, 75, 77, 

78]. Companion diagnostics should be broadly avail-

able and accessible to relevant healthcare profession-

als for clinical routine use. A list of cleared or approved 

companion diagnostic devices is provided by FDA 

[79]. Companion diagnostics [80] are strictly regulated 

by health authorities/FDA [81] and are differentiated 

from complementary diagnostics [82, 83] as they are 

essential for treatment decisions, whereas comple-

mentary diagnostics just support treatment decisions. 

As biopsy-derived tissue is often challenging to obtain 

from non-oncology patients, “liquid biopsies” (derived 

from peripheral blood/serum/plasma) are a major 

domain of companion diagnostics, yet assay perfor-

mance characteristics, such as sensitivity and specific-

ity, are key for success in that area. Figure 2 illustrates 

the flow from multi-omics-based endotyping, over bio-

marker-guided trial designs to companion diagnostics-

based precision medicine approaches.

To increase the benefit-risk ratio of drug candidates, 

safety aspects are increasingly becoming an integral part 

of biomarker-guided precision medicine approaches. For 

example, the observation that patients receiving check-

point inhibitor therapy experiencing immune-related 

adverse events also exhibit an improved treatment 

response was recently shown to be related to a polygenic 

risk score [84]. Furthermore, for the first time, a poly-

genic risk score could be established for the prediction of 
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Fig. 2 Flow of clinical trials (interventional or non-interventional) integrating multi-omics approaches to identify disease endotypes, which enables 
biomarker-guided trials designs (adaptive or non-adaptive) and paves the way towards precision medicine approaches (tailoring treatments for 
personalised healthcare)
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drug-induced liver injury, a common and very difficult to 

predict adverse event in the clinic [85].

When viewed in combination, biomarker-guided trial 

designs provide ideal tools to catalyze the transition from 

an empirical and physician-centric to a data-driven and 

patient-centric precision medicine approach [70, 86, 87]. 

However, technical (companion diagnostic assay develop-

ment), clinical (complex biomarker-guided trial designs, 

master protocols) and regulatory (requirements for com-

panion diagnostics as medical devices) hurdles have to be 

tackled, particularly in non-oncology indications [83, 88].

Model-based data integration

Given the small size and low number of samples per 

subject in pre-clinical experiments as well as early clini-

cal trials, analyzing and leveraging biomarker data in 

translational medicine remains challenging. One way for 

improving the statistical power for detecting signals is to 

use longitudinal (i.e. time-dependent) model-based data 

integration. Mathematical models are used to describe 

the time course of PK and PD/biomarker results for 

better understanding of the pharmacology and to pre-

dict future experimental outcomes [89]. Already in the 

1930s, mathematical equations were used to describe PK 

data [90], but the start of more extensive model-based 

approaches took off with the development of computers 

and was brought into drug-development in the 1970s–

80s. �e need has been highest for compounds with a 

small therapeutic window where dose-individualization 

was needed. �is was especially challenging for com-

pounds with a substantial delay between the exposure 

and the biomarker PD response. �erefore, the initial 

approaches for describing inter-subject variability (popu-

lation “PopPKPD” models) were developed in anesthesi-

ology [91] and for anticoagulants (e.g. warfarin [92]).

Population models most often use simplified model 

structures to model the observed data (i.e. mainly meas-

ured in plasma/blood or ex-vivo). When considering 

chemotherapies, like methotrexate, questions arose 

about the tumor-relevant tissue distribution of the com-

pound [93]. �us, a second class of models, i.e., physio-

logically-based, were developed to describe the whole 

Liberation, Absorption, Distribution, Metabolism, Excre-

tion (LADME) processes in more detail for small mol-

ecules, where these processes are heavily dependent on 

their physico-chemical properties [94]. �is approach is 

used to predict drug-drug interactions, but also for scal-

ing from animals to humans in the translational medicine 

realm – alternatively to PopPK models.

Scaling PK parameters across species is mainly based 

on allometric scaling, which describes the weight-

dependence of physiological aspects (volumes, meta-

bolic rates, clearance, etc.) within and between species 

using power functions with fixed exponents. �is works 

well for PK parameters [93], yet can be challenging for 

biomarkers due to inter-species differences of pathway 

expression, production rates or whole physiological net-

works. �ese approaches have gained more traction by 

integrating systems biology and quantitative systems 

pharmacology [95]. A third concept is to apply physical 

and biological assumptions, such as monotonous expo-

sure–response, continuity/smoothness of underlying sig-

nals or allometric scaling. �ese models can be used for 

high-dimensional data (like multi-omics) to reduce noise 

when multiple sampling time points are available per 

individual.

