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PHYSICAL REVIEW A VOLUME 58, NUMBER 6 DECEMBER 1998
Translational shape invariance and the inherent potential algebra

Asim Gangopadhyayk* Jeffry V. Mallow," and Uday P. Sukhatrié
!Department of Physics, Loyola University Chicago, Chicago, lllinois 60626
’Department of Physics, University of lllinois at Chicago (m/c 273), 845 West Taylor Street, Chicago, lllinois 60607-7059
(Received 8 May 1998

For all quantum-mechanical potentials that are known to be exactly solvable, there are two different, and
seemingly independent methods of solution. The first approach is the potential algebra of symmetry groups; the
second is supersymmetric quantum mechanics, applied to shape-invariant potentials, which comprise the set of
known exactly solvable potentials. Using the underlying algebraic structures of Natanzon potentials, of which
the translational shape-invariant potentials are a special subset, we demonstrate the equivalence of the two
methods of solution. In addition, we show that, while the algebra for the general Natanzon potenfi2/ds so
the subgroup 9@,1) suffices for the shape invariant subset. Finally, we show that the known set of exactly
solvable potentials in fact constitutes the full set of such potenfigs050-29478)09611-3

PACS numbeps): 03.65.Fd, 03.65.Sq, 02.20a

I. INTRODUCTION generalized Pschl-Teller. However, the formalism used in
Ref. [9] is not readily extendable to other shape-invariant
Natanzon potential§l] form a complete set of exactly potentials.

solvable potentials of nonrelativistic quantum mechanics for In this paper, we generalize our work of RE8]. How-
which the Schrdinger equation reduces to the hypergeometever, we have used a different approach here that is closely
ric equation. In Refs[2,3], Alhassid and co-workers have pased on the work of Alhassid, @&ey, and lachell§2]. The
studied the group structure of these quantum-mechanical syguthors of Ref[2] have shown that a Hamiltonian with a
tems, relat'ed their Hamiltonians to the Casimir op_erator Obeneral Natanzon potential has an(%8 symmetry. We
an underlying s€?,2) algebra, and determined all their quan- g,gy here the algebra of Natanzon potentials that are also

tum states by group-theoretical methods. shape invariant. We find that general Natanzon potentials
In supersymmetric quantum mechani@&JSY-QM [4] when subjected to a further constraint give the entire set of
one applies a different algebraic method. The exactly solv-

. ) . shape-invariant potentials. The shape-invariant potentials
able problems in SUSY'Q.M are desqlbed by_s_uperpotentlal%at reduce to the confluent hypergeometric equation can be
W(x,a) that obey a special integrability condition,

obtained as a limif10]. We also find that while the algebra
for the general Natanzon potential is(2@), a subgroup

dW(x,ap) dW(x,a;) sa(2,1) suffices for all the shape-invariant problems of the
2 —\W\2 _ T '
W2(X,a0) + dx WA (x,a1) ax R(ao). Natanzon type.
1 Thus, this paper connects all the shape-invariant poten-

tials of translational type g;=ay+const) to an algebraic

known as shape invariang®,6]. R(ay) is a constant and the Structure that has many interesting consequences. Some time
parametera, is a function ofag; i.e., a;=f(ay). For a ago it was discovered that spectra of potentials with transla-
shape-invariant system, the entire spectrum can be detelional shape invariance can be exactly determined by the
mined algebraically by a procedure similar to that of thesupersymmetric WKB method11], which usually only
one-dimensional harmonic oscillator, without ever referringgives approximate results. The reason for this exactness was
to the underlying differential equations. Although most of very puzzling. However, in light of this group-theoretical
the known shape-invariant potentidsIP) belong to the Na-  connection, this result may not be that difficult to understand,

tanzon class, there are a few exceptibn$|. as various authors have demonstrated the exactness of WKB
In a previous worK9], we have shown that problems for results on a group manifold.2].
which (1) there is a translational change of parameteys In Sec. Il, we will quickly review the formalism of

=f(ap)=ap+ const and(2) R(ay) is a linear function of SUSY-QM and shape invariance. In Sec. lll, we will briefly
ag, the shape-invariance condition of E(l) implies the describe our previous woilo] where we connected a subset
presence of an $8,1) dynamical algebra. Hence these prob- of SIP’s to s@¢2,1) potential algebra. In Sec. IV, we discuss
lems are solvable by either method. As shown in Réf,  the potential algebra of a general Natanzon potential. This
potentials of this type include Morse, Scarf |, Scarf Il, andsection will closely follow Ref[2]. In Sec. V, we identify
conditions under which the general Natanzon potential re-
duces to a shape-invariant potential. We then show that this

