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Translational shape invariance and the inherent potential algebra

Asim Gangopadhyaya,1,* Jeffry V. Mallow,1,† and Uday P. Sukhatme2,‡

1Department of Physics, Loyola University Chicago, Chicago, Illinois 60626
2Department of Physics, University of Illinois at Chicago (m/c 273), 845 West Taylor Street, Chicago, Illinois 60607-7059

~Received 8 May 1998!

For all quantum-mechanical potentials that are known to be exactly solvable, there are two different, and
seemingly independent methods of solution. The first approach is the potential algebra of symmetry groups; the
second is supersymmetric quantum mechanics, applied to shape-invariant potentials, which comprise the set of
known exactly solvable potentials. Using the underlying algebraic structures of Natanzon potentials, of which
the translational shape-invariant potentials are a special subset, we demonstrate the equivalence of the two
methods of solution. In addition, we show that, while the algebra for the general Natanzon potential is so~2,2!,
the subgroup so~2,1! suffices for the shape invariant subset. Finally, we show that the known set of exactly
solvable potentials in fact constitutes the full set of such potentials.@S1050-2947~98!09611-5#

PACS number~s!: 03.65.Fd, 03.65.Sq, 02.20.2a

I. INTRODUCTION

Natanzon potentials@1# form a complete set of exactly
solvable potentials of nonrelativistic quantum mechanics for
which the Schro¨dinger equation reduces to the hypergeomet-
ric equation. In Refs.@2,3#, Alhassid and co-workers have
studied the group structure of these quantum-mechanical sys-
tems, related their Hamiltonians to the Casimir operator of
an underlying so~2,2! algebra, and determined all their quan-
tum states by group-theoretical methods.

In supersymmetric quantum mechanics~SUSY-QM! @4#
one applies a different algebraic method. The exactly solv-
able problems in SUSY-QM are described by superpotentials
W(x,a) that obey a special integrability condition,

W2~x,a0!1
dW~x,a0!

dx
5W2~x,a1!2

dW~x,a1!

dx
1R~a0!,

~1!

known as shape invariance@5,6#. R(a0) is a constant and the
parametera1 is a function of a0 ; i.e., a15 f (a0). For a
shape-invariant system, the entire spectrum can be deter-
mined algebraically by a procedure similar to that of the
one-dimensional harmonic oscillator, without ever referring
to the underlying differential equations. Although most of
the known shape-invariant potentials~SIP! belong to the Na-
tanzon class, there are a few exceptions@7,8#.

In a previous work@9#, we have shown that problems for
which ~1! there is a translational change of parametersa1
5 f (a0)5a01 const and~2! R(a0) is a linear function of
a0 , the shape-invariance condition of Eq.~1! implies the
presence of an so~2,1! dynamical algebra. Hence these prob-
lems are solvable by either method. As shown in Ref.@4#,
potentials of this type include Morse, Scarf I, Scarf II, and

generalized Po¨schl-Teller. However, the formalism used in
Ref. @9# is not readily extendable to other shape-invariant
potentials.

In this paper, we generalize our work of Ref.@9#. How-
ever, we have used a different approach here that is closely
based on the work of Alhassid, Gu¨rsey, and Iachello@2#. The
authors of Ref.@2# have shown that a Hamiltonian with a
general Natanzon potential has an so~2,2! symmetry. We
study here the algebra of Natanzon potentials that are also
shape invariant. We find that general Natanzon potentials
when subjected to a further constraint give the entire set of
shape-invariant potentials. The shape-invariant potentials
that reduce to the confluent hypergeometric equation can be
obtained as a limit@10#. We also find that while the algebra
for the general Natanzon potential is so~2,2!, a subgroup
so~2,1! suffices for all the shape-invariant problems of the
Natanzon type.

Thus, this paper connects all the shape-invariant poten-
tials of translational type (a15a01const) to an algebraic
structure that has many interesting consequences. Some time
ago it was discovered that spectra of potentials with transla-
tional shape invariance can be exactly determined by the
supersymmetric WKB method@11#, which usually only
gives approximate results. The reason for this exactness was
very puzzling. However, in light of this group-theoretical
connection, this result may not be that difficult to understand,
as various authors have demonstrated the exactness of WKB
results on a group manifold@12#.