Finally, the FDA has established a new framework for 

model-informed drug development [96]: “FDA is con-

ducting a Model-Informed Drug Development (MIDD) 

Pilot Program to facilitate the development and applica-

tion of exposure-based, biological, and statistical mod-

els derived from preclinical and clinical data sources, 

referred to as MIDD approaches. MIDD approaches use 

a variety of quantitative methods to help balance the risks 

and benefits of drug products in development. When suc-

cessfully applied, MIDD approaches can improve clini-

cal trial efficiency, increase the probability of regulatory 

success, and optimize drug dosing/therapeutic individu-

alization in the absence of dedicated trials.” �is MIDD 

pilot program is based on joint discussions between 

the pharmaceutical industry and the European health 

authorities/EMA, which led to a paper in 2016 on good 

modeling practices [97]. �e latter includes the concept 

of the learning-and-confirming circle of modeling as well 

as drug development, where model-based predictions 

inform the next study design, e.g., predictions of PK and 

efficacy or safety biomarkers from animal data into first-

in-man studies. �e acceptance or even push from health 

authorities for MIDD approaches [98] indicates the high 

value of model-based data integration.

Arti�cial Intelligence

�e amount of data generated and collected in pharma-

ceutical R&D is increasing at an unprecedented pace. 

Combined with improvements in information process-

ing and more powerful hardware, machine learning, deep 

learning and AI in general are positioned to disrupt drug 

discovery and development towards an algorithm-based 

R&D [99]. Deep learning has already revolutionized sev-

eral industries, particularly in the area of image analysis 

and recognition, while its impact in biomedical R&D 

remains to be fully embraced [100]. High-dimensional 

multi-omics datasets derived from large longitudinal 

clinical studies provide an ideal ground for the applica-

tion of machine learning [101] and AI [99]. Examples 

with an impact on drug discovery and development 
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include: target identification [102–104], biomarker dis-

covery [105, 106] and patient endotyping [107, 108]. 

Machine learning and deep learning algorithms are also 

powerful analytical methods when applied to digital bio-

markers data, allowing to transform longitudinal, multi-

modal and complex raw data from sensors and connected 

digital devices into endpoints and clinically-relevant 

measures [109, 110].

Given the rigidity of traditional serendipity- and for-

ward translation-based drug development frameworks, 

shifting to a new mindset embracing the use of AI for the 

discovery and development of drugs is a critical success 

factor for Translational Precision Medicine [111]. A com-

prehensive cross-industry analysis recently mapped out 

AI-related activities across major pharmaceutical compa-

nies [112], coming to the conclusion that, compared with 

leading technology companies (e.g., Microsoft, Google), 

most pharmaceutical organizations are still in an early 

mature phase of using AI in R&D. However, an increas-

ing number of healthcare companies have now started 

their digital journey, building up AI competencies and 

data literacy across many areas of R&D [112]. For exam-

ple, Johnson & Johnson and Novartis have started to 

commercialize AI-based products and services in health-

care. Medical AI application focused so far mainly on the 

diagnosis of disease conditions based on EHRs, digital 

pathology and biomarkers [113, 114]. To go beyond and 

fully leverage AI technologies for clinical drug develop-

ment, it is essential to optimize and validate AI algo-

rithms for use in clinical trials and outcome prediction. 

AI-powered approaches have the potential to enable 

precision medicine, particularly in chronic disease con-

ditions, by dissecting complex high-dimensional patient 

datasets and tailoring drug development [115]. While 

traditionally regulatory authorities might not have been 

perceived as enthusiastic about advanced AI models in 

biomedical R&D, the landscape is evolving rapidly, exem-

plified by recent developments in the AI-based medical 

device space [116, 117] and the recent FDA pilot program 

Innovative Science and Technology Approaches for New 

Drugs (ISTAND) that incentivizes the use of AI-based 

algorithms to evaluate patients, develop novel endpoints, 

or inform study designs. Moving forward, it will be criti-

cal that pharmaceutical organizations continue to con-

structively engage early on with regulatory authorities 

on innovative ways to design and assess clinical trials, 

including a more widespread use of AI technologies in 

drug development.

Overall, the impact of AI in drug discovery and clini-

cal development will largely depend on the underlying 

data, and its intrinsic limitations. AI-based analysis of 

both multi-omics as well as EHRs depends critically on 

the quality and quantity of the provided molecular and 

clinical datasets, key limitations and challenges that need 

to be overcome in the future.

