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Abstract
Adrenomedullin (AM) is a vasodilative peptide with various physiological functions, including the maintenance of vascular
tone and endothelial barrier function. AM levels are markedly increased during severe inflammation, such as that associated
with sepsis; thus, AM is expected to be a useful clinical marker and therapeutic agent for inflammation. However, as the
increase in AM levels in cardiovascular diseases (CVDs) is relatively low compared to that in infectious diseases, the value
of AM as a marker of CVDs seems to be less important. Limitations pertaining to the administrative route and short half-life
of AM in the bloodstream (<30 min) restrict the therapeutic applications of AM for CVDs. In early human studies, various
applications of AM for CVDs were attempted, including for heart failure, myocardial infarction, pulmonary hypertension,
and peripheral artery disease; however, none achieved success. We have developed AM as a therapeutic agent for
inflammatory bowel disease in which the vasodilatory effect of AM is minimized. A clinical trial evaluating this AM
formulation for acute cerebral infarction is ongoing. We have also developed AM derivatives that exhibit a longer half-life
and less vasodilative activity. These AM derivatives can be administered by subcutaneous injection at long-term intervals.
Accordingly, these derivatives will reduce the inconvenience in use compared to that for native AM and expand the possible
applications of AM for treating CVDs. In this review, we present the latest translational status of AM and its derivatives.
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Introduction

Cardiovascular diseases (CVDs) are a major public health
problem worldwide. For instance, heart failure (HF) is a
therapy-resistant cause of death, with a relatively high
incidence of 1–2% in developed countries [1]. Surprisingly,
the lifetime risk of developing HF for individuals 55 years
of age is 33% for men and 28% for women [1]. The
pathogenesis of HF is quite complicated, and thus, versatile
approaches are needed for its treatment. Innovative agents,
such as angiotensin receptor neprilysin inhibitors (ANRIs)
and sodium-glucose cotransporter-2 inhibitors, have been
recently introduced for the treatment of HF; [2, 3] however,
an unmet need for HF remains.

Adrenomedullin (AM or ADM) is an endogenous
vasodilatory peptide that has many diverse effects and
functions, including organ protection, anti-inflammatory
effects, and tissue repair. AM and AM receptors are ubi-
quitously present in various tissues and are highly expressed
in blood vessels. Furthermore, constitutive expression of
AM and AM receptors has been confirmed in the heart,
kidneys, brain, lungs, and adrenal glands of humans and
various animals [4–6]. Due to its vasodilatory effect and
constant expression in the cardiovascular system, AM was
initially expected to be a candidate therapeutic agent for
CVDs, including HF. However, the potential exploitation of
AM to treat various CVDs has not been as thoroughly
explored as expected.

AM is ubiquitously expressed in many organs, which
should be an advantage for its use to treat many diseases in
various organs. However, this ubiquitous expression may be
a disadvantage, as it makes it difficult to focus on organ-
specific effects of AM. Furthermore, care will be needed in
using AM considering its potential systematic effects. In
contrast, great success has been achieved using natriuretic
peptides in treating HF. Specifically, brain natriuretic
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peptide (BNP) and the N-terminal fragment of pro-BNP
(NT-pro-BNP) have been used as clinical markers of HF,
while atrial natriuretic peptide (ANP) has been employed as
a therapeutic agent for treating acute HF. Both ANP and
BNP levels are markedly increased in patients with HF,
indicating that they are critically involved in the patho-
genesis of HF. Generally, native peptides achieve their
maximum potential mostly under the required conditions.
Unfortunately, the increase in AM levels in CVDs is lim-
ited. As a result, AM may not be capable of preventing or
controlling CVD progression. In contrast, levels of AM are
drastically increased during severe infections, such as sepsis
and severe pneumonia [7–19]. Therefore, the development
of AM as a clinical marker and therapeutic agent in severe
infections, including coronavirus disease 2019 (COVID-
19), is highly expected. However, the nature of the AM
peptide restricts its application for CVDs, as the method of
administration requires continuous intravenous injection. To
overcome this limitation, we have developed long-acting
AM derivatives for use in treating various diseases,
including CVDs. In this review, we highlight early studies
on AM regarding CVDs, describe the issues and challenges
related to AM, present information on a current clinical trial
of AM, and discuss the future prospects of AM.

