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TRANSLATIONAL-ROTATIONAL COUPLING IN STRONGLY ANHARMONIC
MOLECULAR CRYSTALS WITH ORIENTATIONAL DISORDER

by W.J. BRIELS, A.P.J. JANSEN and A. van der AVOIRD

Institute of Theoretical Chemistry, University of Nijmegen, Toernooiveld, Nijmegen, The Netheriands

ABSTRACT

We have developed a new lattice dynamics sheme for handling large amplitude llbrational motions or hindared rotations, an-
harmonic translational vibrations and translation-rotation coupling in molecular crystals. This formalism is based on expanding the
intermolecular potential in the molecular displacements and including the cubic and higher terms, while retaining its exact anisotropy.
This potential is first used to construct mean field states for the molecular translations and hindered rotations, and next to solve the
equations of motion for the crystal in the random phase approximation (RPA), which takes Into account the correlations batwsen the
molecular motions as well as translation-rotation coupling. It is Illustrated that this scheme glves very accurate results for the ordered

a and ~ phases of solid nitrogen, while it also yields, for the first time, a quantum dynamical description of the molecular motions In the
plastic 8§ phase and a fairly accurate a—f transition temperature.

RESUME

| Nous proposons une nouvelle méthode de dynamigue de réseau pour traiter las mouvements de libration de grande amplitude ou
les rotations empéchdes, les vibrations translationnelles anharmoniques et le couplage rotation-translation dans les cristaux molédculaires,
Ce formalisme est fondé sur le développement du potential intermaoldculaire en terme de déplacemants moléculalres, et Inclut les termaes
cubiques et d'ordre supérieurs tout en retenant son anisotropie exacte. Ce potentiel sert d’abord a construlre des états de champ moyen
pour les translations moléculaires et les rotations empéchées qui sont utilisds ensuite pour rdsoudre les équations du mouvement dans
une approXimation de type phase aléatoire (RPA) tenant compte des corrélations entre mouvements moldculaires ainsi que Hu couplage
translation-rotation. Ce schéma, appliqué a i'azote solide donne de trés bons résultats pour les phases ordonndes o et vy et donnse agale-
ment, pour la premiere fois, une description guantique des mouvements moiéculalres dans la phase plastique g ainsi qu'une assez bonna

valeur de la température de transitiona—_g.

1. Introduction

In many molecular crystals, especially in those com-
posed of light molecules or in those in a thermodynamic
state near to a phase transition, the molecules perform
oscillatory motions with very large amplitudes, or, in the
case of plastic crystals, even hindered rotations. As
opposed to the pure harmonic motions (1) the oscilla-
tory motions with large amplitudes are relatively poorly
understood. The traditional method (1) of perturbation
expansion around a harmonic approximation very soon
runs into calculational problems because large order
perturbation terms are needed. Moreover, in view of the
fact that the perturbation series for a quartic anharmo-
nic oscillator has vanishing range of convergence {2),
one should be very careful with the interpretation of the
results of perturbation calculations.

In case the molecules perform hindered rotations,
with their centres of mass fixed to alattice point, fairly
good results have been obtained (3-8), In many cases
this model will not be very realistic, however. Most
molecular crystals are rather closely packed, which urges
the molecules to separate before large changes in their
orientations can occur. This means that there will be
a considerable coupling between the translational and
the rotational motions of the molecules. 1t is just this
coupling which has attracted a lot of attention (9-15)
during the last years, and which will be the subject of
the present paper.

A striking property of almost all theories dealing
with rotation-translation coupling in molecular crystals

is that the translations and rotations are first treated
separately, most often in completely different ways,

and that the coupling is introduced afterwards. Although
this seems physically appealing, it brings with it a lot
of computational problems if one wishes to perform
actual dynamics calculations, rather than to give a more
or less phenomenological description. Our formalism
(16-18) avoids these problems by introducing the
rotation-transiation coupling simultaneously with the
correlation between the translational and the rotational
vibrations of the individual molecules, while using the
full space group symmetry of the system,

We have chosen to illustrate the results of this
formalism by applying it to solid nitrogen, for two
reasons. The first reason is that nitrogen accurs in
different modifications, ordered as well as orientation-
ally disordered, and that many experimaental data are
available {19-20), Even in the ordered phases, espocially
in the neighbourhood of the a—f order-disorder phase
transition, but alsa at lower temperaturas, the ampli-
tudes of the orientational oscitlations of the molacules
are rather large and their motions will be strongly
anharmonic. The second reason is the availability of an
ab initio intermolecular potential (21) which has been
given im the desired analytic form, and which has

already proved its quality on several bulk properties
(22-24)

4

2. The Hamiltonian

In order to model the crystal we associate a position
vector wlith each point P = {n,/} of a lattice. The posi-

, : . > -
tion vector of the point P is given by Rp = ﬁg’ |- r;,
where Ry is the position vector of the origin of the

Journal de chimie physique, 1985, 82, n° 2/3



126 W.J. Briels, A.P.J. Jansen and A. van der Avoird

unit cell to which P belongs, and F; the position vector

of P relative to this origin. The molecules are supposed
to librate and oscillate in the neighbour-hood of the
points they are associated with. The position vector of
the centre of mass of the molecule at P relative to

_> : ®

Rp will be denoted by 39. In order to describe the
orientation of a given molecule we attach a rectangular
coordinate frame to it, and give the Euier angles wp =
{ap,Bp,vp} of this frame relative to a fixed lattice

frame.