*Electronic address: agangop@Iuc.edu, asim@uic.edu condition has a finite number of solutions for shape-invariant
"Electronic address: jmallow@Iuc.edu potentials; however, they generate all the known shape-
*Electronic address: sukhatme@uic.edu invariant potentials of translational type.
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IIl. SUSY-QM AND SHAPE INVARIANCE g_)(x,al)~exp[—f§0W(x,al)dx]. [The ground-state energy

In this section, we very briefly describe supersymmetricof H . (x,a0) is R(ag), because the ground-state energy of
guantum mechanicgSUSY-QM), and also show how V_(x,a;) vanishes.Now using SUSY-QM algebra, the first
SUSY-QM with shape invariance allows one to completelyexcited state ofH _(x,a,) is given byA™ (x,a0) ¥4 (x,a,)
determine the spectrum of a quantum system. For a morend the corresponding eigenvalueR&a,). By iterating this
detailed description, see R¢#]. procedure, ther(+1)th excited state is given by

A quantum-mechanical system given by a potential
V_(x) can alternatively be described by its ground-state {7 (x,a5)~A"(ag)A"(a1) AT (an) ¥ (x,an),
wave functionng_). From the Schrdinger equation for the
ground-state wave function— g+ V(x) #o=0], it follows  and corresponding eigenvalues are given by
that the potential can be written &s (x) = (¢4/ ¢o), wWhere
the prime denotes differentiation with respectxo (It is
assumed that the potential is properly adjusted to make the ~ Eo '=0; and Eff):kzo R(ay) for n>0.
ground-state energif,=0.) In SUSY-QM, it is customary -
to express the system in terms of the superpotentigt)
= — (¥l o). The ground-state wave function is then given
by ¢o~exd—f §OW(x)dx]; X is an arbitrarily chosen refer-

n-1

[To avoid notational complexity, we have suppressedxthe
dependence of operatod§x,a,) andA*(x,a,).] Thus, for a
shape-invariant potential, one can obtain the entire spectrum

ence point. The Hamiltoniahl _ can now be written as of H_ by the algebraic methods of SUSY-QM.
Most of the known exactly solvable problems possess a
2 d2 dW(x) spectrum generating algeb{@GA) [2,3,13. We would like
H_=| - — +V_(x)|=| — — +W2(x) — d to find out if there is any connection between SGA and shape
dx dx X invariance of these systems. As we shall see later, the type of

d SGA that is most relevant to us is known as potential alge-
— +W(x)). 2) bra, studied extensively by Alhassid and co-worKex§]. In
dx potential algebra, the Hamiltonian of the system is written in
terms of the Casimir operatoiCg) of the algebra, and the
(We are using units with and 2n=1.) In analogy with the  energy of states specified by an eigenvaluef C, is fixed.
harmonic-oscillator raising and lowering operators, we havebifferent states with fixedo represent eigenstates of a set of
introduced two operatorgs=[(d/dx) + W(x)], and its Her-  Hamiltonians that differ only in values of parameters and
mitian conjugate A"=[— (d/dx) +W(x)]. Thus H_  share a common energy. For a system with g& 4ppoten-
=A'A. tial algebra, the different values of parameters are eigenval-
However, one can easily construct another Hermitian opues of operatod;, chosen to form a complete set of com-
eratorH, =AA" and show that the eigenstates l8f. are  muting observables. This is very similar to the case of shape-
isospectral with excited states |- . The HamiltoniarH,,  invariant potentials. In the next section, we will attempt to
with potentialV, (x) ={W?(x) + [dW(x)]/dx}, is called the  establish this connection in a more concrete fashion. In fact,
superpartner of the Hamiltonidd_ . To show the isospec- for a set of solvable quantum-mechanical systems we shall
trality mentioned above, let us denote the eigenfunctions ogxplicitly show that shape invariance leads to a potential
H. that correspond to eigenvaluds, , by ¢{~). Forn  algebra.