Biosynthesis of AM and its receptors

AM is composed of 52 amino acids, has a ring structure
containing a disulfide bond between Cys16 and Cys21 and
is amidated at the C-terminal Tyr52 [20]. Both disulfide
bonds and amidation are crucial for bioactivity and are
highly conserved in calcitonin (CT) and the two forms of
calcitonin gene-related peptide (CGRP), amylin and
adrenomedullin2/intermedin [21, 22]. Therefore, AM is
considered a member of the CT/CGRP superfamily
[21, 22]. The AM gene, which consists of four exons, is
located on chromosome 11 [23]. AM is synthesized as a
large preprohormone and processed to proadrenomedullin
(proAM), including amino acid residues 22–185, which is
then fragmented into four segments, namely, proAM
N-terminal 20 peptide (PAMP)-Gly, mid-regional pro-
adrenomedullin (MR-proADM, 45–92), AM-Gly, and
C-terminal proAM (adrenotensin) [20]. Both PAMP and
AM are initially processed as intermediate forms (C-
terminally glycine-extended forms), which are biologically
inactive. The C-terminal glycine of these peptides is sub-
sequently amidated by an amidation enzyme, and the
peptides are then converted to their mature bioactive
forms; however, only a portion of the peptides are con-
verted [24]. MR-proADM is a nonbioactive fragment that
is stable in the bloodstream and is therefore useful as a
biomarker of AM synthesis [25].

The receptors for the CT/CGRP family consist of two
different types of molecules, G protein-coupled receptors
(GPCRs) and chaperone molecules called receptor activity-
modifying proteins (RAMPs). For the CT/CGRP family,
there are two forms of GPCRs, calcitonin receptor (CTR)
and calcitonin receptor-like receptor (CRLR), and three
forms of RAMPs (1, 2, and 3). CTR functions indepen-
dently as a CT receptor, but the other receptors require the
assistance of the RAMPs. For instance, CTR+RAMPs
serve as the amylin receptor, CRLR+RAMP1 serves as the
CGRP receptor, CRLR+ RAMP2 serves as the AM1
receptor, and CRLR+ RAMP3 serves as the AM2 receptor
[26]. AM has equal affinity for both AM1 and AM2
receptors. AM and AM2/intermedin exhibit a similar high
affinity for AM2 receptor [26]. Models have shown that the
knockout (KO) of AM is lethal at mid-gestation due to
serious vascular abnormalities and causes extreme hydrops
[27, 28]. CRLR KO in mice is also lethal, but interestingly,
CGRP KO mice appear to be normal, and only the KO of
RAMP2 causes lethal abnormalities, such as those observed
upon the KO of AM [29, 30]. These findings suggest that
AM and AM1 receptors are crucial for angiogenesis and
vascular homeostasis, while the AM2 receptor has been
shown to be important for lymph vessel function [31].

Cardiovascular effects of AM

AM is present in both the endothelium and vascular smooth
muscle cells. The most important functions of AM in the
vasculature are vasodilation and the maintenance of vas-
cular integrity. AM is thought to maintain vascular tone
through direct action on vascular smooth muscle cells and
the formation of nitric oxide [32]. The vasodilative ability
of AM is as strong as that of ANP [33]. The administration
of AM decreases blood pressure in vessels but increases
blood flow [34]. This vasodilative effect of AM may be
beneficial for congestive HF and pulmonary hypertension
[35, 36]. In contrast, this vasodilation also causes unwanted
decreases in blood pressure during the application of AM
because of its pleotropic effects on other targets, such as in
inflammatory bowel disease (IBD) [37].