The potential energy of two molecules, at P and P’
respectively, is expanded(25-30) in a complete set of

functions of the variables wp, wp’ and Upp:%where
Uppr is the unit vector in the direction of Uppr =

( p! Up! ) — (Rp -+ Up) ——a Rpp’ -+ Up! — Up. e
coefficients of the expansion then depend on Upp

the length of Uppr As a basis for the expansion we

) Q Q
use the products Dy (wp) Diday (wpt) G 3’(up§.

where the D,‘,m are Wigner functions and C
a Racah spherical harmonic. For these functtons as
well as for the Euler angles we use the conventions of
Edmonds {31}, The expansion can be greatly simplified
by using the full symmetry of the molecular pair. For
this purpose we need the transformation properties of
the Wigner functions, both with respect to rotations
of the lattice (or space-fixed) frame and with respect to
rotations of the molecular (or body-fixed) frames. If we
change from one lattice frame to another, which has
Euler angles ¢ relatively to the original frame then a
scalar quantity which was ariginally described by a func-
tion F will be described in the new frame by R (23) F ;
the two functions are related by R (3) Flw) = F (o.:)
where «w and w' are the Euler angles of a molecule rela-
tive to the new and the old lattice frame, respectively.
Similarly, if we change from one molecular coordinate
frame to another, which has Euler angles & relatwe
to the original one, F will transform into R’ (&) F.
With the conventions that we have adopted the trans-
formed Wigner functions are given by (30) :

S pi () DB (@), (2.1)
ml

R (o) D(m (w) =

R("")D (w) = Z D“2 (w) D,g%,) (@). (2.2)
n

Using the second of these relations we construct

linear combinations G}ﬁ) (w) =

Z A}f’ D,(,sf,), (),

n.

which transform according to the totally symmetric
representation of the molecular point group. Only
these combinations will occur in the expansion of the
potential energy. Using the first of the above relations
we can impose the condition that the expansion should
be invariant under any rotation of the lattice frame.
The final result then is

= S (pE,, {UPP') };}(
m

doiund
Y
2

% % 93)

—
(I)( UPP" COP , (.Opp)
' My MyMmay

(91)

m (op) G2 (cwp "33’ (Opp)  (2.3)
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Here the first symbol after the second summation
sign is a 3—]j coefficient; the labels are defined as

—> —
= {,%.%} and m={m,my,m3}. In case the
intermolecular potential is given in terms of atom-atom
potentials, the coefficients ch.,(Uppr) can be analytically

evaluated (29,30). When the potential is numerically
known, for instance, from ab initio calculations, the
coefficients can be obtained (€1) by a numerical inte-
gration for several values of Upps, and then fitted to
analytical expressions.

In order to obtain the translational dependence of
the potential energy in a more tractable form we expand

the translationally dependent part of eq. (2.3) in a
Taylor series

o (—up*» V)™ (Upr s 7)%2
‘p—+‘Upp) C( )(Upp') — Z " —r_

o, ap l ag |
(Rpp!) (2.4)

The sums over &y and @, must, in principle, be

extended to infinity; in practice they will run over all
non-negative values for which [a] = oy + 05 S Gax.

The differentiations in eq. (2.4) can be evaluated
most efficiently by means of the gradient formula in
spherical tensor form{18.31). This formula is very
easy to apply once an analytical expression for
goa,. (Upp!) is given. For the details we refer to ref. (18),

The final expression for the intermolecular potential
energy then reads

— —> Ty
$ppr (Up, wp ;uUpr, wpr) =  (Uppr, wp , wp!) =

> wp)™ " (i) G (wp) X, (PP

Aq, A
10442
A1,A2

R
G2 (wpr) €2 (1) (upn®2, (2.5)

moy

where A; = {o;,k;,n;, % ,m;} are composite (ndices.
An explucnt expression for X, . (P, P’) has been given
in ref. (18), (AlthOUQh the snuatlon treated in the

present paper is somewhat more general than in ref. (18),
the expression for X, ,_ {P1,Pp) is the same in both

cases).

Finally, we are in a position to write down the crystal
Hamlltoman

=2, {T{Up) + L(wp)}+

P
1T — —
+ -52.;; Dppr (Up , wp ; Tpr, wpr). (2.6)

The translational kinetic energy is given by T(ffp) =

2
fi N
M V2 (Up) where M is the molecular mass and the

Laplacian 7° is most conveniently expressed in spherical
coordinates (up,up); the rotational kinetic energy

L {cwp) in the most general case is given by the asymme-
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trical top expression (32,33). The double sum in eq. {2.6)
respresents the potential energy of the whole crystal.
This term is sometimes written(3) as a sum of one-

particle contributions plus a sum of two-particle contri-
butions, or one (9-11) has distinguished between pure
translational, pure rotational and coupled translational-
rotational terms. Although such partitionings might
contribute to an understanding of the physical contents
of the theory, we shall not introduce them here, because
they are not essential for the application of the method
described in the next section. A second remark: it is
natural (34), especially in a mean field treatment of the
Hamiltonian (2.6), to use the basis functions of the
representations of the site group of the point P, instead
of the spherical harmonics C) (dp). We shall not follow
this convention, because we find it easier to write the
formulas (and implement then in a computer program)
in terms of spherical harmonics. Of course, the results

can always be re-expressed in terms of basis functions
adapted to the site group.