In Sec. II, we will quickly review the formalism of
SUSY-QM and shape invariance. In Sec. III, we will briefly
describe our previous work@9# where we connected a subset
of SIP’s to so~2,1! potential algebra. In Sec. IV, we discuss
the potential algebra of a general Natanzon potential. This
section will closely follow Ref.@2#. In Sec. V, we identify
conditions under which the general Natanzon potential re-
duces to a shape-invariant potential. We then show that this
condition has a finite number of solutions for shape-invariant
potentials; however, they generate all the known shape-
invariant potentials of translational type.
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†Electronic address: jmallow@luc.edu
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II. SUSY-QM AND SHAPE INVARIANCE

In this section, we very briefly describe supersymmetric
quantum mechanics~SUSY-QM!, and also show how
SUSY-QM with shape invariance allows one to completely
determine the spectrum of a quantum system. For a more
detailed description, see Ref.@4#.

A quantum-mechanical system given by a potential
V2(x) can alternatively be described by its ground-state
wave functionc0

(2) . From the Schro¨dinger equation for the
ground-state wave function@2c091V(x)c050#, it follows
that the potential can be written asV2(x)5(c09/c0), where
the prime denotes differentiation with respect tox. ~It is
assumed that the potential is properly adjusted to make the
ground-state energyE050.! In SUSY-QM, it is customary
to express the system in terms of the superpotentialW(x)
52(c08/c0). The ground-state wave function is then given
by c0;exp@2*x0

x W(x)dx#; x0 is an arbitrarily chosen refer-

ence point. The HamiltonianH2 can now be written as

H25S 2
d2

dx2
1V2~x!D 5S 2

d2

dx2
1W2~x!2

dW~x!

dx D
5S 2

d

dx
1W~x! D S d

dx
1W~x! D . ~2!

~We are using units with\ and 2m51.) In analogy with the
harmonic-oscillator raising and lowering operators, we have
introduced two operators:A5@(d/dx) 1W(x)#, and its Her-
mitian conjugate A15@2 (d/dx) 1W(x)#. Thus H2

5A†A.
However, one can easily construct another Hermitian op-

erator H15AA† and show that the eigenstates ofH1 are
isospectral with excited states ofH2 . The HamiltonianH1 ,
with potentialV1(x)5$W2(x)1 @dW(x)#/dx%, is called the
superpartner of the HamiltonianH2 . To show the isospec-
trality mentioned above, let us denote the eigenfunctions of
H6 that correspond to eigenvaluesEn

6 , by cn
(6) . For n

51,2, . . . ,

H1~Acn
~2 !!5AA1~Acn

~2 !!5A~A1Acn
~2 !!

5AH2~cn
~2 !!5En

2~Acn
~2 !!. ~3!

Hence, except for the ground state that obeysAc0
(2)50, for

all other statescn
(2) of H2 there exists a statecn21

(1)

}Acn
(2) of H1 with exactly the same energy, i.e.,En

1

5En11
2 , where n50,1,2, . . . . Conversely, one also has

A1cn
(1)}cn11

(2) .
Thus, if the eigenvalues and the eigenfunctions ofH2

were known, one would automatically obtain the eigenvalues
and the eigenfunctions ofH1 , which is in general a com-
pletely different Hamiltonian.

Now, let us consider the special case whereV2(x,a0) is a
shape-invariant potential. For such systems, potentials
V1(x,a0)5V2(x,a1)1R(a0). Their superpotential W
obeys the integrability condition of Eq.~1!. Since potentials
V1(x,a0) andV2(x,a1) differ only in an additive constant,
their common ground-state wave function is given by

c0
(2)(x,a1);exp@2*x0

x W(x,a1)dx#. @The ground-state energy

of H1(x,a0) is R(a0), because the ground-state energy of
V2(x,a1) vanishes.# Now using SUSY-QM algebra, the first
excited state ofH2(x,a0) is given byA1(x,a0)c0

(2)(x,a1)
and the corresponding eigenvalue isR(a0). By iterating this
procedure, the (n11)th excited state is given by

cn11
~2 ! ~x,a0!;A1~a0!A1~a1!•••A1~an!c0

~2 !~x,an!,

and corresponding eigenvalues are given by

E0
~2 !50; and En

~2 !5 (
k50

n21

R~ak! for n.0.