AM plays an important role in maintaining vascular
integrity. AM KO and RAMP2 KO mice experience lethal
edema due to vascular abnormalities [27, 28, 30]. Further-
more, endothelial cell-specific RAMP2 KO (E-RAMP2−/−)
mice die during the perinatal period due to edema, wherein
the malformation of endothelial cells and the detachment of
endothelial cells from the basement membrane are observed.
Only 5% of E-RAMP2-/- mice survive until adulthood, and
they show the same vascular abnormalities and marked
accumulation of inflammatory cells along the blood vessels
of major organs [38]. AM is an endogenous key factor that
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maintains vascular endothelial barrier function and decreases
vascular permeability during severe inflammation [39]. For
example, AM decreases lung permeability and suppresses
lung injury in lipopolysaccharide (LPS)-induced pneumonia
in mice [40]. AM may counteract acute HF-induced over-
load of tissue fluid by stabilizing endothelial barrier func-
tion. Indeed, AM levels increase in acute HF, proportional to
the severity of pulmonary congestion [41].

Pleotropic effects of AM have been reported in cardio-
vascular and renal systems [36, 42–67] and are shown in
Table 1. Generally, AM counteracts the renin-angiotensin-
aldosterone system and oxidative stress [68, 69] and sup-
presses excessive tissue proliferation. Consequently, AM
decreases tissue injuries in organs caused by various
pathogenic stimuli.

Plasma levels of AM

Several systems for measuring the plasma concentration of
AM and related peptides have been reported. The inter-
mediate inactive form and mature active form of AM have
been confirmed to be present in the bloodstream, with levels
of the intermediate form being almost ten times higher than
those of the mature form [24]. In early studies, total AM
(intermediate+mature forms) levels in various disease

states were found to be two- to three-times higher than the
basal levels in a healthy state [70]. However, even plasma
levels of total AM were markedly increased during systemic
inflammatory response syndrome, including that caused by
sepsis [71]. A specific system for measuring the levels of
mature AM was subsequently established by Ohta et al.
[72], followed by the development of a similar system by
Weber and colleagues [73] for measuring the levels of
mature AM, which they called bioactive ADM or “bio-
ADM.” The plasma levels of AM in healthy individuals
were reported to be 7.08 ± 3.9 pg/mL using the system of
Ohta et al. and 15.6 ± 9.2 pg/mL using the system of Weber
et al. [72, 73]. Our group used an automated enzyme
immune assay analyzer (AIA-1800, Toso, Tokyo, Japan). In
our phase 1 trial employing this system, using the same
antibodies as those used by Ohta et al., we determined the
plasma levels of AM in healthy males to be 7.2 ± 1.4 pg/mL
[74]. As mature AM is bioactive, these measured levels
should reflect the dynamic state of AM in various diseases.
Recently reported plasma levels of bioactive ADM are
shown in Fig. 1, which includes our data from recent clin-
ical trials [37, 74–79]. These studies employed a one-step
luminescence sandwich immunoassay (SphingoTec GmbH,
Hennigsdorf, Germany) [73], and the median plasma levels
in healthy individuals were reported to be 20.7 pg/mL
(43 pg/mL, upper range of the 99th percentile) [15]. The
increase in AM levels in the absence of major injury and/or
overload to the endothelium, such as that seen during sub-
arachnoid hemorrhage, is limited [75]. However, significant
increases in AM levels are observed in conjunction with
major injury and/or overload to the endothelium, such as
during acute HF or shock, with the level of AM increasing
according to the severity of disease [41, 76, 77]. Impor-
tantly, the addition of inflammation markedly enhances the
level of AM, similar to that associated with sepsis [19, 78].
The highest concentrations (Cmax) of AM observed during
our clinical trials are shown in the lower part of Fig. 1. As
our assay system showed lower AM values than the bio-
ADM values reported by Weber et al., the dosage of AM
chosen for use in our trials covered the ranges of bioactive
ADM in various diseases, including sepsis and COVID-19
(Fig. 1).

