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Translational regulation shapes the molecular
landscape of complex disease phenotypes
Sebastian Schafer1,2,*, Eleonora Adami1,*, Matthias Heinig1,3, Katharina E. Costa Rodrigues1,

Franziska Kreuchwig1, Jan Silhavy4, Sebastiaan van Heesch1, Deimante Simaite1, Nikolaus Rajewsky5,6,

Edwin Cuppen7, Michal Pravenec4, Martin Vingron3, Stuart A. Cook2,8,9 & Norbert Hubner1,6,10

The extent of translational control of gene expression in mammalian tissues remains largely

unknown. Here we perform genome-wide RNA sequencing and ribosome profiling in heart

and liver tissues to investigate strain-specific translational regulation in the spontaneously

hypertensive rat (SHR/Ola). For the most part, transcriptional variation is equally apparent at

the translational level and there is limited evidence of translational buffering. Remarkably, we

observe hundreds of strain-specific differences in translation, almost doubling the number of

differentially expressed genes. The integration of genetic, transcriptional and translational

data sets reveals distinct signatures in 30UTR variation, RNA-binding protein motifs and

miRNA expression associated with translational regulation of gene expression. We show that

a large number of genes associated with heart and liver traits in human genome-wide

association studies are primarily translationally regulated. Capturing interindividual

differences in the translated genome will lead to new insights into the genes and regulatory

pathways underlying disease phenotypes.
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H
eritable RNA expression phenotypes have been studied
extensively1,2, but the contribution of translational
regulation to natural phenotypic variation is largely

unknown. Several genetic disorders are believed to be caused by
mutations that affect protein translation3, but so far genome-wide
translation has not been studied in complex disease models. It
remains a matter of debate how well transcript abundances
explain protein levels4,5, to what extent RNA expression
differences are mirrored by the proteome6–10 and how many
genes are under translational control in mammalian tissues.

To obtain quantitative measurements of translation, we
adapted ribosome profiling procedures11,12 to reliably isolate
and sequence ribosome-protected RNA fragments (RPFs) from
whole-tissue samples (Ribo-seq). We then investigated trans-
lational regulation in the heart and liver of two inbred rat strains,
the BN-Lx reference strain (n¼ 5) and the SHR/Ola (n¼ 5),
a widely studied model of cardiovascular and metabolic
disease traits2,13–17.

Ribosome profiling of disease tissue reveals widespread
interindividual regulation of translation that shapes the molecular
landscape of the cardiometabolic phenotype of the SHR/Ola rat.

Ribo-seq data are a better proxy for protein levels compared with
RNA-seq data and expose almost twice as many differences in
gene expression between strains. The integration of transcriptional
and post-transcriptional control of gene expression identifies
distinct molecular signatures and reveals the contribution of
genetic variation, microRNAs (miRNAs) and RNA-binding
proteins (RBPs) to translational regulation. Many genes associated
with cardiac and hepatic traits in humans are translationally, and
not transcriptionally, regulated in disease tissue.

Results
RNA transcription and translation in rat heart and liver. The
Ribo-seq libraries allowed us to monitor translating ribosomes at
sub-codon resolution. We observed codon periodicity (Fig. 1a)
and other attributes (Supplementary Fig. 1) that are characteristic
for in vivo snapshots of active translation. To distinguish trans-
lational from transcriptional regulation of gene expression, we
integrated two distinct RNA-seq experiments: one polyA-selected
data set (RNA-seq1) and one ribosomal RNA (rRNA)-depleted
data set (RNA-seq2), which was generated in parallel to ribosome
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Figure 1 | RNA-seq and Ribo-seq of cardiac and hepatic tissue. (a) Start positions of RNA fragments protected by ribosomes (total of 10 cardiac Ribo-seq

libraries, each plotted individually). Ribosomes are located at the start codon and then move sequentially along the triplet code to translate the genetic

message (for liver see Supplementary Fig. 1d). Once the ribosomal site occupied by aminoacyl-tRNA (A site) reaches the stop codon, ribosomes are

released from the transcripts. For each library, the fraction of reads covering each frame is shown. The majority of ribosomes are located on the codons of

the open-reading frame of protein-coding genes. (b,c) Differential expression between BN-Lx and SHR/Ola rat strains (five biological replicates each) in (b)

heart and (c) liver. Fold changes of RPF and RNA abundance correlate on a genome-wide scale (Pearson’s, Po1e�4). While the majority of genes showed

no significant inter-strain differences (grey dots, nheart¼9,856, nliver¼9,586), hundreds of genes were differentially expressed (FDRr0.01) at the level of

transcription only (blue dots, RNAonly), translation only (red dots, RIBOonly) or both (black dots, RNAþRIBO). (d) Pie charts and tables indicate for each

tissue the fractions and absolute numbers of RIBOonly, RNAonly and RNAþ RIBO genes of differentially expressed genes, respectively.
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profiling from the identical tissue lysate. To adjust for variation
in sequencing depth across technologies, mappability and
fragment size, we matched the read length and the number of
uniquely aligning reads located within exons for all data sets
(Supplementary Fig. 2). To exclude strain-specific mapping
biases, we used the SHR/Ola and BN-Lx genome sequence
information18–20 and mapped the reads of each strain to its
respective genome. We defined significant strain-specific
differences in RPF and RNA expression levels (false discovery
rate (FDR)r0.01) using DESeq2 (ref. 21) (Supplementary Fig. 3).