@To avoid notational complexity, we have suppressed thex
dependence of operatorsA(x,a0) andA1(x,a0).# Thus, for a
shape-invariant potential, one can obtain the entire spectrum
of H2 by the algebraic methods of SUSY-QM.

Most of the known exactly solvable problems possess a
spectrum generating algebra~SGA! @2,3,13#. We would like
to find out if there is any connection between SGA and shape
invariance of these systems. As we shall see later, the type of
SGA that is most relevant to us is known as potential alge-
bra, studied extensively by Alhassid and co-workers@2,3#. In
potential algebra, the Hamiltonian of the system is written in
terms of the Casimir operator (C2) of the algebra, and the
energy of states specified by an eigenvaluev of C2 is fixed.
Different states with fixedv represent eigenstates of a set of
Hamiltonians that differ only in values of parameters and
share a common energy. For a system with an so~2,1! poten-
tial algebra, the different values of parameters are eigenval-
ues of operatorJ3 , chosen to form a complete set of com-
muting observables. This is very similar to the case of shape-
invariant potentials. In the next section, we will attempt to
establish this connection in a more concrete fashion. In fact,
for a set of solvable quantum-mechanical systems we shall
explicitly show that shape invariance leads to a potential
algebra.

III. SHAPE INVARIANCE AND CONNECTION
TO ALGEBRA

Let us consider a generic shape-invariant potential
V2(x,a0) with a translational change of parametersam11
5am1d5a01(m11)d, whered is a constant. For the su-
perpotentialW(x,am)[W(x,m), the shape-invariance con-
dition is

W2~x,m!1W8~x,m!5W2~x,m11!2W8~x,m11!1R~m!.
~4!

It is natural to ask whether the change of parameters can be
formally accomplished by the action of a ladder-type opera-
tor. With this in mind, we define an operatorJ352 i ]/]f
[2 i ]f , analogous to thez component of the angular-
momentum operator. It acts upon functions in the space de-
scribed by two coordinatesx and f, and its eigenvaluesm
will play the role of the parameter of the potential. We also
define two more operators,J2 and its Hermitian conjugate
J1 by
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J65e6 ifF6
]

]x
2W~x,2 i ]f6 1

2 !G . ~5!

The factorse6 if in J6 ensure that they indeed behave as
ladder operators for the quantum numberm. ~The factor
6 1

2 merely ‘‘symmetrizes’’ theJ6’s.! OperatorsJ6 are ba-
sically of the same form as theA6 operators of SUSY-QM,
except that the parameterm of the superpotentialW is re-
placed by operators (J36 1

2 ). Explicit computation shows
that

@J3 ,J6#56J6, ~6!

and hence operatorsJ6 change the eigenvalues of theJ3
operator by unity, similar to the ladder operators of angular
momentum@so~3!#. Now let us determine the commutator
@J1,J2#:

@J1,J2#5J1J22J2J1

5F2
]2

]x2
1W2~x,J32 1

2 !2W8~x,J32 1
2 !G

2F2
]2

]x2
1W2~x,J31 1

2 !1W8~x,J31 1
2 !G

52R~J31 1
2 !, ~7!

where we have used the shape-invariance condition~4!.
Thus, we see that shape invariance enables us to close the
algebra ofJ3 andJ6 to

@J3 ,J6#56J6, @J1,J2#52R~J31 1
2 !. ~8!

Now, if the functionR(J3) is linear inJ3 , the algebra of
Eq. ~8! reduces to that of so~3! or so~2,1! @9#. Several SIP’s
are of this type, among them are the Morse, Scarf I, Scarf II,
and generalized Po¨schl-Teller potentials. For these poten-
tials, R(J31 1

2 )52J3 @4#, and Eq.~8! reduces to an so~2,1!
algebra and hence establishes a connection between shape
invariance and potential algebra. With a slightly different
formalism, Balantekin arrived at a similar conclusion for
these SIP’s@14#. However, there are many other important
systems like Coulomb, Eckart, etc. whereR(a0) is not linear
in a0 , and these cases will be discussed later.