Based on findings from early research, MR-pro ADM is
a stable, nonbioactive fragment that is easy to assess in
blood samples and is expected to serve as a biomarker of
AM synthesis [25]. Many reports have been published
regarding MR-pro ADM during various infectious diseases,
especially sepsis [7–14, 17]. Meta-analysis showed that
MR-pro ADM has high sensitivity and specificity as a
prognostic marker of sepsis, at 0.83 (95% CI: 0.79–0.87)
and 0.90 (95% CI: 0.83–0.94), respectively [79]. The rela-
tively high sensitivity and specificity of MR-pro ADM
levels as a prognostic indicator was confirmed even for

Table 1 Various effects of adrenomedullin

Ogan Effects References

Blood vessels Vasodilation [42]

Inhibition of exessive proliferation
of SMCs

[43, 44]

Inhibition of apoptosis [45, 46]

Angiogenesis [47, 48]

Reduction of endothelin production [49, 50]

Heart Increase of coronary flow [51]

Stimulation of ANP production [52, 53]

Inhibition of cardiac hypertrophy [54, 55]

Reduction of myocardial fiblosis [55, 56]

Lung Pulmonary artery dilatation [36]

Antifibrotic effect [57, 58]

Adrenal gland Reduction of aldosterone production [59, 60]

Kidney Diuretic and natriuretic effects [61, 62]

Inhibition of exessive proliferation of
mesangial cells

[63]

CNS Increase of cerebral blood flow [64, 65]

Inhibition of water-drinking [66]

Inhibition of salt intake [67]

RAA system Counteraction against the RAA system [144]

SMCs smooth muscle cells, ANP atrial natriuretic peptide, CNS central
nervous system, RAA renin-angiotensin-aldosterone
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community-acquired pneumonia, with values of 0.74 (95%
CI: 0.67–0.79) and 0.73 (95% CI: 0.70–0.77), respectively
[80]. In addition, MR-pro ADM seems to be a useful
prognostic marker for COVID-19 [81–91]. Both BNP and
NT-pro-BNP have been established as markers for HF.
Interestingly, MR-pro ADM has been reported to demon-
strate superior prognostic significance compared to that of
natriuretic peptides or related pro-segments in several stu-
dies [92–94]. However, other studies failed to detect this
superiority of MR-pro ADM [95–97]. Based on all the
existing data, MR-pro ADM appears to remain a subsidiary
marker of HF. An intermediate prognostic value of MR-pro
ADM in myocardial infarction has also been reported
[98–100]. Likewise, interesting observations have been
reported for MR-pro ADM regarding catheter ablation,
infectious endocarditis, and transcatheter aortic valve
replacement [101–104]. Wallentin et al. performed a com-
parative analysis of the importance of biomarkers in chronic
coronary heart disease and reported that NT-pro-BNP, tro-
ponin-T, and BNP demonstrate high importance, while
AM remains less important [105]. Current guidelines

recommend only BNP and/or NT-pro-BNP as markers for
HF management [106]. AM is an inhibitor of tissue con-
gestion; thus, AM and MR-pro ADM are attractive and
superior biomarkers for tissue congestion, such as edema
and pulmonary congestion [41, 76]. However, BNP and/or
NT-pro-BNP are more important biomarkers for diagnosis
and prognosis estimation for HF; [97] therefore, AM
remains an ancillary marker under the present circumstances.

Interventional studies on AM for humans

Figure 2 summarizes the doses of AM used for studies in
humans [33–36, 52, 60, 74, 107–111]. Initially, relatively
large doses of AM were administered to humans in an effort
to alter hemodynamic states and humoral factors. The
highest reported dose was 50 ng/kg/min, at which obvious
decreases in blood pressure and increases in heart rate
occurred, even after short-term administration [35]. An
increase in the cardiac index was also observed, probably
due to a decrease in systemic vascular resistance [35]. AM