We compared differences in messenger RNA (mRNA) levels
to variation in RPF abundances between strains (Fig. 1b–d;
Supplementary Fig. 4). Three classes of genes represent different
modes of regulation (Supplementary Data 1 and 2): (i) Forwarded
inter-strain differences in RNA expression that were carried
onward to translation (RNAþRIBO; nliver¼ 292; nheart¼ 441);
(ii) buffered RNA expression differences that were not detected
on the level of translation but were present in both RNA-seq
experiments (RNAonly; nliver¼ 52; nheart¼ 191); (iii) reinforced
strain-specific differences that were not detected in either RNA-
seq experiments but were apparent at the translational level and
thus exclusive to ribosome profiling data (RIBOonly; nliver¼ 354;
nheart¼ 498).

Whereas in yeast a variable extent of translational buffering
was observed22–24, the majority of RNA expression differences
were forwarded to the level of translation in mammalian heart
(70%) and liver (85%). In addition, we detected hundreds of
strain-specific differences in mRNA translation that were not

observed at the RNA level almost doubling the number of
differentially expressed genes found between strains compared
with RNA-seq data alone.

We then quantified the amount of translational regulation by
calculating the slopes (standardized major-axis estimation)25

between RNA-seq and Ribo-seq fold changes between strains for
genes with differential expression (Fig. 2a). This enabled us to
determine the global contribution of translational regulation to
strain-specific differences in gene usage in addition to transcriptional
regulation. For RNAþRIBO events, transcriptional and
translational differences co-occurred and slopes approximated 1
(slopeheart¼ 1.09; slopeliver¼ 0.97). Overall, the majority of RNA
expression differences in tissues are associated with equal variation
in RPF abundance of the same magnitude and direction.

The slopes for the RIBOonly genes were significantly greater
than RNAþRIBO slopes (likelihood ratio test; slopeheart¼ 1.71;
slopeliver¼ 1.93; Po2.2e� 16) for both tissues, indicating rein-
forced strain differences that arise through post-transcriptional
control.

Translational regulation shapes the proteome. To assess
whether genome-wide strain-specific differences in RPF
abundance were indeed reflected on the proteome, we integrated
two mass-spectrometry based quantitative proteome data sets
from liver of SHR/Ola and BN-Lx rat strains26.

We globally assessed whether our data supported the
expected flow of genetic information from transcription through
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Figure 2 | Characteristics of genes under translational regulation. (a) Black slopes approximated 1 (x¼ y) and indicated equal fold changes of expression

differences between SHR/Ola and BN-Lx across both levels of regulation for RNAþRIBO genes (standardized major-axis estimation; SMA). Significant

(Po2.2e� 16) divergence of blue and red slopes demonstrated translational regulation for RNAonly and RIBOonly genes, respectively. (b) Strain-specific

differences of translationally regulated RIBOonly (n¼ 179) genes were confirmed in the liver proteome (Wilcoxon-Mann-Whitney; Po1e�4). Variation in

translation captured by Ribo-seq resulted in significantly different protein abundances across strains (whiskers indicate 5th and 95th percentiles). RNAonly

genes have a lower (c) translational efficiency and a significantly increased (d) 30UTR length compared with RIBOonly and RNAþRIBO genes (mean with

95% confidence interval).
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translation to protein levels. Each step of biological information
processing introduces a new set of specific regulatory changes (for
example, post-transcriptional or -translational) that affect the
abundance of a gene product. However, consequences of events
that occur in later stages are not expected to be evident in
preceding stages. In particular, translation levels reflect both
transcriptional and translational regulation events, whereas
transcript levels only reflect transcriptional—and not
translational—regulation events. Therefore, when comparing
RNA levels and protein levels conditioning on the translation
levels, we would expect no additional information about the
protein levels to be present in the RNA and thus they should be
conditionally independent. On the other hand, when comparing
translation levels and protein levels conditioning on the RNA
levels, we would still expect dependences between translation
levels and protein levels due to translational regulation events.
We first tested the conditional independence between RNA and
protein levels, given the Ribo-seq data using partial correlations27.
In both strains the partial correlation was not significantly
different from zero (Supplementary Table 1). Second, for each
strain we found highly significant partial correlations between
Ribo-seq data and protein levels when we conditioned on RNA
transcript levels (Supplementary Table 1). This corroborated
previous observations11 that ribosome footprint abundances
correlated better with genome-wide protein levels than RNA-

seq data, and indicated that Ribo-seq provides a better proxy for
protein levels than RNA-seq in our data (Supplementary Fig. 5).
Transcript levels provided no additional information to explain
protein expression. Strain-specific regulation of translation
(RIBOonly), not detected by RNA expression profiling, was
found to account for significant differences in protein
abundances across strains (Fig. 2b; Wilcoxon–Mann–Whitney;
Po1e� 4). Ribo-seq data effectively revealed additional variation
in gene usage that explains protein levels (Supplementary Fig. 6).