IV. DIFFERENTIAL REALIZATION OF so „2,2…

Before establishing a connection between a general Na-
tanzon Hamiltonian and an so~2,2! potential algebra, we will
discuss a realization of so~2,2! algebra in terms of differen-
tial operators on a~2,2!-hyperboloid. For consistency, we use
the formalism and the notations of Refs.@2,3#.

A ~2,2!-hyperboloid is defined by

x15r coshx cosf, x25r coshx sin f,
~9!

x35r sinh x cosu, x45r sinh x sin u,

where f and u are rotation angles in thex1 ,x2 and x3 ,x4
planes, respectively@0<f,u,2p#. Six generators of the
algebra,Ji andKi ( i 51, . . . ,3) can bechosen as

J15~x2p31x3p2!, J252~x1p31x3p1!,

J35~x1p22x2p1!,
~10!

K15~x1p41x4p1!, K25~x2p41x4p2!,

K35~x3p42x4p3!.

Operatorspi represent derivatives2 i (]/]xi). The algebraic
relations obeyed by these operators are given by

@J1 ,J2#52 iJ3 , @J2 ,J3#5 iJ1 , @J3 ,J1#5 iJ2 ,

@K1 ,K2#52 iJ3 , @K2 ,K3#5 iJ1 , @K3 ,K1#5 iJ2 ,
~11!

@J1 ,K2#52 iK 3 , @J2 ,K3#5 iK 1 , @J3 ,K1#5 iK 2 ,

@K1 ,J2#52 iK 3 , @K2 ,J3#5 iK 1 , @K3 ,J1#5 iK 2 .

The above algebra can be decomposed in terms of two com-
muting so~2,1! algebras generated by

Ai5
1
2 ~Ji1Ki !, Bi5

1
2 ~Ji2Ki !. ~12!

These operators commute; i.e.,@Ai ,Bj #50. Using Eqs.~9!
and~11!, the differential realization can be written explicitly
as @2,3#

A6[A16 iA25 1
2 e6 i ~f1u!

3F7
]

]x
1tanhx~2 i ]f!1coth x~2 i ]u!G ,
A352

i

2
~]f1]u!,

~13!
B6[B16 iB25 1

2 e6 i ~f2u!

3F7
]

]x
1tanhx~2 i ]f!1coth x~1 i ]u!G ,
B352

i

2
~]f2]u!.

The so~2,1! algebra obeyed by these operators is

@A3 ,A6#56A6, @A1,A2#522A3

and a similar one for theB’s. The Casimir operatorC2 is
given by

C252~A3
22A1A22A3!12~B3

22B1B22B3!

5F ]2

]x2
1~ tanhx1coth x!

]

]x
1sech2x~2 i ]f!2

2cosech2x~2 i ]u!2G . ~14!

OperatorsA3 , B3 , andC2 can be simultaneously diagonal-
ized, and their actions on their common eigenstates are given
by

PRA 58 4289TRANSLATIONAL SHAPE INVARIANCE AND THE . . .



C2uv,m1 ,m2&5v~v12!uv,m1 ,m2&,

A3uv,m1 ,m2&5m1uv,m1 ,m2&, ~15!

B3uv,m1 ,m2&5m2uv,m1 ,m2&.

It is worth mentioning at this point that the Casimir operator
given above is indeed self-adjoint with respect to a measure
sinhx coshxdxdfdu.

V. NATANZON POTENTIALS

The Schro¨dinger equation for any Natanzon potential can
be reduced by a point canonical transformation~a general
similarity transformation followed by an appropriate change
of independent variable! @10,15,16# to the hypergeometric
equation. A general potentialU(r ) of the Natanzon type is
implicitly defined by@1#

U@z~r !#5
2 f z~12z!1h0~12z!1h1z

R~z!
2 1

2 $z,r %, ~16!

where R(z)5az21b0z1c05a(12z)22b1(12z)1c1 and
f ,h0 ,h1 ,a,b0 ,b1 ,c0 ,c1 are constants. The Schwarzian de-
rivative $z,r % is defined by

$z,r %[
d3z/dr3

dz/dr
2

3

2 Fd2z/dr2

dz/dr G2

. ~17!