Fig. 1 Plasma concentrations of bioactive adrenomedullin (ADM) in
various diseases and the maximum concentration (Cmax) used in our
current trials. The assay systems used in the studies referred to in the
upper and lower parts of the figure used different antibodies. As a
result, AM concentrations in studies shown in the lower section of the
figure are lower than those shown in the upper section. Plasma

concentrations in the SAH study and clinical trials are shown as the
mean ± SD. All others are shown as the median with the interquartile
range. ARDS, acute respiratory distress syndrome; COVID-19, cor-
onavirus disease 2019; AHF, acute heart failure; ACS, acute coronary
syndrome; CHF, congestive heart failure; SAH, subarachnoid hemor-
rhage; H & H, Hunt and Hess grading scale; UC, ulcerative colitis

Fig. 2 Doses of adrenomedullin
(AM) used in early studies and
recent clinical trials. PA,
primary aldosteronism; HT,
hypertension; DM, diabetes
mellitus; AMI, acute myocardial
infarction; CRF, chronic renal
failure; EHT, essential
hypertension; CHF, congestive
heart failure; PH, pulmonary
hypertension; UC, ulcerative
colitis; CD, Crohn’s disease; CI,
cerebral infarction; COVID-19,
coronavirus disease 2019
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also decreases pulmonary arterial pressure in patients with
pulmonary hypertension and lowers systemic blood pres-
sure [36]. AM has also been reported to have diuretic and
natriuretic effects in humans [35, 62], but other studies
failed to confirm these effects [109]. Therefore, the diuretic
and natriuretic effects of AM seem to be limited in humans.
AM also induces humoral alterations. For instance, when
relatively high doses of AM are used for short-term
administration, AM increases plasma renin activity (PRA)
and noradrenaline levels but does not change the plasma
aldosterone concentration (PAC) [34, 62, 108, 109]. The
increases in PRA and noradrenaline levels seem to be
responses secondary to the hypotension caused by the
vasodilative action of AM. On the other hand, the use of a
lower dose of AM for long-term administration causes an
obvious decrease in the PAC, while the impact on PRA and
noradrenaline is quite limited [60]. Direct suppression of
aldosterone release from the adrenal glands and
aldosterone-producing adenomas by AM has also been
reported [112, 113], indicating that this direct effect is
independent of the PRA increase caused by AM.

The indicated doses in Fig. 2 may have some measure-
ment errors due to incompleteness and heterogeneity in the
preparation and weighing methods. In contrast, our clinical
trial used AM prepared according to good manufacturing
practice (GMP), and thus, the doses were exactly measured
[37, 74]. For example, we observed clear decreases in blood
pressure and the PAC with the infusion of AM at a dose of
15 ng/kg/min in a previous study [60], but blood pressure
and the PAC were stable in phase 1 trials even though we
used the same amount of AM [74]. Previously, based on our
experience, we used a 1.4-fold dose of a bulk AM powder
to compensate for internal water contamination in the bulk
powder; therefore, the actual dose of the AM formulation
might have been higher than the attributed 15 ng/kg/min.

Translational studies on AM for CVDs

We developed an AM formulation for the treatment of IBD
[114]. The minimization of the hemodynamic and humoral
effects of AM is essential to prevent adverse events in
patients with IBD. We confirmed that AM at a dose of
15 ng/kg/min is safe and tolerable for both healthy indivi-
duals and patients with IBD. This dose was also effective in
patients with steroid-resistant ulcerative colitis [37]. We are
currently conducting an investigator-initiated clinical trial
using this maximum dose of AM to treat patients with
moderate to severe pneumonia caused by COVID-19
(jRCT2071200041, jRCT2071210038). We expect that
this dose of AM will be effective, even in patients with
severe pneumonia, as indicated in Fig. 1. Furthermore, this
dose, based on human equivalent dose conversion, is similar

to that of an effective AM dose used in the treatment of
LPS-induced pneumonia in mice [40].