For 25% of differentially transcribed genes across both tissues,
we did not detect strain-specific differences in RPF abundances.
This can in part be explained by translational buffering of RNA
expression differences for these RNAonly genes (likelihood ratio
test; slopeheart¼ 0.66; slopeliver¼ 0.8; Po2.2e� 16), reducing the
inter-strain variation in gene expression. In addition, RNAonly

genes were translated at a low efficiency (Fig. 2c), resulting in
fewer ribosome footprints per transcript. Translational efficiency
(TE) is defined as the number of RPFs compared with RNA-seq
reads covering the coding sequence (CDS) of genes (see
Methods). Low TE effectively reduced the power to detect
differences using Ribo-seq compared with RNA-seq. Thus, these
genes cannot be as effectively quantified during and after
translation, which may result in an overestimation of buffering
events. RNAonly genes possess significantly longer 30untranslated
regions (UTRs) (Fig. 2d; Wilcoxon–Mann–Whitney test;
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Figure 3 | Genetic variation and strain-specific differences in translation. (a,b) Linkage analysis using RNA-seq data of the HxB/BxH recombinant inbred

panel31 derived from the BN-Lx and SHR/Ola strains revealed RNA expression differences under genetic control (eQTLs) for the (a) heart and the (b) liver.

Genes with differential RNA expression (forwarded: black bar; buffered: blue bar) between the parental strains were enriched for eQTLs. As expected,

genes regulated on the translational level only (red bar) were not significantly enriched for eQTLs (for details see Supplementary Table 2). The majority of

RNA expression differences were forwarded to the translational level and detected in both RNA-seq and Ribo-seq experiments. This percentage increased

when RNA expression differences were under genetic control. (c) SNP density in the regulatory regions of RNAonly (blue bar) and RIBOonly (red bar) genes

compared with genes without RNA or RPF strain-specific differences (grey bar). SNP density was significantly higher in the 30UTR of translationally

regulated genes (Wilcoxon–Mann–Whitney). Error bars indicate 95% confidence interval. (d) Known motifs of RNA-binding proteins such as Sf3b4 were

more often altered by sequence variants in the 30UTR compared with genes that did not undergo translational regulation.
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Predo1e� 4; Pblack¼ 1.5e� 3), which has been implicated
previously with low TE28,29.

Distinct regulation across levels of gene expression. It is a
matter of debate how well inherited RNA expression traits
(eQTLs) are mirrored by the proteome and how much post-
transcriptional processes contribute. Previous studies suggested
that B32–35% of eQTLs lead to inherited differences in protein
abundance10,30 or more recently, green fluorescent protein-
tagged7,8 or micro-western array-based approaches9 focused on
subsets of proteins and show that more than 50% of eQTLs also
have a corresponding protein QTL. Here, we assessed the
proportion of eQTLs that are forwarded to differential
translation at the genome-wide level in mammalian tissues. We
previously performed RNA expression linkage analysis of the
HxB/BxH recombinant inbred panel derived from the parental
BN-Lx and SHR/Ola strains31 (see Methods). Of 489 differentially
transcribed genes in the heart, 143 have an eQTL (w2-test;
Phearto2.2e� 16; in liver: 106 out of 238; Plivero2.2e� 16; see
also Supplementary Table 2). More than 80% of genes with an
eQTL are differentially translated (Fig. 3a) between the two
parental strains, demonstrating that genetically induced RNA
expression changes are largely carried forward to differences in
RPF levels and are not frequently buffered during translation. We
also detected hundreds of RIBOonly events that do not overlap
with eQTLs and yet affect protein abundance in the parental

strains (Fig. 3a,b). These post-transcriptional gene expression
differences cannot be captured by traditional eQTL approaches
but may likely contribute to phenotypic variation.

Accurate quantification of translation in the context of natural
phenotypic variation created the opportunity to begin to identify
regulators of post-transcriptional processes. We observed an
increase in the single-nucleotide polymorphism (SNP) density in
the 30UTR of genes under translational control (Fig. 3c),
suggesting the presence of genetic variation in cis-regulatory
elements. We tested whether known motifs of RBPs are
more often altered by sequence variants in the 30UTR of
RIBOonly genes compared with genes that did not undergo
translational regulation (RNAþRIBO). The binding sites
of known translational regulators such as CPEB3 (ref. 32)
(Wilcoxon–Mann–Whitney test; Pcorrected¼ 0.026) were
significantly enriched for genetic variation, but the analysis also
suggested a role for splicing factors such as SF3B4 (Wilcoxon–
Mann–Whitney test; Pcorrected¼ 0.033) as well as other factors in
translation by binding to cis-regulatory elements (Fig. 3d; see also
Supplementary Tables 3 and 4).

miRNAs are known regulators of gene expression by binding
preferentially to the 30UTR, and while some miRNAs mainly act
by decreasing RNA levels to reduce protein expression33,
others act first to regulate translation34. To globally assess the
contribution of natural variation in miRNA levels to
transcriptional and post-transcriptional regulation in the heart
and liver, we performed genome-wide sequencing of miRNAs in
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both tissues from SHR/Ola (n¼ 4) and BN-Lx rat strains (n¼ 4).
Binding sites for differentially transcribed miRNAs (FDRo0.05)
were enriched in the 30UTRs of differentially translated
(RIBOonly) genes when compared with differentially transcribed
(RNAþRIBO) genes (w2-test; P¼ 0.008; Supplementary Table 5).
This may suggest a widespread role of miRNAs in strain-specific
translational regulation in mammalian tissues.