3. Lattice dynamics

The essential aspect of our lattice dynamics calcula-
tion is that we first treat the complete hamiltonian
(2.6) in a mean field approximation, and then use the
resulting mean field states in an RPA treatment, again
of the complete hamiltonian (2.6). An important pro-
perty of our method is that it yields the exact results
for a harmonic hamiltonian, including the translation-
rotation coupling which is present at the harmonic
level. Moreover, in the general case, it gives good results
for pure rotational as well as for pure transiational sys-
tems. | |

A. The mean field approximation

The mean field approximation is based on the ther-
modynamic variation principle {35.36)

Avar"—”AoJf‘ (H—H())O}A, (31)

where Hgy can be any hamiltonian, and ( X 24 is the
thermodynamic average of an operator X over the states
of Hy, ie. (X )y =25 Tr Xexp {— fHg) with Z =
Tr exp (— BHy) and = (kg T)™'. The Helmholiz free
energy corresponding with Hy is Ag = —kg T In Z5 and
A is the free energy corresponding with the exact hamil-

tonian H. The mean field approximation consists in
choosing Hy as a sum of one-particle operators

_ =
P
such that A . is stable against all first order variations
of HPMF. As is well known, this leads to a set of coupled
equations

HrF\:AF(i?p p wp) =T (fjp) + L ((-Op)

\ —>
T Z < c:DF)I:J”(Z‘;);:’  Op ;up',wpl) )Po (3,3)
P’ =P
which have to be solved for H',},“F. Here { X )pr denotes

the thermodynamic average of X over the states of
H“J:F (J;o , wp). Once the Hg,’”: are known, the approxi-

mate thermodynamic properties of the system are
given by
| \ 1 -~
A=—kyT ianPﬂF—g Y (ONF oy, (3.4)
p P

aA N\ 1
S=———=kg 2 InZMF+ T=1 X, (HYF)pr (3.5
0T P P

\ 1 <

E=A+TS= ), (HYF), —o o (2. (38
P |

Here Z{;\,“F = Tr exp (— BHE@,"F).

Regarding the solution of the system of equations
(3.3) let us make two remarks. First, in order to calcu-

late the thermodynamic averages we diagonalize H'E,AF,
i.e. we construct eigenfunctions of HPM':t and then per-

form the averaging in the obvious way. The mean field
eigenstates can be constructed as linear combinations

of the products \Pﬁ',\\‘ﬁ) @;) D,ﬁf% (wp), where the transia-
tional basisfunctions 4’,% {B’P) = F&L) (Up) CI(\},-) (Gp) are

3-dimensional harmonic oscillator functions expressed

in spherical coordinates ; the radial functions Fl\lf) (Up)
are essentially Laguerre functions{18,37). The pro-
blem with this approach, however, is that the size of the
product basis required to approach the mean-field states
will be very large. Therefore, we choose to further sepa-
rate the mean-field hamiltonian {3.2) into a translational
and a rotational part:

Hy = ;{HE{L’};) + HE {wp)}. (3.7)

The mean field formalism given above then remains

essentially the same, the main change being that P must

be replaced by the pair {P,K} where K= T, L distin-
guishes the translational from the rotational degrees of
freedom. One can envisage the crystal now as consisting
of two ‘‘particles’’ at every lattice point P, one librating
and one oscillating particle. The mean field eigenstates

of H} (Z}}p) will be linear combinations of \I'LNN), (E-?p)' and

those of H (wp}will be linear combinationsof D}"%.‘), (Lp).
Matrix elements over such basis functions with the
potential (2.8) are not difficult to evaluate ; the

angular integrals over D,ff,)? (w) and C{},—’ (&) functions
reduce to products of 3-j symbols (31,33} and the radial
integrals can be caiculated from the formulas given in
ref. {18,38), The mean-field equations for Hp (t7p) and

H}s (wp) are coupled, but this coupling can be treated

along with the coupling contained In the translationat
and librational mean-field eguations themselves by
following the usual iterative procedure to find the self-
consistent solutions.

As a second remark we mention that, in order to sol-
ve the mean field equations we must impose symmetry
relations on the H*é. We mostly use the experimentally
observed symmetry. In some cases {see section 4), we
find that the mean field solution with the experimental
symmetry is not stable, however, {see section 3.C) and
we fook for solutions of lower symmetry. As a result of

the trgps!ational symmetry, it follows that Hp = Hg.

when Rppr is-equal to a primitive lattice vector. Moreo-
ver, as a result of the point group symmetry, only the
H*é of the molecules in the asymmetric part of the unit

cell are independent. For the othe;r molecules in the
unit cell, generically labeled by P, there exist Euler

angles wpr such that the transformed mean field R (wp 1)
@Mf( (see section 2) is equal to @,":,"}f, where P labels
the molecule to which the molecule at P’ is’ connected

by a symmetry operation. Using eq. (2.1} and the defi-
hition of the Gﬁ,%) we then derive

(Gy¥pr =D (GE)Yp D) (e, (3.8)

m!
m,

Journal de chimie physique, 1985, 82, n° 2/3
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and similarly

= 2 (C Dy D, (). (3.9

<C(ka’ T PT "nn
n'

In the latter equation we have used the fact that
spherical harmonics transform in the same way as the
Wigner functions, i.e. as given by eq. (2.1). Introducing
these results into the mean field equation {3.3) we find
that these equations involve only the molecules in the
asymmetric part of the unit cell.