�e near future will show whether and how these 

emerging AI algorithms will help scientists to (i) identify 

novel targets or new indications for existing drugs, (ii) 

uncover latent factors that can inform on disease patho-

genesis or drug response, (iii) discover predictive bio-

markers enabling patient stratification strategies that can 

optimize clinical trial designs, and (iv) ultimately impact 

the drug development value chain. For more detailed 

overviews of AI in drug discovery and development, we 

refer the reader to dedicated reviews in this field [87, 101, 

111, 118].

Digital biomarkers

�e recent evolution of sensor technologies and the 

widespread use of smartphones and other connected 

digital products are enabling the comprehensive col-

lection and analysis of health-related data [119–121]. 

Progress in algorithms and analytical methodologies to 

transform sensor data into clinical insights have facili-

tated the rapid development of digital biomarkers [122, 

123]. Digital biomarkers are defined as physiological and 

behavioral measures collected via digital devices (such 

as portables, wearables, implantables and digestables) 

that characterize, influence or predict health-related 

outcomes [124, 125]. Digital biomarkers offer several 

potential advantages compared to traditional clinical 

assessments. Objective data can be collected in real-life 

settings, in a quantitative and unbiased way and on a 

frequent or continuous basis, resulting in increased sta-

tistical power, and enhanced sensitivity and specificity 

[122, 126]. In clinical trials, these characteristics allow for 

lower sample size, fewer study visits, shorter study dura-

tion and real-time feedback for early decision-making 

[120, 122, 126, 127]. Longitudinal digital patient data can 

be leveraged to advance precision/personalized medicine 

approaches. Furthermore, the use of digital biomarkers 

in drug development enables patient centricity, integra-

tion of real-world evidence, reduced patient burden of 

trial participation, increased inclusivity in patient enroll-

ment [121], decentralized trials [128] and better prod-

uct differentiation [129]. Despite being a promising new 

technology, a major requirement and challenge for digital 

biomarkers is to ensure protection of relevant sensitive 

patient data in the whole process.

Successful examples of digital biomarkers are in the 

field of neurodegenerative diseases, where traditional 

clinical outcome measures are sparse, highly variable 

and rater-dependent [130]. Smartphone-based meas-

urements have been developed and deployed in clini-

cal trials to monitor signs of Parkinson’s disease [131, 

132]; while features from inertial measurement unit 
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features have been recently benchmarked to predict 

Parkinson’s disease severity [133]. Susceptibility/risk 

biomarkers from computerized cognitive testing are 

in use to classify adults at high risk of late-onset of 

Alzheimer’s disease [134, 135]. Clinically relevant gait 

parameters from inertial wearable sensor were identi-

fied to assess gait impairment in Huntington disease 

[136].

While the number of studies involving digital tech-

nologies is growing and extending to more technolo-

gies, biomarker categories and therapeutic areas [119, 

121], the use of digital biomarkers as clinical endpoints 

is today still in an early research phase due to several 

layers of complexity. Digital biomarker products are 

usually the result of the combination of multiple indi-

vidual hardware (sensors) and software (operating 

systems and algorithms) components [123]. Hence is 

it vital to thoroughly verify technology and analyti-

cal solutions and clinically validate digital biomark-

ers in the desired cohorts and context of use, prior to 

their adoption as clinical endpoints [123, 127, 137]. 

�e majority of current efforts still have an engineer-

ing focus and address algorithm development and sen-

sor performance [120]. So far, very limited solutions are 

undergoing clinical validation.

Transforming digital device data into validated clini-

cal endpoints is a lengthy process, which involves the 

collaboration of multiple disciplines, from engineering, 

machine learning, data science, clinical research and 

regulatory interactions. An open validation framework 

based on transparency, metadata standards, external 

validation and data sharing is necessary to harmonize 

approaches and evaluate and improve digital biomark-

ers in clinical settings [123]. Recently, multiple concrete 

efforts have emerged and are shaping and accelerating 

the development of validated digital biomarkers: (i) 

guidelines from the Clinical Trials Transformation Ini-

tiative (CTTI) [138], the Digital Medicine Society [139] 

and the EMA [140]; (ii) pragmatic fit-for-purpose vali-

dation frameworks [137, 141]; (iii) open-source plat-

forms such as the Digital Biomarker Discovery Pipeline 

[142]; (iv) open benchmarking challenges [143]; (v) and 

several Innovative Medicine Initiative (IMI) programs, 

such as MOBILISE-D [144], IDEA-FAST [145] and 

RADAR-AD [146].