Discussion
We aimed to estimate the relative contribution of translational
and transcriptional regulation to the expression differences in our
rat model for cardiac and metabolic disease. First, we performed
gene set enrichment analyses to identify disease-specific pathways
that are differentially regulated between strains (Supplementary
Data 3–5). Of 37 and 31 enriched KEGG (kyoto encyclopedia of
genes and genomes) pathways in the heart and liver, respectively,
the majority, 70.3% in the heart and 77.4% in the liver, were only
detected with Ribo-seq data. Thus, the investigation of Ribo-seq
data revealed a large proportion of potentially disease-specific
variation that was undetected by mRNA expression analysis.
Important dysregulated pathways that were only found by
ribosome profiling included ‘fatty acid metabolism’ in the heart
and liver (hypergeometric test; Pheart¼ 1e� 4; Pliver¼ 5.2e� 6)
and ‘hypertrophic cardiomyopathy’ in the heart (hypergeometric
test; Pheart¼ 1.6e� 5) (Supplementary Fig. 7). These findings may
warrant further investigation and suggest that the penetrance of
genetic risk variants may be affected by protein variation.

Genome-wide association studies (GWASs) revealed numerous
genes associated with common complex diseases35. We analysed
candidate genes from previously identified human GWASs to
investigate their mode of regulation in disease-relevant tissues in
the rat. Despite known pathophysiological differences between
rats and humans, the SHR represents a widely used model for
common complex cardiac and hepatic phenotypes. Figure 4
provides several examples where we documented strain-specific
transcriptional and/or translational regulation in the liver or heart
of human GWAS candidate genes that were identified for
cholesterol, metabolite and heart rate phenotypes. For example,
gene expression of Myh6 (GWAS candidate gene for heart rate)36,
and Acadl (GWAS candidate gene for metabolite levels and
implicated in hepatic insulin resistance)37,38, is regulated at the
translational level only between rat strains (Fig. 4). GWASs have
identified numerous SNPs that are associated with common
complex traits and diseases but their functional role is often
elusive although regulation of RNA expression levels has
most often been implicated to explain genotype–phenotype
associations39. Given the extent of translational regulation of
GWAS candidates (Supplementary Table 6) identified in this
study, we anticipate that many GWAS variants will influence
translation. Mining this additional layer of regulatory information
will likely lead to new mechanistic insights into human disease
susceptibility and severity.

Methods
Animal tissues. Heart and liver tissues for the experiments described in this study
were harvested from 6-week-old unfasted BN-Lx and SHR/Ola male rats between
0900 and 1000 hours and immediately snap frozen in liquid nitrogen2. We processed
5 biological replicates for each strain and tissue type to accurately assess biological
variation in expression levels. Animals were housed, bred and fed ad libitum in an
air-conditioned animal facility at the Czech Academy of Sciences, Prague, Czech
Republic. All experimental procedures were carried out in accordance with the
European Union National Guidelines and the Animal Protection Law of the Czech
Republic (311/1997) and were approved by the Ethics Committee of the Institute of
Physiology, Czech Academy of Sciences, Prague.

Parallel generation of ribosome profiling and RNA libraries. For each animal
B100 mg of frozen tissue were pulverized manually under liquid nitrogen and

lysed in 1 ml lysis buffer (1� ARTseq mammalian polysome buffer (Epicentre),
1% Triton X-100, 0.1% NP-40, 1 mM dithiothreitol, 10 U ml� 1 DNase I and
nuclease-free H2O to final volume). To impede post-lysis translation, the lysis
buffer was supplemented with cycloheximide (Sigma), previously dissolved in
EtOH, at a final concentration of 0.1 mg ml� 1. The tissue was homogenized
further by repeatedly passing the lysate through a 21-gauge syringe needle. For
complete lysis, the samples were kept on ice for 10 min and subsequently
centrifuged at 20,000g to precipitate cell debris.

To accurately dissect translation and transcription, we prepared both Ribo-seq
and RNA-seq libraries for each biological replicate from the identical lysate.
Ribosome footprints were generated by treating part of the lysate with proprietary
ARTseq nuclease (Epicentre). We then purified monosomes through Sephacryl
S400 columns (GE Healthcare) and extracted RPFs with phenol chloroform.
Ribosomal RNA was removed using the RiboZero Gold Magnetic Kit (Epicentre)
before polyacrylamide gel electrophoresis (PAGE) purification. Sequencing
adapters were ligated before the samples were retrotranscribed and again PAGE
purified. Circularized complementary DNA (cDNA) templates were amplified with
12 PCR cycles, using Phusion polymerase (NEB). Following an additional native
PAGE purification (8% TBE gel) step, libraries were quantified using the Qubit
fluorometer, while the quality and average fragment size were estimated at the
Bioanalyzer (High Sensitivity assay, Agilent). If not described otherwise, steps of
the library generation were performed according to the mammalian ARTseq kit.