B. The random phase approximation

‘We shall restrict ourselves in this subsection to the
case T = 0K a treatment for nonzero temperature can
be given along the same lines and with exactly the same
results in the limit of zero temperature, by using the
time-dependent Hartree approximation,

The mean field treatment of the preceding sub-
section has provided a set of single-particle states

hj/(a’) and N/‘m ). From these we construct a crystal
state

W{a]— {ﬁ}> = H N}PT > lwmp‘ (3.10)

In case all the ap and fp are equal to zero, eq. (3.10)

represents the mean field ground state of the crystal.
We obtain the excited states by use of the excitation

)T, which replace W‘O)) by wj(a«)

when applied to the mean field ground state. The
random phase formalism consists of two approxima-
tions. First, we write the Hamiltonian eq. (2.6) as a

quadratic form in the excitation operators (E‘,‘}K)T

Q
operators (Eg

and their hermitian conjugates EgK :

H = 2 2 [Acw“(:( )1‘

P K,P K «,8

)T+ hermitian conjugate |
(3.11)

o o “.
+ an;i,,(, (ES ) (E;?,,K

Here, the prime on the first summatlon sign indicates
that P = P’ together with K= K' should be excluded.
Linear terms are absent in eq. (3.11) because of the

Brillouin theorem. The coefficients A“ﬁ i and B“( K

can be calculated by equating the nonzero matrix
elements of eq. (3.11) in the basis given by eq. (3.10)
to the corresponding matrix elements of eq. {2.6) in
the same basis. The translational symmetry of the mean
field states can be used to show that the A anhd B
coefficients do not depend on the position labels

P={n./} and P'= {n",i"} but only on the sublattice
labels / and /’. The second step in the RPA formalism
is that we assume boson commutation rules for the
excitation and de-excitation operators. It is not difficult
to see that this is only approximately true (39.,40),
Once we have made these approximations, it is easy
to diagonalize the hamiltonian eq. (3.11). A partial
diagonalization is of course obtained by adapting the
problem to the translational symmetry of the crystal,
l.e. by using operators
~> -
l'q.HB" EO‘

1
\/_N—Z_‘,B ;?*,f}K' (312)
n

Erc (9) =

Journal de chimie physique, 1985, 82, n° 2/3

where N is the number of unit cells in the crystal and @

is the wave vector.
commutation rules are preserved under such a transfor-

mation. The next step is to define operators a, (g)]

which represent the exact excitation operators of the
crystal and to express these operators as

at=2 et

— i K

@ ES @ +

P Ch @EL (9] (3.3

These operators must satisfy the equations of motion

H.a] (@] = w, (q)a] @), (3.14)

[H.,a, (@]=—w, (@) a, (g (3.15)

which leads to the RPA eigenvalue problem for the
coefficients (%) C;‘i K

X—®@ — @@ He@\
g —x+ 2@/ \ c@
(+} ~ /5
= €l @) (3.16)
=Ic(g)

The elements of the diagonal matrix X and those of
the matrix @ are defined as

XoiK o/ 1K' = 5ao¢' 6Ii’ 6|<|<' (ea,K _eo,K)
(3.17)
with € e T €, ¢ being the mean-field excitation
energies 5 and '
(q) iq ﬁ—»» MF MF
(I)ouK a'i'K' \I K’(I)PP'|\I,C£'F'K'>

l-i
-
fl

Y\ MF MF

1
: prg ~> u
with P = {0,/}, = {n, iV, P =1{n,i"}, K=T or
L, K, =L or T, and (I)PP’ being the potential (2.5).
The mean-field states \IMF are given by eq.

PK
(3.10) ; they correspond to excitations (ap > 0) of one

translational, K= T, or librational, K= L, '‘particle”.

Accordingly, each matrix @(6) occurring in eq. (3. 16]'

has diagonal submatrices, tI) , correlating the trans-
lational motions of the molecules in the lattice, and

(IDLL, correlating their librational motions, and off-

diagonal submatrices (I)TL and ®-T  which account

— ’

for the translational-rotational coupling. The eigen-
vectors of the RPA equations (3.16) may be conceived

as generalized normal modes of the system, one for

each A and @, with fundamental frequencies ), (§).

In general, these modes will be mixed translational:
rotational, their translational components can be
strongly anharmonic, and their rotational components
may describe (anharmonic) librations as well as
(hindered) rotations.

It is well known that the boson:
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C. Stability conditions 4. Application to solid nitrogen
The mean field equations (3.3) have been abtained _
by making the free energy A, ., eq. (3.1), stationary As mentioned in the introduction, solid nitrogen is
with respect to variations of the mean field hamil- an interesting system to illustrate the possibilities of our

: M F - . ‘ formalism. We have not yet studied the very high pres-
tonian H MFor variations of theMcForrespondmg density sure phases, which have recently been discovered (42,43},
operator dp = ZP' exp (—0Hp ). This amounts to but we have restricted ourselves to the ordered « and -y
setting the first order variation Alll equal to zero. phases and the orientationally disordered § phase, since

most of the experimental data refer to these phases.