The relationship between variablesz (0,z,1) andr is im-
plicitly given by

S dz

dr D5
2z~12z!

AR~z!
. ~18!

To avoid a singularity inU„z(r )…, one assumes thatR(z) has
no singularity in the domain~0,1!. The Schro¨dinger equation
is given by

F d2

dr2 1H S dz

dr D
2

I ~z!1
1

2
$z,r %J G50,

where

I ~z!5
~12l0

2!~12z!1~12l1
2!z1~m221!z~12z!

4z2~12z!2

and

~12m2!5aE2 f , ~12l0
2!5c0E2h0 ,

~12l1
2!5c1E2h1 . ~19!

To connect the Casimir operatorC2 of the so~2,2! algebra
@Eq. ~14!# to the general Natanzon potential, we will first
perform a similarity transformation onC2 by a functionF
and then follow that up by an appropriate change of variable
x→g(r ). Under the similarity transformation,

d

dx
→F

d

dx
F215S d

dx
2

Ḟ

F
D ,

d2

dx2
→S d2

dx2
2

2Ḟ

F

d

dx
1

2Ḟ2

F2
2

F̈

F D ,

where dots represent derivatives with respect tox. The
Casimir operatorC2 of Eq. ~14! transforms as

C2→C̃25F d2

dx2
1S tanhx1coth x2

2Ḟ

F
D d

dx

1
2Ḟ2

F2
2

F̈

F
2~ tanhx1coth x!

Ḟ

F

1sech2x~2 i ]f!22cosech2x~2 i ]u!2G .

~20!

Now, let us carry out a change of variable fromx to r via
x5g(r ). We are going to denote differentiation with respect
to r by a prime. Operatorsd/dx andd2/dx2 transform as

d

dx
5

1

g8

d

dr
,

d2

dx2
5

1

g82 F d2

dr2
2

g9

g8

d

drG .

The operatorC̃2 now transforms into

C̃25
1

g82 F d2

dr2
1H 2

g9

g8
2

2F9

F
1g8~ tanhg1coth g!J

3
d

dr
1

2F82

F2
2

F9

F
1

F8 g9

F g8
2

F8 g8

F
~ tanhg1coth g!

1g82
„sech2g~2 i ]f!22cosech2g~2 i ]u!2

…G . ~21!

In order for g82C̃2 to be a Schro¨dinger Hamiltonian, we
require the expression inside the curly brackets in Eq.~21! to
vanish. This constrains the relationship between the two
functionsF andg to be

2
g9

g8
2

2F8

F
1g8~ tanhg1coth g!50, ~22!

which yields

F;S sinh~2g!

g8
D 1/2

. ~23!

Thus the operatorC̃2 transforms into
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C̃25
1

g82 F d2

dr2 1g82S ~12tanh2g!224 tanh2g

4 tanh2g
D

1 1
2 $g,r %1g82

„sech2g~2 i ]f!22cosech2g~2 i ]u!2
…G .

~24!

This Casimir operator now has a form of

C̃252
1

g82
H,

whereH is a one-dimensional Hamiltonian with the potential
U(r ) given by

E2U~r !5g82S ~12tanh2g!224 tanh2g

4 tanh2g
D 1 1

2 $g,r %

1g82@sech2g~2 i ]f!22cosech2g~2 i ]u!2#.

Now, for this potential to take the form of a general Natan-
zon potential, we have to relate variablesg andz in such a
way that the potential in terms ofz is given by Eq.~16!.
Since the potential has to be a ratio of two quadratic func-
tions of z, this is accomplished with the identificationz
5tanh2g, which leads to

U„z~r !…5

ER1F2
7

4
1

5

2
z2

7

4
z2G2z~12z!~2 i ]f!21~12z!~2 i ]u!2

R
2 1

2 $z,r %

5$2@aE2 7
4 1~2 i ]f!2#z~12z!1@c0E2 7

4 1~2 i ]u!2#~12z!1@~a1b01c0!E21#%/R~z!2 1
2 $z,r %. ~25!

We have used

g85
dg

dz
z85

1

2Az~12z!

2z~12z!