Barcodes were used to perform multiplex sequencing and create sequencing
pools containing at least eight different samples and always an equal amount of
both RNA and RPF libraries. We then sequenced sample pools on several lanes on
the HiSeq 2000 platform using 50-bp sequencing chemistry to reduce barcode-,
lane- or slide-related bias in the sequencing data.

To assess mRNA levels, we analysed a polyA-selected RNA-seq data set, termed
‘RNA-seq1’, of the BN-Lx and SHR/Ola strains (five biological replicates)31.
Adapters were ligated to random-primed cDNA with the SPRI bead system and
sequencing was performed on a HiSeq 2000 instrument. To account for non-
polyadenylated transcripts and for intra-strain variation in gene expression, we
additionally generated RNA-seq libraries in parallel to ribosome profiling from
identical tissue samples, omitting nuclease digestion, monosome purification as
well as the initial PAGE purification step. The RNA was heat fragmented before
adapter ligation. This data set is referred to as ‘RNA-seq2’ in the manuscript. The
integration of both data sets ensures that we can differentiate the three different
modes of gene expression: forwarding, buffering and reinforcement (see
Differential expression analysis). Translationally induced differences in gene
expression can be investigated considering both expression levels of polyadenylated
transcripts as well as total RNA levels.

Sequencing data processing and quality control. Raw sequencing data were
demultiplexed with the CASAVA 1.8 pipeline and the 30-end adapter was removed
using the FASTX-toolkit (http://hannonlab.cshl.edu/fastx_toolkit/), retaining reads
of 20 nt or longer post-clipping length: fastx_clipper -a 50-AGATCGGAAGAG
CACACGTCT-30 -l 20 -n -v -Q33 followed by fastx_trimmer -Q33 -f 1.

We then created a custom bowtie2 (ref. 40) index to remove abundant sequences
in ribosome data from further analyses. Fasta files of the rat mitochondrial genome
and rRNA sequences were obtained from the Ensembl41 database. Rat transfer RNA
(tRNA) sequences were obtained from the Genomic tRNA Database42 and were
downloaded from http://gtrnadb.ucsc.edu/download.html. Clipped reads were then
aligned against the custom bowtie2 index (Supplementary Fig. 1c) using standard
parameters. Reads that could not be aligned were considered ‘clean’ and used for
further analyses: bowtie2 -L 20 --un clean.fastq.

We pinpoint translational control by identifying significantly differential read
counts in Ribo-seq and RNA-seq data across strains and categorize differential
gene expression events specific to either both or only one data set type. To avoid
differences that arise through differing attributes of the sequencing data such as
read length or sequencing depth, we matched the data before detecting strain-
specific differences in read abundance. To avoid differences between RNA-seq and
Ribo-seq methodologies that arise through mapping artefacts, we then trimmed all
RNA-seq reads to 29 nt length before alignment: fastx_trimmer -l 29 -Q33. This is
the most common length of Ribo-seq reads (Supplementary Fig. 1b).

To avoid mapping artefacts due to split-read alignment of the short reads, we
defined splice junctions that were detected in at least four animals using TopHat43

using the full-length paired-end reads (2� 100 bp) of RNA-seq1 (ref. 31). These
junctions, in addition to splicing events as annotated by the Ensembl release 72
database41, were considered when mapping the trimmed RNA-seq and Ribo-seq data.

To prevent strain-specific mapping biases, we also infused genetic variation of
either the BN-Lx or the SHR/Ola strains reported by Atanur et al.20 into rn5
genome. We then proceeded to map RPF and trimmed RNA libraries to their
respective BN-Lx- or SHR/Ola- infused genomes and transcriptomes with
TopHat2.0.8 (ref. 44), allowing for de novo splice junction detection and the
following options: tophat --read-realign-edit-dist 0 -M.

We then, for each sample, counted the number of reads mapping uniquely to
only one genomic position and that can be assigned to an annotated exon, not
considering the mitochondrial chromosome. On the basis of this number, we
randomly downsampled Ribo-seq and RNA-seq libraries for each biological
replicate individually to improve comparability and avoid power issues while
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detecting expression differences introduced by variation in sequencing depth across
technologies. For each animal, we matched and downsampled both RNA-seq and
the Ribo-seq libraries to the size of the library with the lowest read counts within
each animal (Supplementary Fig. 2).

All sequencing data sets were then matched in depth (effective depth of reads
contributing to the analysis) and read length to ensure that exclusive characteristics
of Ribo-seq or RNA-seq experiments reflect true biological processes and not
technical properties of the different methods.

To assess the quality of the Ribo-seq data sets, we calculated the length-
normalized, genome-wide average expression of the UTR and coding regions. For
each library, we counted the number of reads mapping to either 50UTR, Coding
Sequence or 30UTR and normalized it by the total length of the respective feature and
the library size. Ribosome footprints of the heart and liver were distributed across
gene bodies as expected11 and mainly covered the coding sequence of genes or to a
lesser extent the 50UTR. The 30UTR was depleted of reads in the Ribo-seq data sets
(Supplementary Fig. 1a). We also determined the position of read starts in the
proximity of the start and stop codon in the Ribo-seq data. For all 20 Ribo-seq data
sets, we observed clear triplet periodicity, distinctive for actively translating ribosomes,
and a strong peak of 29-nt oligomers at 12 bp upstream of the start codon, indicating
ribosomes located at the translation start site. To estimate sample-to-sample distances,
we clustered all samples within each data set according to the Euclidean distances
using the DESeq2 (refs 21,45) package (Supplementary Fig. 2).