The resulting solution, i.e. the mean field solution, Figure 1 shows the structures of these modifications.

only corresponds to a minimum of A, however,

it the second order variation, Afﬁ,, is positive for all

variations of d‘f_}” F. This quantity AL%{, can be written

as a quadratic torm with the matrix

Q@) -X @)

P

N (3.19)
®@)  Plg) ~X

as Hessian. AL‘?&)‘, will be positive definite only .if the

(hermitian) matrix N(g) is positive definite. This matrix
N (q) is closely related to the matrix

-®@) - @) -1 0

&(q) - X+ 2(q) 0

|

N (q)

(3.20)
occurring in the RPA problem, eq. (3.16), and it can be
demonstrated (17.47) that the RPA elgenvalues W (q)

are indicators for the stability of the original mean field
solution, which was used to construct the RPA matrices.

via eqgs. (3.17) and (3.18). The eigenvalues w, (G} are a

purely real or purely imaginary ; if one or more of these - _
eigenvalues is imaginary, then the mean field solution ; NZ*P6§/mmC (Z=2])
is not stable, i.e. it does not correspond to a minimum a=4,050A, c=6.604 A

of A,,. Searching in the direction of the eigenvector (s)
corresponding to the imaginary eigenvalue(s), can help
us in finding a new, stable mean field solution.

Y-Ng,Pby /mmm(Z=2)
a-N,,Pa3 (Z=4) a=3957A ¢=5.109 A
a=5.644 z\ Fig, 1. — Crystal structures of «, § and v nitrogen, according to ref, [19]

Journal de chimie physique, 1985, 82, n° ¢
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The, pairwise additive, intermolecular potential which
we have adopted is the ab initio potential of Berns and
Van der Avoird {21). This potential has been given in the
appropriate form, eq. (2.3}, but since the nitrogen mole-
cule is linear we need only two Euler angles, wp ={8p,

vp), to define its orientation. The symmetry adapted
functions G (cp) in the potential (2.3) and (2.5) can
be replaced by Racah spherical harmonics C}S) (cp),
with even R only (if we disregard the occurrence of
mixed isotrope 4N 5N molecules, the natural abun-

dance of '°N being only 0.37 %). The rotational kinetic
energy in the Hamiltonian (2.6) becomes simply

L (wp) =B J2 (4.1)

with the rotational constant B = 2.013 cm™! for
4N 14N, The Wigner Dgﬂ7 (wp) functions in the orien-
tational mean field basis can also be replaced by spheri-
cal harmonics C}’,Z,) (wp), with even £ for ortho-nitrogen
(1 =0,2) and odd 2 for para-nitrogen {l = 1). We have
noticed that the results of our calculations are mostly
very similar for the ortho and para species, due to the
quenching of the N, rotations, i.e. the orientational
localization, caused by the anisotropic potential.

In order to check the accuracy of our calculations,
we have tested for the various truncation errors. The
lattice summations over the potential were finally
taken over all neighbouring molecules within a range
of approximately 10 A, i.e. about 86 molecules in «,
f§ and v nitrogen. The expansion of the potential Iin
terms of the molecutar displacements, eqgs. (2.4) and
(2.5}, was truncated after o, = 4 {taking o = 2
would make the potential harmonic in the translatio-
nal vibrations}. This value @ ., = 4 corresponds to
1T % accuracy of the expanded potential for displace-
ments as large as 0.3 A ; the actual root mean square
displacements emerging from the calculations are only
about 0.1 A (see below). The orientational dependence
of the ab initio potential(27). which contains terms up
to £...x = 6, was fully retained in the dynamics calcu-
lations. The basis for the translational vibrations contai-
ned all 3-d harmonic oscillator functions up to 7., =5

inclusive, and the basis for the orientational motions all
spherical harmonics up to & .. = 10 for @ and J nitro-
gen and R, = 12 for 7 nitrogen. For convenience, the

latter hasis was actually used in the form of real tesseral
harmaonics. °

A. The ordered t-and y-phases

The - and <y-phases are both stable at low tempe-
rature. The a-phase exists in equilibrium with nitrogen
vapour of very low pressure (practically p = Q). The
v-phase is stable above p = 4 kbar. While studying the
dynamics of the crystal we also optimized the cell
parameters, as follows. For the a-phase we calculated
the minimum of the free energy A in the mean field
approximation, eq. (3.4), as a function of the cubic
cell parameter a. This yielded the optimum cell para-
meter & = 5.699 A (experimentally {12) a = 5.644 A)
and the mean field lattice cohesion energy at T = OK
of AE=5.92 kd/mo! {experimentally AE =6.92 kJ/mol).
For the vy-phase we calculated the free energy A for
several values of the tetragonal cell parameters a and c,
and fitted A (a,c) by a quadratic function. On each
curve of constant molar volume v = N 42 ¢/2 we deter-
mined the optimum a and ¢ by minimizing A. Using
the optimum points and the corresponding free energies

J0A
we calculated the pressure as p = — — Thus we found

oV
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at p = 4 kbar that @ = 3.961 A andc = 5.104 A in very
good agreement with the experimental values(79)
a=23.957 Aandc=5.109 A,

Apart from the free energy, the mean field approxi-
mation yields a good picture of the single molecule mo-
tions. We have plotted the probability density for the
librations in Figures 2a and b. We clearly observe that
the orientations of the molecules in the «-phase are
localized around the [1,1,1] axes which is in agreement
with the experimental findings. In the ‘y-phase the
molecules are found to be localized around the [1, 1, 0]