R
5Az

R
.

Now, with the following identification:

f 5aE2 7
4 1~2 i ]f!2,

h05c0E2 7
4 1~2 i ]u!2,

h15~a1b01c0!E21, ~26!

the potential of Eq.~25! indeed has the form of a general
Natanzon potential@Eq. ~16!#.

VI. SHAPE-INVARIANT NATANZON POTENTIALS
FROM POTENTIAL ALGEBRA

At this point we go back to the operatorsA6 @Eq. ~13!#
and see how they transform under the similarity transforma-
tion given byF;$@sinh(2g)#/g8%1/2;Az/z8. This transforma-
tion carries operatorsA6 to

TABLE I. All allowed values ofa,b and the superpotentials that they generate. Constantsm̃i ( i 51,2) are
linear combinations ofm1 andm2 of Eq. ~15!. Simple harmonic-oscillator, Morse, and Coulomb potentials
are not included in this list, as they can be considered to be limiting cases of potentials presented here@10#.

a b z(r ) Superpotential Potential

0 0 z5e2r
m̃1 coth

r

2
1m̃2

Eckart

0 2
1
2 z5sin2

r

2
m̃1cosecr 1m̃2cot r

Gen. Po¨schl-Teller
trigonometric

0 21 z512e2r
m̃1coth

r

2
1m̃2

Eckart

2
1
2 0 z5sech2

r

2
m̃1cosechr 1m̃2cothr Pöschl-Teller II

2
1
2 2

1
2 z5tanh2

r

2
m̃1tanh

r

2
1m̃2coth

r

2
Gen. Po¨schl-Teller

21 0 z511tanh
r

2
m̃1tanh

r

2
1m̃2

Rosen Morse
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A6→Ã65
e6 i ~f1u!

2 F7S d

dx
1

1

2z8

dz8

dx
2

1

2z

dz

dx D
1tanhx~2 i ]f!1coth x~2 i ]u!G . ~27!

If the expression@(1/2z8)(dz8/dx) 2 (1/2z)(dz/dx)# can
be written as a linear combination of tanhx and cothx, op-
eratorsÃ6 can be cast in a form similar to the operatorsJ6

of Eq. ~5!, and the connection with shape invariance is es-
tablished.

Hence to get shape-invariant potentials we require

S 1

2z8

dz8

dx
2

1

2z

dz

dx D 5a tanhx1b coth x.

This leads toz85z11b(12z)2a2b, which is another restric-
tion on the relationship between variablesz and r . Since
these variables are already constrained by Eq.~18!, only a
handful of solutions would be compatible with both restric-
tions. Thusz(r )’s that are compatible with both equations
are given by

z11b (̇12z)2a2b5
2z~12z!

AR~z!
, ~28!

whereR(z) is a quadratic function ofz. After some compu-
tation, we find that there are only a finite number of values of
a,b that satisfy Eq.~28!. These values are listed in Table I,
and they exhaust all known shape-invariant potentials that
lead to the hypergeometric equation. It is also interesting to

note that while the potential algebra of a general Natanzon
system is so~2,2!, and requires two sets of raising and low-
ering operatorsA6 and B6, all known shape-invariant po-
tentials need only one such set. For all SIP’s of Table 4.1 of
Ref. @4#, one finds that all partner potentials are connected by
a change of just one independent parameter~although other
parameters which do not change are also present!. Thus there
is a series of potentials that only differ in one parameter.
From the potential algebra perspective, all these potentials
differ only by the eigenvalue of an operator that is a linear
combination ofA3 and B3 , and all are characterized by a
common eigenvalue ofC2 . Thus, these shape-invariant po-
tentials can be associated with an so~2,1! potential algebra
generated by operatorsA1, A2 and the same linear combi-
nation ofA3 andB3 .

Note added in the proof.Recently, we became aware of
work done by Cordero and Salamo@17#. In these papers, the
authors show that the Natanzon potential has a spectrum-
generating algebra given by so~2,1!. However, for shape-
invariant systems, the potential algebra@2,3# generated by
operators with a first-order derivative is more relevant. The
Casimir operator of the potential algebra is essentially the
same as the Hamiltonian of the shape-invariant model.
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