Heart failure

Because AM is a vasodilative peptide, the administration
route is limited to continuous venous infusion. Additionally,
the half-life of AM in the bloodstream is very short (less
than 30 min) [74], suggesting that AM treatment adminis-
tration may be limited to the acute phase of the disease.
While the hemodynamic and humoral effects of AM seem
to be attractive for the treatment of CVDs, the regulation of
these effects is difficult in general clinical practice. There-
fore, we explored the upper limit of safe and effective doses
of AM. We determined that AM at a dose of 15 ng/kg/min
causes very limited hemodynamic influences, but the Cmax

of this dose overcomes the plasma concentration of AM in
HF (Fig. 1). These findings suggest that 15 ng/kg/min AM
is probably effective for HF, where it may reduce pul-
monary edema by stabilizing endothelial barrier function
without having notable hemodynamic or humoral effects.
The combination therapy of AM and human ANP (hANP)
for decompensated HF was also reported in a pilot study
[115]. This approach is interesting, but hANP alone seems
to be sufficient for the treatment of ordinary HF. Notably,
the combination of AM and hANP may be useful for
treating patients with worsening HF due to pneumonia.
Because AM countervails severe inflammation and related
organ damage through various mechanisms [116], it may
contribute to the amelioration of the complicated state of HF
with inflammation.

Myocardial infarction

The application of AM for treating patients with acute
myocardial infarction has been attempted previously [33],
but the development of this application has since stagnated.

Pulmonary hypertension

Venous infusion of AM can dilate pulmonary arteries and
decrease pulmonary arterial pressure; however, it also
decreases systemic blood pressure [36]. In addition to the
difficulty in its handling, AM fails to exceed the perfor-
mance of existing drugs available for treating pulmonary
hypertension, making its current status for this use
unsatisfactory.

Imaging of pulmonary circulation

AM receptors are abundantly expressed in the lungs,
especially in the endothelium of alveolar capillaries
[117, 118], and the lung functions as a primary site for AM
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clearance [119, 120]. Additionally, the expression of AM
receptors is altered under pathological conditions, such as
pulmonary hypertension [121]. An interesting approach for
imaging the human pulmonary vascular endothelium is by
using AM receptor ligands, such as 125I-rAM (1-50) and
99mTc-PulmoBind, for PET and SPECT imaging [122–124].
Compared to existing radiopharmaceuticals for pulmonary
vascular imaging, namely, 99mTc-albumin macroaggregates,
small molecules of AM receptor ligands can be used to
visualize pulmonary microcirculation. In addition, AM
receptor ligands can be used to detect alterations in the
biology of the pulmonary circulation, which are reflected in
changes in AM receptor expression [124]. This approach
seems to be a promising alternative for the assessment of the
pulmonary circulation.

Cerebral infarction

An investigator-initiated clinical trial using AM to treat
patients with cerebral infarction was conducted at the
National Cerebral and Cardiovascular Center Hospital,
Suita, Japan [111]. This trial used our AM formulation at a
dose of 9 ng/kg/min along with a 72-h continuous infusion
of AM in a second cohort [111]. As AM levels increase
during ischemic stroke, AM may be beneficial for tissue
protection and for promoting angiogenesis after stroke.
Increased AM levels are also associated with later neuro-
logical severity and the long-term outcomes of patients who
have suffered an ischemic stroke [125, 126]. In a focal
ischemic model, the infarct size increased in mice with
brain-specific conditional KO of AM [127]. In addition,
brain protective effects of AM have been reported, such as
decreased apoptosis and the promotion of nerve regenera-
tion and angiogenesis against ischemic injury and hypoxic
stress [128–132]. This trial aimed to evaluate the efficacy
and safety of AM and tissue plasminogen activator (tPA)
combination therapy in acute ischemic stroke. The recana-
lization of the major cerebral arteries can be achieved by
tPA treatment. At the same time, AM may contribute to
ameliorating acute brain ischemic damage and facilitating
cerebrovascular regeneration. Additionally, AM can pre-
serve cognitive decline after chronic cerebral hypoperfusion
[130].