Differential expression analysis. To quantify expression of genes, we first
assigned uniquely mapping reads to their genomic feature (Ensembl database
release 72 (ref. 41)) and treated spliced reads between exons as a single fragment
using HTSeq: htseq-count --stranded¼ no --type¼ exon --idattr¼ gene_id.
DESeq2 (refs 21,45) with standard parameters was then used to deduce significant
alterations in transcription and translation of cellular transcripts (Supplementary
Fig. 3; Bonferroni adj. Pr0.01).

To determine the relationship of transcriptional and translational regulation,
we defined three groups of genes: (i) RNAþRIBO: denotes forwarded significant
differences in expression across strains that are detectable in both RNA-seq
experiments as well as in the Ribo-seq data (Bonferroni adj. Pr0.01). Differential
RNA expression of these genes is promoted to the translational level and
has a direct effect on protein synthesis. (ii) RNAonly: are buffered genes that
do not exhibit significant inter-strain variation on the translational level but that were
detected as differentially transcribed in both RNA-seq experiments (Bonferroni adj.
Pr0.01). Translational regulation counteracts changes on the RNA level and buffers
differences in between the strains. (iii) RIBOonly: indicates reinforced and
translationally induced strain-specific differences, which are exclusive to Ribo-seq and
cannot be detected in either of the two RNA-seq experiments (Bonferroni adj.
Pr0.01). Ribosome profiling can reveal differential usage of genes that is either not
present or under-represented in RNA expression data sets.

To define differences between Ribo-seq and RNA-seq data that arise due to
translational regulation, we performed RNA sequencing using two different
methodologies: sequencing of rRNA-depleted total RNA (RNA-seq2) and
polyadenylated transcripts (RNA-seq1).

RNA-seq2 serves as a technical control for Ribo-seq. The libraries were created
in parallel from the identical tissue lysate with a procedure very similar to Ribo-seq.
However, ribosomes occupy mostly processed transcripts, whereas total RNA-seq
also contains nuclear RNA. Thus we also used RNA-seq1 (PolyA-selected RNA-
seq) as a control data set to determine whether processed transcripts are
differentially expressed on the RNA level.

For each data set, we also calculated fold changes of normalized read counts per
gene for SHR/Ola over BN-Lx. RNA fold changes are the average of RNA-seq1 and
RNA-seq2. To assess whether RNA-seq and Ribo-seq fold changes correlate
significantly on a global scale, we computed the Pearson’s correlation for both
tissues (Po1e� 4).

Comparing RNA-seq and Ribo-seq fold changes uncovers the extent of
translational regulation for each gene. When differences on the RNA level induce
equivalent changes in the ribosome occupancy, no translational regulation is
present and strain-specific differences are promoted across regulatory layers. An
increase or decrease of fold changes across data sets indicates translational
reinforcement or buffering. To estimate the extent of translational regulation for
the RNAonly, RNAþRIBO and RIBOonly gene sets, we computed the slopes of
three linear models:

Log FC Riboseq SHR=BNð Þ ¼ bRNAonly
0 þ bRNAonly

1 �Log FC RNAseq SHR=BNð Þ
ð1Þ

Log FC Riboseq SHR=BNð Þ ¼ bRIBOonly
0 þ bRIBOonly

1 �Log FC RNAseq SHR=BNð Þ
ð2Þ

Log FC Riboseq SHR=BNð Þ ¼ bRNAþRIBO
0 þ bRNAþRIBO

1 �Log FC RNAseq SHR=BNð Þ
ð3Þ

using the major-axis estimation method46. We then tested the null hypothesis of

bRIBOonly or RNAonly
1 ¼ bRNAþRIBO

1 using the likelihood ratio statistic implemented
in the smatr3 R package25.

Proteome integration. Global protein abundances were estimated in the liver of
BN-Lx and SHR/Ola using liquid chromatography-tandem mass spectrometry
(LC-MS/MS) as reported by Low et al.26 We calculated the expression of genes
based on RNA-seq (average of RNA-seq 1 and RNA-seq2) as well as on Ribo-seq
data sets of both strains in the liver (fragments per kilobase per million reads
mappedZ1) and correlated these values with MS-based proteomic data (all data
were log transformed). Correlation between Ribo-seq and protein levels was higher
than correlation between RNA-seq and protein levels in both strains
(Supplementary Fig. 5). To assess whether our data support the expected model for
the flow of genetic information from transcription, through translation, to protein
levels, we tested for conditional independence using partial correlations27.