Y

2
a- N, groundstate Ikb I
[=0K

Y

Y~-N, groundstate l 1) I :

T=0K

Fig. 2. — Orientational probability distributions of the molecular
axes in o (Fig. 2a) and vy {Fig. 2b) nitrogen. Contours of cons-
tant probability for the molecule in the origin, calculated in the
mean field model, are plotted as functions of the polar angles
(8,9} with respect to the crystal axes {Fig. 1). The angle 6
increases linearly with the radius of the plots fram O (in the
center) to n/2 {at the boundary), ¢ is the phase angle.
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TABLE |
Translational and librational amplitudes from mean field calculations
I N 1
a~N2 T=0K p =0
<u2>£ = 0,112 & u = u
” ' l'/ [ 1 ’ 1 v 1 ]
<ui>i - 0.107 &
st = 0.189 8
2. 3\ _ 0
arccos(<cos ™ 8>°) = 16,1 |
Y-N2 T=0K p = 4 kbar
cu’>? = 0.100 8 = u
i ‘ i {1,1,0]
2 4 | _
upy,> = 0.086 A “iab ~ “[1,~1,0]
2 4 =
M T 0.087 & (u¢c u[0,0,1]
<u2>a = (0,159 R

:

arccos (<c0326> ) = 12,9°

Iasymmetry parameter (rotation out of ab-plane - rotation

<sin28(sin2¢wc0529)>

Hin ab-plane): 3 = 0,05
. . %<sin 8> 3 B

TABLE ]
@, .. dependence of some RPA lattice frequencies for a-Np (a =5.644 A, T =0 K)

!

Frequencies m(tmﬂ1)

Oy = 2 3 )

(harmonic model
for translations)

I'(0,0,0)
Eg 32.8 32.8 32.8
libr. Tg 43.4 43 .4 43.4
Tg 71.6 711.6 71.5
A 42,3 423 50. 6
T 48,7 48 .7 52,7
transl. .
E, 35.7 55.7 60.2
Tu 73.0 73,0 79.4
T
.MCE’E’O)
M12 28.8 25.7 28 .8
M12 40.4 38,5 41.5
mixed M12 52,2 51.7 53.3
6.0 ¢ L]
MiZ 0 61.2 63.7
MIZ 67.0 68.6 72.0
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}
TABLE (1 .
Lattice frequencies in o-No (in em™ NT=0K,p=0
experiment  semi—empirical SCP RPA ;
[ 47] harmonic [ 20] [24 ] (this work) %
a (k) 5. h4h 5.644 5.796 5,699
r(0,0,0)
fag 32.3 37.5 39,5 31.0
librations { Tg 36,3 47.7 48.5 41.0 3
T 59.7 75.2 "0.3 68.0 ;
(A 46 .8 45,9 48.8 47.2 :
. 48. . .
translational Tu 48.4 “7.7 S 4 48.8 :
| vibrations Eu 54.0 54 .0 53.5 55.6 2
T 69.4 69.5 72.0 73.1 §
M(=,~,0) 3
d d
M, 27.8 29.6 32.5 27.6 ;
M., 37.9 40.6 43.3 19. 1 §
mixed M., 46 .8 51.8 54.0 50 2 5
| M, 549 59.0 58.5 59. 1 :
ﬁ
M., 62.5 66.4 64.9 66.5 g
R, 33.9 34,4 34,2 34.4 g
| translational - ‘
vibrations 1111:,,1“3 34,7 35.7 35.9 35.8 ;
R 68.6 68.3 71.0 72.3
23
+ |
Libration Rl 43.6 50,7 52.7 47.9 | %
; Ry 47.2 57.8 55.7 50.8 f
s ; _ . . , . ;
r.m.s. deviation of librational frequencies 10.6 9.7 5.0 g
r.m.s. deviation of translational frequencies 0.6 1.6 2.1 i
r.m.s. deviation of all lattice frequencies 6.1 6.0 3.4
TABLE [V :
Lattice frequencies in y—N (in em=1) T=0 K, p =4 kbar
experiment  semi-empirical SCP RPA %
. .F
[48,49] harmonic [20] [24]  (this work) |
a(R) 3.957 3.940 4. 100 3.961
c (&) 5.109 5.086 5.188 5.104
r¢o,o0,0)
'Eg 55.0 50.5 56.5 67.6
librations B1g 98. 1 74 .8 85.2 103.3
Ay 105, 1 107. 1 124 4 ;
| |
translational 'Eu 65.0 58.3 69.3 65.2 E
vibrations B 103. 1 107 .4 14,9 5
r.m.s. deviation 14.2 7.9 7.0
——
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‘axes, again Iin agreement with experimental data. Ana-
logous figures for temperatures up to 40 K are gualita-
tively similar. The amount of delocalization is measured
by the order parameter S = (P, (cos 8) ) where § is now
defined relative to the equilibrium axis. At T=0K we
find $S=0.885 and S= 0.925 for the o and y phase
respectively. Experimentally one finds S = 0.863 for the
a-phase. The agreement is fair ; as usual the mean field
calculations slightly overestimate the order parameters.
Similar parameters are given in Table | for the transla-
tional vibrations. As indicated already by the librational
order parameter S, we observe that the molecular mo-
tions in the 7y-phase are slightly more restricted than in
the a-phase.