Reinforcement of endogenous AM

Plasma concentrations of AM increase in various diseases,
but the increase is not necessarily sufficient to relieve the
diseases. Conversely, it should be beneficial to increase
endogenous AM concentrations to enhance the benefit of
AM in regard to disease improvement. The endopeptidase
neprilysin inhibits the degradation of natriuretic peptides

and other peptides, such as bradykinin, substance P, and
AM, and contributes to HF improvement [133]. The pre-
servation of natriuretic peptides is thought to be the main
effect of ANRIs, but AM may also significantly contribute
to HF improvement. Indeed, the proportional increase in
levels of bioactive ADM markedly exceeds the increase in
BNP levels in HF patients who receive treatment that
includes an ANRI [134]. This approach may also be useful
for treating other diseases, especially those that exhibit
increased plasma levels of AM.

Adrecizumab is a nonneutralizing humanized high-
affinity antibody directed against the N-terminus of AM.
Adrecizumab binds to AM, forming a large molecule; this
modification protects the bound AM from proteolytic
enzymes and results in a longer half-life of AM in the
bloodstream. The N-terminus of AM is unrelated to its
bioactivity. Therefore, adrecizumab can enhance the bene-
ficial effects of endogenous AM in patients with high
plasma levels of AM. The effectiveness of adrecizumab was
confirmed in a rodent model of sepsis [135], and a phase 1
trial was successfully conducted [136]. More recently, a
phase 2 trial for patients with sepsis has been ongoing
[137]. Adrecizumab may also be used for the treatment of
patients with HF, especially those with higher levels of
plasma AM.

AM modifications to extend its half-life in
the bloodstream

To overcome some of the limitations of AM, we have
developed derivatives that exhibit a long half-life and less
vasodilative activity than native AM. As noted above, the
N-terminus of AM is unrelated to its bioactivity. Therefore,
various structures can be attached at this region of AM with
limited influence on its activity. The leading derivative is a
5 kDa polyethylene glycol-modified (PEGylated) AM,
which has a longer half-life and less hypotensive effect than
nonmodified AM [138]. However, because the practical use
of this derivative was reported to be unfeasible, a PEGy-
lated AM derivative with a larger molecular weight of
60 kDa was created [139]. This derivative maintains an
effective concentration for ~2 weeks and has less of a
hemodynamic effect, allowing it to be administered by
subcutaneous injection [139]. Other derivatives have also
been developed, such as an IgG Fc region fused-AM and
human albumin-modified AM [140, 141]. The 60 kDa
PEGylated AM has shown therapeutic usefulness in a
rodent model of colitis, similar to that of native AM [139].
Additionally, 60 kDa PEGylated AM was effective in a rat
model of vascular dementia [142]. Long-lasting and sub-
cutaneously injectable formulations of AM will be applied
as chronic therapy, such as maintenance therapy for treating
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patients with IBD. A clinical trial on patients with IBD is
currently planned using this 60 kDa PEGylated formulation
of AM. In addition, this formulation may be applied to treat
chronic HF or cerebrovascular diseases. Moreover, AM is
expected to be a therapeutic agent for neurodegenerative
diseases [143]. Finally, PEGylated AM can also be applied
for treating pulmonary hypertension and may delay the
progression of pulmonary fibrosis [58].

Conclusion

AM is an important biologically active peptide that helps
maintain vascular tone and endothelial barrier function.
Initially, the attention of researchers was centered on the
vasodilative action of AM, but the regulation of this action
in clinical settings was difficult. Thereafter, for IBD ther-
apy, we developed an AM formulation that functions within
the range of minimal vasodilative activity to reduce the
adverse effects related to the vasodilation characteristics of
native AM. Translational studies on AM are currently
focused on its pleotropic effects and not only on its vaso-
dilative effects. Under these circumstances, the applications
of native AM for treating CVDs, as well as other conditions
such as cerebral infarction, are limited. However, AM
derivatives that exhibit longer half-lives, such as PEGylated
AM, are promising for the general overall area of CVDs.
The current attempts and possible application of AM and its
derivatives in treating CVDs are summarized in Fig. 3.
Unfortunately, the current applications of AM are limited;
however, the future potential, especially for AM derivatives,
seems to be promising.
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