We consider the three random variables ‘RNA’, ‘Ribo’ and ‘protein’. For each
strain we tested all pairs of the three variables ‘RNA’, ‘Ribo’ and ‘protein’ for
conditional independence, given the third variable. Intuitively, conditional
independence between ‘RNA’ and ‘protein’ conditional on ‘Ribo’ means that
knowledge about ‘RNA’ is irrelevant for knowledge about ‘protein’ if we know
‘Ribo’. We assume that tuples (‘RNA’, ‘Ribo’, ‘protein’) follow a multivariate
Gaussian distribution. Then the conditional distribution of two variables, given the
third, is a bivariate Gaussian distribution, with the partial correlation coefficient
describing the relation between the two variables. In this model, conditional
independence is equivalent to a zero partial correlation coefficient. Partial
correlation coefficients can be obtained from the inverse of the covariance matrix
or by correlating the residuals obtained by regressing each of the two variables
against the third. Here we used the second approach and tested the significance of
the partial correlation coefficient using the t-distribution47.

To test whether variation in ribosome occupancy—in the absence of differential
RNA expression—is also reflected on the protein level, we investigated the
regulation of 179 proteins in more detail. These proteins were found to be under
translational regulation (RIBOonly) in the liver and were also quantified by MS in
both strains. Translationally induced strain-specific differences resulted in
significant concordant changes (Wilcoxon–Mann–Whitney; Po1e� 4) on the
protein level (Fig. 2b).

Translational efficiency. The TE score was calculated for the different gene
groups (RNAonly, RIBOonly and RNAþRIBO) as the ratio of normalized Ribo-seq
reads in the CDS over normalized RNA-seq reads (average of RNA-seq1 and RNA-
seq2) in the CDS, thus avoiding the length of UTRs to influence our calculation.
Ribo-seq and RNA-seq data cover different parts of genes making it necessary to
focus on the CDS, a region covered by both methodologies, when performing
quantitative comparisons across both technologies.

UTR length and SNP enrichment. We determined the length and position of
UTRs as annotated by the Ensembl release 72 database41 and tested for differential
length and SNP density using the Wilcoxon–Mann–Whitney method.

Enrichment of KEGG pathways. We compared enrichment analyses based on
gene sets differentially regulated according to either technology: RNA-seq
(RNAþRIBO and RNAonly) or Ribo-seq (RNAþRIBO and RIBOonly). We
identified a significant over-representation of KEGG48 pathways in differentially
used genes for both Ribo-seq and RNA-seq data using webGestalt49. At least two
genes for each pathway were required. Pathways had to be significantly
(Padjustedr0.01; Bonferroni) enriched according to a hypergeometric test. All
pathways listed by the KEGG database (as of 21 March 2011) were tested for a
significant over-representation of differentially expressed genes. Pathways were
either detected using both methodologies (black), or exclusively enriched in either
Ribo-seq (red) or RNA-seq (blue) data (Supplementary Data 3–5).

miRNA expression. To test for differential miRNA expression, we analysed four
biological replicates of each strain. Total RNA was extracted from the left ventricle
tissue using the mirVana miRNA Isolation kit (Life Technologies). RNA was
quantified and the quality assessed using Agilent’s Bioanalyzer. To enrich for
15–35-bp small RNAs, 10 mg total RNA was purified on 15% denaturing PAA gel
(7 M urea). Small RNA libraries were prepared using the SOLiD Total RNA-Seq kit
(Life Technologies) following the manufacturer’s guidelines. After adapter ligation,
cDNA was purified using the MinElute PCR Purification kit (Qiagen) and size
selected on a 10% TBE-urea gel. cDNA fragments were then amplified using
barcoded primers for multiplex sequencing. The final cDNA libraries were
quantified using the Qubit fluorometer, library sizes were assessed with the DNA
1,000 kit (Agilent) and sequencing was carried out on a SOLiD 3 system.

Genome mapping and miRNA quantification. Adapter-clipped reads were
mapped against rn4 with Bowtie50 (Bowtie options: -l 17 -a --m 5 -n 2 --best --
strata -C -f) to accurately quantify annotated rat miRNAs51–53. We assessed the
expression of 680 annotated mature miRNAs. We performed a quantile-based
scaling to normalize read counts as described previously54. Normalized and
rounded miRNA counts were then compared between BN-Lx and SHR/Ola using a
generalized linear model with the quasi-Poisson family. The FDR was controlled
using the Benjamini–Hochberg procedure55. We then assessed whether differential
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miRNA expression was associated preferentially with transcriptional or post-
transcriptional control of protein synthesis by comparing the union of the target sets of
all differentially expressed miRNAs with the classification of genes based on
differential translation and transcription. We found that genes with variation in
translational regulation (RIBOonly) were more often predicted targets56 of differentially
expressed miRNAs (FDRo0.05) than differentially expressed (RNAþRIBO) genes
(Supplementary Table 5) using Fisher’s exact test in each tissue separately. Finally, we
combined the results from both tissues using the Fisher method57.

eQTL analysis. To identify loci that determine RNA expression levels and the
respective target genes, we previously performed an eQTL study for both tissues based
on RNA-seq data of the HxB/BxH recombinant inbred panel31. Briefly, we sequenced
the RNA of one animal for each of the 30 recombinant inbred strains, each on one
lane of a HiSeq 2000 Illumina instrument with TruSeq 2� 100-bp paired-end
chemistry. Reads were aligned to the reference genome RGSC 3.4 using TopHat v 1.2.0
(ref. 43). Gene expression levels were estimated by counting reads within gene bodies.
Gene expression levels were normalized using a quantile-based scaling method54.
QTLs were identified by trait–marker regression using a negative binomial regression
model58 similar to the model used for differential analysis in DESeq. The genetic map
consisted of 1,384 non-redundant SNP genotype profiles. For each pair of trait i and
marker j, we computed the likelihood ratio statistic of the full model containing the
genotype variable against a null model containing only an intercept term. To
determine the significance of likelihood ratio statistic scores while accounting for
linkage disequilibrium, we used a permutation strategy. Finally, we adjusted the QTL P
values for multiple testing using the Benjamini–Hochberg method55.