Future opportunities for digital biomarkers towards 

patient-centric precision medicine are (i) algorithms 

based on longitudinal/real-time composite biomarkers 

from multiple connected technologies and contextual 

information in real-world settings [123], (ii) integra-

tion of molecular/multi-omics and digital biomarkers, 

and (iii) digital phenotyping for patient stratification 

[147–149].

Patient engagement

Since the AIDS pandemic in the 1980s, the way indus-

try interacts with patients has changed fundamentally, 

from passive recipients to active contributors along the 

whole drug development value chain. �is has been par-

ticularly evident in the last decade, where most phar-

maceutical companies have started patient engagement 

groups to actively listen to the patient voice [150, 151]. 

Industry has finally realized that patient engagement is 

not an additional burden, but can improve and actually 

accelerate drug development. Similarly, health authorities 

increasingly incorporate the patient voice into their regu-

latory guidance [152]. For example, �e FDA’s Patient-

Focused Drug Development initiative led to the guidance 

for industry on how to best identify what is important to 

patients. In Europe, the EMA formed its Patients’ and 

Consumers’ Working Party. Engagement with patients, 

their caregivers, patient experts and patient advocacy 

groups have been shown to yield benefit for both patients 

and the industry [153, 154]. Increased patient involve-

ment in the process ensures that industry focuses on 

the real medical needs, that study protocols are patient-

centric and that new treatments become available faster. 

Conversely, industry benefits from a more robust identifi-

cation of patients` needs, faster conduct of clinical trials, 

a quicker path to market and overall higher credibility 

and sustainability [155]. Patients not only have increased 

their involvement with industry, but likewise with regula-

tory authorities and sit in governing bodies. Major mile-

stones are the foundation of the International Alliance 

of Patient’s Organizations, the Patient-Centered Out-

comes Research Institute [156] and the Patient-focused 

Medicines Development [157] among several other 

patient-centric initiatives. In fact, the impact of patient 

engagement throughout the healthcare ecosystem is driv-

ing change at various levels: becoming a credible source 

for patients themselves, improving access and care, driv-

ing R&D and advocating for policy changes in collabora-

tion with governments.

Traditionally, patient engagement has been mainly con-

sidered once a new drug is already on the market. �e 

majority of decisions about the molecule and its clini-

cal development path, including unmet medical needs, 

have then already been taken by the company. Studies, 

however, demonstrated that the early integration of the 

patient perspective, particularly in preclinical research 

and early development, has the biggest impact on value 

creation for patients, business and society [158]. As 

preclinical research is a discipline that usually does not 

collaborate directly with patients, a change of mind-

set to include the patient voice already at this stage can 

be challenging, yet represents the clear future towards 

patient-led research [159]. A recent paper identified 
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key challenges of implementing patient engagement 

in preclinical research and provided possible solutions 

to overcome current barriers [160]. In interviews with 

patient groups, industry and academia conducted by 

the CTTI, patient representatives identified engagement 

with research partners as having particularly great ben-

efit. Patient-led organizations are keen to learn more 

about their diseases and are highly interested to collabo-

rate in research projects and willing to provide their data 

(anonymized and under strict data protection policies) 

for research and clinical development [161]. A key rec-

ommendation for industry is to engage the patient voice 

as early as possible from the beginning of the R&D pro-

gram to improve trial design and clinical execution [162].

Personalised healthcare (PHC), precision medicine 

and stratified medicine have been used interchangeably 

to describe the concept of tailoring treatment to patients 

based on their individual pathology. With the rise of new 

diagnostic and data-driven approaches that deepen our 

understanding of the molecular basis of disease, this cen-

turies-old dream has come closer to reality. Nowadays, 

the awareness of the potential of PHC is also emerging in 

the patient community and its meaning goes far beyond 

precision medicine. PHC comprises everything that 

allows to tailor treatment and medical care by combining 

conventional clinical datasets, molecular signatures (such 

as genetics), environment, lifestyle and personal needs. 

Some of the key innovations in that area include digital 

healthcare solutions with technologies connecting digital 

patient information/EHRs with wearable devices, mobile 

Apps, telehealth and digital assistants using AI [163], see 

also the respective chapters above. A major requirement 

and challenge for that field is to protect relevant sensi-

tive patient data and patient rights in that whole pro-

cess. Patients, caregivers and healthcare providers are 

acknowledging the utility and advancement offered by 

these approaches in key domains, such as patient edu-

cation, accurate diagnosis, patient outcomes, quality of 

life, disease prevention and health care value [164], more 

recently underscored by different initiatives, such as the 

EU Health Data Space race [165] or the US Precision 

Medicine initiative [166]. �e overall goal in all of this 

is to make healthcare decisions jointly together with the 

patient as an integrated R&D partner.