[~gx+weo)
—&-FW(X)

=12,...,
Il. SHAPE INVARIANCE AND CONNECTION
Ho (Al ) =AAT Ay ) =AATAY, ) TO ALGEBRA
=AH_(y{ ) =E, (A ). €)) Let us consider a generic shape-invariant potential

V_(x,ay) with a translational change of parametexg, ;
=an+ d=ag+(Mm+1)5, wheredis a constant. For the su-

_):
Hence, except for the ground state that obay =0, for perpotentialW(x,a,) =W(x,m), the shape-invariance con-

all other statesy!) of H_ there exists a states")

) ! -l dition is
<Ay, ' of H, with exactly the same energy, i.eg,
=E,;1, Wheren=0,1,2... . Conversely, one also has \W2(x m)+W’(x,m)=W3x,m+1)—W’(x,m+1)+R(m).
APy @

Thus, if the eigenvalues and the eigenfunctionsHaf
were known, one would automatically obtain the eigenvaluedt is natural to ask whether the change of parameters can be
and the eigenfunctions dfi, , which is in general a com- formally accomplished by the action of a ladder-type opera-
pletely different Hamiltonian. tor. With this in mind, we define an operatds= —i d/d¢

Now, let us consider the special case whérgx,ap) isa  =—id,, analogous to the component of the angular-
shape-invariant potential. For such systems, potentialmomentum operator. It acts upon functions in the space de-
V,(X,a0)=V_(x,a;)+R(ag). Their superpotential W  scribed by two coordinates and ¢, and its eigenvaluem
obeys the integrability condition of EqQ1). Since potentials will play the role of the parameter of the potential. We also
V,(x,a9) andV_(x,a,) differ only in an additive constant, define two more operatord,” and its Hermitian conjugate
their common ground-state wave function is given byJ* by
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Jr—etid i%—W(x,—iad)t%) _ ©) J1=(Xop3tX3P2), Jo=—(X1P3+X3P1),
. J3=(X1P2—X2P1),
The factorse™'¢ in J*= ensure that they indeed behave as (20
ladder operators for the quantum number (The factor K1=(X1Pat+Xap1),  Ka=(X2PstX4P2),
+3 merely “symmetrizes” thel*’s.) Operators]™~ are ba-
sically of the same form as th&™ operators of SUSY-QM, K3=(X3P4—X4P3)-

except that the parameter of the superpotentialV is re-

placed by operatorsJg= ). Explicit computation shows Operators; represent derivatives i(d/dx;). The algebraic

relations obeyed by these operators are given by

that

[J5,07]=+J%, (6) [J1,02]=—1d3, [J2.d3]=1J1, [J3,d1]=id5,
and hence operatord™ change the eigenvalues of tkg [K1,Ka]==1J3, [Kz,Kg]=idy, [Ks,Ki]=id2,
operator by unity, similar to the ladder operators of angular . . . (13)
momentum[so(3)]. Now let us determine the commutator ~ [91:K2]l=—1Kgs, [J2,K3]=iKy, [J5,Ki]=iK3,
[J7,377]:

[K1,J2]=—iK3, [K2,J3]=iKy, [K3,d1]=iK5;.
[J*,07]1=373 -3 70 ,
The above algebra can be decomposed in terms of two com-
92 muting sd2,1) algebras generated by
TR +WA(X,J3—3) — W' (X,J3—3)

A=1(J+K), Bi=}J—K). (12
2

J - i.BA B.1= i
_ ﬁ+W2(x,J3+%)+W’(x,J3+%) These operators commute; i.eA; ,B;]=0. Using Eqs.(9)
X

and(11), the differential realization can be written explicitly
as[2,3]

=-R(J3+3), (7 _
AT=A xiA,=3e" 010

where we have used the shape-invariance conditin
Thus, we see that shape invariance enables us to close the

algebra ofJ; andJ* to X

1% . .
+a+tanhX(—|a¢)+cothX(—|ag)},

[J5,0°]=*+J", [J", 07 ]=—R(J3+ 3). (8) [
Az=— E(%*’ dp),
Now, if the functionR(J5) is linear inJ3, the algebra of
Eq. (8) reduces to that of £8) or sd2,1) [9]. Several SIP’s
are of this type, among them are the Morse, Scarf I, Scarf Il,
and generalized ‘Beohl-Teller potentials. For these poten-
tials, R(J3+3)=2J; [4], and Eq.(8) reduces to an $8,1) X
algebra and hence establishes a connection between shape
invariance and potential algebra. With a slightly different i
formalism, Balantekin arrived at a similar conclusion for B3=—§(¢9¢—a9).
these SIP’J14]. However, there are many other important
systems like Coulomb, Eckart, etc. whééa,) is not linear
in ag, and these cases will be discussed later.