We then compared the classification of genes based on differential translation
and transcription to the set of genes that have eQTL using the w2-test. As expected,
we found a strong enrichment of eQTLs for differentially expressed genes on the
RNA level in the founder strains (Supplementary Table 2). Genes that have an
eQTL in either tissue were mostly detected as being also differential using Ribo-seq,
which indicates that genetically induced variation in RNA expression is carried
forward to translation (Fig. 3a,b). Genes predicted to be mostly under translational
control (RIBOonly) were not enriched for eQTLs, thus representing a layer of
regulation not captured by RNA expression-based linkage studies.

Motif analysis. To determine whether the binding sites of expressed RNA-RBPs
were preferentially altered by SNPs in 30UTRs of translationally regulated
(RIBOonly) genes as compared with SNPs in 30UTR of genes that were regulated on
both levels (RNAþRIBO), we first obtained 50 bp of flanking sequences for all
SNPs located in all 30UTR regions subject to the integrated analysis in each tissue.
For each position weight matrix from the Hughes RBP database59, we scored the
difference of binding affinities of the reference and alternative alleles using the
sTRAP method60. We then classified the SNPs into two classes: SNPs in RIBOonly

genes and SNPs in RNAþRIBO genes. We tested for each position weight matrix
whether the absolute value of the log ratio of binding P values was larger in the
RIBOonly group compared with the RNAþRIBO group using a one-sided
Wilcoxon–Mann–Whitney test. Finally, we adjusted these P values for multiple
testing using the Benjamini–Hochberg method55.

Quantitative real-time PCR. Total RNA was extracted from pulverized left ven-
tricle or liver tissue of both strains using TRIzol (Life Technologies). After DNase I
(Ambion) treatment at 37 �C for 20 min, RNA was purified using the RNeasy Mini
kit (Qiagen). First-strand cDNA synthesis was performed using random primers
and Superscript II reverse transcriptase (Life Technologies).

To estimate RNA expression of genes, quantitative PCRs were performed using
the Power Sybr Green mix (Applied Biosystems) and primers listed in
Supplementary Table 7. Quantitative real-time PCRs were run on the ViiA7 Real-
Time PCR System (Applied Biosystems).

We included five biological replicates for each strain and tissue and performed
four technical replicates per sample. Expression levels were calculated using the DDCt

method and normalized to Polr2a (heart samples) or Tbp (liver samples). Differential
RNA expression was tested using the nonparametric Mann–Whitney test.

Western blotting. Protein extracts were obtained by lysing pulverized left ventricle
or liver tissue in RIPA buffer (10 mM Tris-HCl pH 7.6, 140 mM NaCl, 1 mM
EDTA, 0.1% SDS, 0.1% sodium deoxycholate and 1% Triton X-100) supplemented
with a protease inhibitors cocktail (Roche) on ice for 30 min. Samples were cen-
trifuged at 20,000g for 10 min at 4 �C. Total protein concentration was estimated
using the BCA protein assay kit (Pierce). Proteins were resolved on 4–12% Bis-Tris
Novex gels (Life Technologies) under reducing conditions and then transferred on
polyvinylidene difluoride membranes (Millipore). To block for unspecific sites,
membranes were incubated with 5% non-fat dry milk in PBS-T (1� PBS, 0.01%
Tween20). Primary antibody incubations in 5% non-fat dry milk in PBS-T were
performed overnight at 4 �C. The following primary antibody dilutions were used:
1:100 Ctps1 (ab133743, Abcam), 1:1,000 Fads1 (EPR6898, Abcam), 1:200 Fes
(sc-7671, Santa Cruz Biotechnology), 1:1,000 Gja1 (#3512, Cell Signaling), 1:2,000
Maoa (ab126751, Abcam), 1:500 Mrpl48 (H00051642-A01, Abnova), 1:200 Myh6
(sc-16876, Santa Cruz Biotechnology), 1:1,000 Myh7 (ab11083, Abcam), 1:1,000
Ppia (ab41684, Abcam) and 1:2,000 Vinculin (V9264, Sigma) as the loading control.

Secondary horseradish peroxidase-conjugated antibodies anti-goat (sc-2020,
Santa Cruz Biotechnology), anti-rabbit (W401B, Promega) or anti-mouse (W4021,
Promega) were used at a dilution of 1:2,000. Membranes were developed using the
chemiluminescent detection method. Results are summarized in Supplementary
Fig. 6 and full-size images are shown in Supplementary Fig. 8.
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