Conclusions

Translational Precision Medicine comes with a para-

digm shift from a one-size-fits-all to a biomarker-guided 

patient-centric medicine. Key success factors for adop-

tion of this principle in pharmaceutical drug develop-

ment include the combination of forward and reverse 

translation, the classification of disease conditions 

as multi-omics-defined endotypes, the integration of 

AI- and algorithm-based R&D concepts, the implemen-

tation of digital biomarkers as clinical endpoints and the 

development of companion diagnostics. �e rise of data-

driven and algorithm-based R&D necessitates the estab-

lishment of a new mindset of how data mining and AI 

tools can be used effectively to discover and develop new 

drugs [111]. �e near future will show whether and how 

these emerging AI-based digital tools will reveal new 

targets, pathogenic disease signatures, optimize clinical 

trial designs and overall impact drug development across 

pharmaceutical industries. Convergence of patient-cen-

tric real-world evidence (RWE) tools, EHRs, multi-omics 

profiling, digital biomarkers and AI-based data analysis 

will pave the way towards biomarker-enabled algorithm-

based precision R&D.

Outlook

�e Translational Precision Medicine evolution comes 

with distinct challenges: (i) multi-omics data are mainly 

useful to drug discovery and development if they reveal 

new drug targets or biomarker signatures that correlate 

with disease outcome and/or treatment response [61]; 

(ii) multi-omics-based patient and disease stratification 

requires accurate diagnoses and detailed clinical annota-

tions/EHRs; (iii) digital biomarkers as clinical endpoints 

provide objective and quantitative measures yet still 

require broader clinical use and health authority accept-

ance; (iv) biomarker-guided trial designs and precision 

medicine approaches are already widely implemented in 

oncology and rare diseases, while other non-oncology 

areas have just started to pursue these concepts and (v) 

precision medicine/companion diagnostics approaches 

come with substantial development costs and reimburse-

ment hurdles. One important question is how these novel 

technologies and assessments are perceived by patients, 

as acceptance and adherence to clinical read-outs is key 

for patient trial recruitment and long-term engagement. 

Novel patient-centric interaction approaches are cur-

rently implemented to engage patients more pro-actively 

in R&D, RWE networks and clinical trials. New cloud-

based data systems and platforms for interactions with 

regulatory agencies [167], for sharing datasets between 

industry and academia, for public–private partnerships 

or for managing cross-industry partnerships and multi-

disciplinary initiatives like the Information Exchange and 

Data Transformation (INFORMED) initiative of the FDA 

[168] will further shape the way towards data-driven 

medicine.

�e COVID-19 era substantially disrupted the tradi-

tional pharmaceutical R&D approach at several layers 

[169–172]: (i) virtual, data-based, data-sharing (includ-

ing open repositories such as bioRxiv and medRxiv) 

and collaborative research and drug discovery/
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development concepts are getting higher traction; (ii) 

large longitudinal datasets collected from COVID-

19 patients are systematically analyzed and offer great 

potential for multi-omics [173–175] and AI-based 

analyses [169, 176–178], supporting diagnosis, basic 

disease understanding, endotyping, image analysis, 

drug target identification and drug repurposing [169, 

179]; (iii) clinical trials are accelerated, decentralized 

and increasingly include digital endpoints, biosensors, 

home nursing, patient-centric sampling and remote 

clinical trial recruitment and monitoring strategies 

[171, 180], accompanied by a FDA guidance on conduct 

of clinical crials during COVID-19 [181]. In combina-

tion, these emerging concepts rapidly and successfully 

implemented during the COVID-19 outbreak hold 

promise to make drug discovery and development more 

efficient and less burdensome to patients also beyond 

the pandemic era.

Emerging therapeutic modalities, including CAR 

T-cells [182], gene therapy [183, 184], induced protein 

degradation [185] or mRNA-based principles [186, 

187], and patient-derived organoids for ex  vivo drug 

response testing to guide personalized treatments 

[188] add further levels of complexity to biomarker-

guided translational precision. Finally, the core future 

challenge for Translational Precision Medicine as for 

drug development overall remains how to leverage and 

embrace new molecular and digital technologies in a 

way that is feasible for larger clinical trials, accepted by 

regulators and, most importantly, by patients.
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