-Having calculated the ground and excited mean field
states of - and 7y-nitrogen, we included the correlations
between the molecular motions as well as the transiatio-
nal-rotational coupling by determining the eigenvalues
of the RPA matrix M (q), Eq. (3.16). Both calculations
(mean field and RPA) were performed for o, = 2

{i.e. harmonic translational vibrations), o, =3 and

4. Looking at Table Il we observe that the size of the
anharmonic corrections to the translational frequencies
is comparable to the self-consistent phonon (SCP)
corrections (24). This is a favourable result since the
SCP method appears to work very well for the transla-
tional Jattice modes in solid nitrogen. There is an impor-
tant difference, however, between our formalism and
the SCP method (44). The latter neglects those terms
in the potential that depend on odd powers of the mole-
cular displacements. The cubic terms are sometimes
added perturbationally {45,48). Our formalism inciudes
the cubic terms directly. In the pure transiational modes
of Table Il they have no effect, however, because of the
inversion symmetry in a-nitrogen.

The frequencies from the RPA calculations are_given
in Tables {1l and IV for different wave vectors y. The
agreement with the experimental data(47-49) is very
satisfactory, especially if we remember that the ab initio
potential has not been adjusted to improve this agree-
ment (in contrast with most semi-empirical calculations).
Particularly the pure libron frequencies are substantially
improved with respect to earlier harmonic and SCP
calculations (24) using the same ab initio potential, and
also with respect to semi-empirical harmanic calculations
(20)., Also the mixed phonon-libron modes, which
describe explicitly the translational-rotational coupling,
are represented very accurately by our formalism. All
points in the Brillouin zone, except some paints of high
symmetry, actually yvield such mixed modes and, there-
fore, the translational-rotational coupling can have
important effects on the properties of the crystal. We
intend to study such effects in the near future.

B. The plastic B-phase

The $-phase is stable above T =356.6 K. We started
our calculations on this phase by assuming the experi-
mentally observed symmetry. Thus, the two molecules
in the hexagonal unit cell were given translationally
equivalent mean field solutions. The probability density
of the ground state wave function that resulted for the
ortho-species is shown in Figure 3a. (The ground state

of the para-species is twofold degenerate. The average

1
probability density > (1 ¥y 1% + 1Py [4) is similar to

Fig. 3a). We observe that the orientations of the mole-
cular axes are delocalized. The motions can be described
as precessions around the crystal c-axis which are hinde-
red by small sixfold barriers. In accordance with the
picture of Press and Hiller {(50) the angle & between the

molecular axes and the c-axis shows a rather broad dis-
tribution. The maximum of this distribution lies at the
“axperimental’’ {19) precession angle : about B56°,

Starting from this ground state and a number of
excited states we wanted to calculate the libron fre-
qguencies. The relevant formulas are obtained by restric-
ting Eqs. (3.16) to (3.18) to the librational ”pagicles”

‘ — '

only : K= {. Some of the frequencies for g = U came
out imaginary. According to section 2.C this implies

2
B-N, groundstate |L|Jl
T=0K

B-N, groundstate Itp |2

T= 0K

Fig. 3. — Orientational probability distribution of the molecular
axes for the delocalized (Fig. 3a) and localized (Fig. 3b) mean
field states In B-nitrogen. Figure 3a applies to both molecules
in the unit cell, Figure 3b is drawn for one molecule in the unit
cell : the other molecule in the cell is rotated over ¢ = 180°.
The distribution doas not change qualitatively up to (at least)
T =70 K,; it just becomes slightly wider with increasing tempa-
rature. Reading of the contour plot as in Figure 2.
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that the delocalized mean field states do not correspond
with a (local) minimum of the free energy. Inspecting
the eigenvectors of the RPA problem belonging to the
imaginary frequencies taught us that the free energy
could be lowered by out-of-phase motions of the two
neighbouring molecules in the unit cell.

Indeed, we found that there exists a mean field solu-
tion which is lower in free energy than the delocalized
solution by 0.87 kJ/mol at zero temperature. In this
new solution the orientations of the molecular axes are
clearly localized (see Fig. 3b). The states for the two
neighbouring molecules in the unit cell are equwalen%
but rotated over 180° around the c-axis. This 180
rotation avoids the hindrance which occurs between
neighbouring molecules when they process freely (81).
The angle 8 ~ 52° between the molecular axes and the
crystal c-axis is slightly smaller than for the delocalized
case.

The most remarkable feature of the localized state is
that the experimentally observed hexagonal symmetry is
lost, This symmetry will be restored If we assume that
for each molecule six equivalent mean field solutions are
available, which are related to each other by rotations
of 60° around the c-axis, and that the molecules can
jump from one localized solution to another within
the time that is characteristic for the observation pro-
cess, i.e. the inverse NMR or NQR frequency (19), for
examp!e We shall digress on this hypothesis in the next
section.