13
B*=B;*iB,=3e"(?" 9

J . .
+a+tanhX(—|0¢)+c0thx(+|ag)},

The s@2,1) algebra obeyed by these operators is

[Ag,A*]==A*, [At A ]=—2A,
IV. DIFFERENTIAL REALIZATION OF so (2,2

_— . and a similar one for th®&’s. The Casimir operato€, is
Before establishing a connection between a general Nagiven by

tanzon Hamiltonian and an €32) potential algebra, we will
discuss a realization of €8,2) algebra in terms of differen- C,=2(A2—A,A_—Ay)+2(B3-B,B_—B,)
tial operators on &,2)-hyperboloid. For consistency, we use
the formalism and the notations of Ref&,3].

A (2,2-hyperboloid is defined by =

> + (tanh y + coth )—& +sechy(—idy)?
an CO sec |
Y X X) 5 x(—idg

X1=p coshy cos¢, X,=p coshy sin ¢,

9) —cosecRy(—id,)?|. (14)

Xg=p sinh y cosf, x,=p sinhy sin 6,

where ¢ and 6 are rotation angles in thg;,x, and x3,x,  OperatorsAs, B;, andC, can be simultaneously diagonal-
planes, respectively0<¢,6<27]. Six generators of the ized, and their actions on their common eigenstates are given
algebra,J; andK; (i=1,...,3) can behosen as by
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Colw,my,my)=w(w+2)|w,m;,my), d . d — d F
o Fa" Tl E)
Azlw,m;,my)=m,|w,my,my), (15
5 5 ) L,
Bs|w,my,my) =my|w,my,my). d_H d__2_Fi 2k F
dy? dy> F dy F2 F)’

It is worth mentioning at this point that the Casimir operator

given above is indeed self-adjoint with respect to a measurg, .o dots represent derivatives with respectytoThe

sinh x coshydxdddo. Casimir operatoC, of Eq. (14) transforms as
V. NATANZON POTENTIALS 42 2E\ d
The Schidinger equation for any Natanzon potential can Co—Co= F+ tanh x + coth y — —= dy
be reduced by a point canonical transformatiangeneral X
similarity transformation followed by an appropriate change 2E2 E =
of independent variable[10,15,1 to the hypergeometric + ? = (tanh y + coth x) E

equation. A general potenti&él(r) of the Natanzon type is
implicitly defined by[1]

+secly(—id4)?—cosechy(—i a(,)zl .

“fdma T2z g

where R(z) =az®+bgz+cy=a(1—2)?—b,(1—2)+c, and
f,hg,h1,a,bg,bq,cq,cq are constants. The Schwarzian de-
rivative {z,r} is defined by

Now, let us carry out a change of variable frgpto r via

to r by a prime. Operatord/dy andd?/dy? transform as
_ d*zdr® 3
~ dzdr 2

{zr} dzdr

dr2 g dr

d?z/d rzr

dy g7 dr gy g2 |

(17) d 1d d2_1[d2 g’ d

The relationship between variableg0<<z<<1) andr is im-

plicitly given by The operatoC, now transforms into

(dz) _2z(1-2) 19 Ll —
dr VR(2) ' 62=— —+ —g———+g’(tanhg+cothg)
g/2 dr2 g/ F

To avoid a singularity ird (z(r)), one assumes th&(z) has d 2F'2 F" F'q" F'd
no singularity in the domai0,1). The Schrdinger equation X — + -5 9.9 (tanhg+ cothg)
is given by dr F2 F Fg' F

d? dz\? 1 ' R o

2t 5: | 1@+ 5tz | =0, +g'?(seclig(—id4)?—cosechg(—idy)?)|. (21)
where

In order for g’?C, to be a Schrdinger Hamiltonian, we

require the expression inside the curly brackets in(E#). to
(1-\3)(1-2)+(1-ND)z+(u?~1)z(1-2) . o 4 o

1(z)

47%(1—2)? functionsF andg to be
and gr/ 2F'
——,—?+g’(tanhg+cothg)=0, (22
(1-u?)=aE—f, (1-A2)=coE—hy, 9
(1—)\i)=C1E—hl. (19) which yields
To connect the Casimir operat@, of the s@2,2) algebra sinh(2g) vz
[Eqg. (14)] to the general Natanzon potential, we will first F~ T . (23

perform a similarity transformation o8, by a functionF
and then follow that up by an appropriate change of variable 5
x—9(r). Under the similarity transformation, Thus the operato€, transforms into

x=9(r). We are going to denote differentiation with respect

vanish. This constrains the relationship between the two
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(1—tantfg)?—4 tantg