We calculated the libron frequencies by the RPA
method with two excited localized mean field states
on each molecule. All frequencies came out real now,
as they should be for a stable mean field solution (see
Table V). The experimental spectra{47.52) show two
very broad peaks of which the higher one around
50 em~1 (depending on the temperature and pressure)
has been interpreted as a libron band and the lower one
around 25 cm~™' as a translational phonon band. The
higher libron frequency agrees reasonably well with our
results, but according to our calculated frequencies, the
libron modes might cause some absorption in the lower
band as well (apart from symmetry and intensity consi-
derations which we have not looked at). Our results
indicate that the broadening of the observed libron band
Is caused by coupling of localized librational modes with

W.J. Briels, A.P.J, Jansen and A. van der Avoird

more or less random jumps t)in the orientations of the
molecules by multiples of 60" around the crystal ¢ axis.
The localized mean fieild solution poses yet another

problem. Although we expect that the experimentally

observed lattice symmetry can be restored by allowing
rapid jumps between the six localized librational solu-
tions, the lower symmetry of the actual solution makes
it impossible to use our libron-phonon formalism as
such. Indeed, we found that in the mean field of the
“broken symmetry’’ librations the equilibrium positions
of the molecules tend to shift away from the hexagonal
lattice sites. In order to solve this problem one would
have to extend our formalism with a dynamical model
for the symmetry-restoring jumps.

C. The a-f phase transition

ln Figure 4 we have p|otted the free energy A calcu-
lated for the different mean field solutions of a- and
B-nitrogen. The contribution from the translationa!
vibrations is not included in this picture, for the reason
mentioned in the previous section. However, we do not
expect a great difference in this contribution between
the a- and [-phase. The curve for the delocalized mean
field solution of §-nitrogen declines much steeper, with
increasing temperature, than the localized $-N, curve
and the a-N, curve. This is caused by the considerably
tower excitation energies for the delocalized states
which look like hindered rotor states rather than libra-
tional oscillators. It is characteristic that a free rotor
mode| produces almost the same free energy curve as
the delocalized model. However, the free energy at zero
temperature for the delocalized model is too high to
make Iits curve cross the a-N, curve at any reasonable
temperature. So this model fails to explain the a-f

phase transition.
For the localized -N, model the energy is substan-

tially lowered due to a more favorable packing of nea-

rest neighbours, But its free energy curve runs almost

parallel to the a-N, curve, because of the similar size

of the mean field excitation energies. So we still find
no crossing between the a- and S-curve.

Let us consider, however, the jump model of the pre-
vious section. Because of important energy effects,
the orientations of the molecules will not be completely

TABLE V

Optical | 3 ==

3) frequencies in f-nitrogen (in em—7)

T T - —1
calculated (libron) B experiment ) B
RPA RPA - ___ref.[52] Kiems and Dolling"
temperature (K) 0 55 55 55 55 55 36
molar volume (cm’.mol™')  28.26  28.26  26.87 25.90 25.05 23.59
frequencies 25t3  28+3 313 3613 25 1
| translational phonon
' 64 |
34.9 33.9 i
26.7 4Q.8
libron
65.7 55.8 5043 54+3 58+%3 68+3
73.3 58.8 __J

a
)as quoted in ref.[52)
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A (kJ.mol™') — - —
-5.8 |
6.0 | B-N, Y\ B-N,
| { detocalised )
~6.2 | B-N2

(localised )

-6.4 |
656 |

-6.8

-7.0 |

_72 .

~74 4 , R
0 0 20 30 406 50 60 80

T (K]

Fig. 4, — Free energy {at zero pressure) for a-nitrogen and
B-nitrogen, in different mean field models {closed lines). The
dashed free rotor curve has been calculated from the |sotrop|c
(24, 25, R3) = (0, O, 0) term of the ab initio potential (21) by
adding the free rotor expression for the free energy, as in ref,
(63). The dashed jump model curve has been abtained from
the localized mean field solution (with the full anisotropic
potential) by adding an entropy term —kgT In 6 (see text).

randomly distributed over the six possible localized
librational solutions. On the contrary, they will show
a strong short range correlation. The effect of this
correlation is to lower the energy of the crystal and
make it approxitmately equal to the energy of the loca-
lized maodel. The entropy of the crystal can be assu-
med to be the sum of two contributions. The first part
originates from the librations of the molecules around
their equilibrium orientations, and this is approxima-
tely the entropy of the localized model. The second
part is due to the distribution of the molecules over
the six positions. Although there is a strong short
range correlation, it is in the spirit of the present mean
field approach to set the corresponding entropy equal
to -kg T In 6. This yields the dashed curve in Figure 4
marked "B-N, jump’’. This curve crosses the free energy

curve of a-N, at T =34 K, in close agreement with the
experlmental a-3 phase transition temperature, T =
35.6 K. This model still needs a sound theoretical for-
malism for the dynamics of the jump process, however.

5. Conclusions

The results which we have obtained for solid nitrogen
demonstrate that the formalism which we have develop-
ed vyields a realistic description of the anharmonic
translational vibrations, the large amplitude librations,
which are much more strongly anharmonic, and the
translation-rotation coupling in molecular crystals.
Using an ab initio intermolecular potential, the results
for the ordered a and 7y phases are quantitatively very
accurate. For the plastic J phase we predict that the
experrmenta!ly observed orientational disorder is caused
by rapid 80° jumps of the molecules around the crystal

c-axis, between localized librational states. The two
nelghbourmg molecules in the hexagonal unit cell tend
to remain 180° out of phase, in order to obtain a consi-
derably lower packing energy of the crystal than for
the free precession model, which has afso been invoked
to explain the orientational disorder. Although we have
not yet developed a dynamical model for the correlated
jumps of the molecules, we find that the jump model
for the (-phase can yield a fairly accurate transition
temperature for the «-3 order-disorder phase transition.
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