- 1 |d (1—tantfg)?—4 tantfg
C = —_— 12 E_U r)= 12 + 3 yr
2 g2 |dr ( 4 tanfg (=9 4 tanffg 2101}
+9' Y secg(—id,)*—cosechg(—idy)?].
+3{g.r}+g’%(seckg(—ia,)?—cosechg(—id,)?)|.
(29 Now, for this potential to take the form of a general Natan-
This Casimi ¢ h f ¢ zon potential, we have to relate variablpsndz in such a
IS L-asimir operator how has a form o way that the potential in terms af is given by Eq.(16).
1 Since the potential has to be a ratio of two quadratic func-
62:——,2H, tions of z, this is accomplished with the identificatian
g =tanlifg, which leads to

whereH is a one-dimensional Hamiltonian with the potential
U(r) given by

ER+|— 1422 T2 a1 id4)°+(1 idg)?
tlmzt 32747 —Z(1-2)(—idy)*+(1=2)(—1dy)

U(z(r))= = - 3{zr}

={—[aE—7+(—id4)2]2(1-2)+[CoE—+(—1dy)?1(1—2)+[(a+by+Co) E-1]}/R(2) — 3{z,r}. (25

the potential of Eq(25) indeed has the form of a general

We have used
Natanzon potentidlEg. (16)].

dg_, 1 2z(1-2)

g’ =—z7'=
dz 2 \/2(1_ 2) R
VI. SHAPE-INVARIANT NATANZON POTENTIALS
Now, with the following identification: FROM POTENTIAL ALGEBRA

z

A

_ 7 H 2
f=aB=a+(=idy)% At this point we go back to the operatofs™ [Eq. (13)]
and see how they transform under the similarity transforma-
tion given byF ~{[ sinh(2y))/g'}*>~ \z/Z. This transforma-
h;=(a+by+cy)E—1, (26)  tion carries operator8™ to

ho=CoE— £+ (—idp)?,

TABLE I. All allowed values ofa, and the superpotentials that they generate. Condtariis= 1,2) are
linear combinations ofm; andm, of Eq. (15). Simple harmonic-oscillator, Morse, and Coulomb potentials
are not included in this list, as they can be considered to be limiting cases of potentials presenf&@]here

a B z(r) Superpotential Potential
0 0 z=e ' iy coth% +M, Eckart
1 T ~ . Gen. Pschl-Teller
0 5 7=sirf= mjcosecr +mycotr trigonometric
0 -1 z=1—-¢e"" ”rhlcoth% +, Eckart
r ~ ~ ..
—% 0 z=secﬁ§ m,cosechr +m,cothr Poschl-Teller 11
1 1 r . r_ r "
-3 -3 z=tanh’-§ Mytanhs +m,coth Gen. Pachl-Teller
r r
-1 0 z=1+tanh; ytanhs + iy, Rosen Morse
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) (27)

+tanh xy(—id,)+coth x(—id,)

If the expression(1/2z')(dz'/dy) — (1/2z)(dz/dy)] can
be written as a linear combination of tagtand cothy, op-

eratorsA™ can be cast in a form similar to the operatdfs

GANGOPADHYAYA, MALLOW, AND SUKHATME
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note that while the potential algebra of a general Natanzon
system is s,2), and requires two sets of raising and low-
ering operatorA* andB™, all known shape-invariant po-
tentials need only one such set. For all SIP’s of Table 4.1 of
Ref.[4], one finds that all partner potentials are connected by
a change of just one independent paramé&éhough other
parameters which do not change are also pres€hts there

is a series of potentials that only differ in one parameter.
From the potential algebra perspective, all these potentials
differ only by the eigenvalue of an operator that is a linear

of Eq. (5), and the connection with shape invariance is escombination ofA; and B3, and all are characterized by a

tablished.
Hence to get shape-invariant potentials we require
1dz’1dz_thjL h
EE Za =a lanny ,BCO X-

This leads ta’ =z'"#(1—2z) "% #, which is another restric-

tion on the relationship between variablesand r. Since
these variables are already constrained by @#§), only a

common eigenvalue of,. Thus, these shape-invariant po-
tentials can be associated with an(&@) potential algebra
generated by operatoss™, A~ and the same linear combi-
nation of A; andBs.

Note added in the prooRecently, we became aware of
work done by Cordero and Salarhb?7]. In these papers, the
authors show that the Natanzon potential has a spectrum-
generating algebra given by (&1). However, for shape-
invariant systems, the potential algea3] generated by

handful of solutions would be compatible with both restric- 0Perators with a first-order derivative is more relevant. The
tions. Thusz(r)’s that are compatible with both equations Casimir operator of the potential algebra is essentially the

are given by

22(1-2)

JR(2) '

M B(1—z) @ B= (28)

whereR(z) is a quadratic function of. After some compu-

same as the Hamiltonian of the shape-invariant model.
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