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Abstract. Using group theory and irreducible tensor formalism we derive formulas

for translational transformations of the tensor solutions of the Helmholtz equation. These

formulas can be used to solve different problems in theoretical and mathematical physics,

where it is necessary to relate boundary conditions for two or more spatial bodies. We

show that these formulas can be used to perform invariant expansions of the interaction

energy of the bodies in force fields of different physical nature. These expansions have

a number of advantages and are very efficient and convenient to study force interac-

tions. Examples from celestial mechanics, space vehicle dynamics and electric current

interactions are given.

1. Introduction. A number of problems in theoretical and mathematical physics

require expressing a solution of the Helmholtz or Laplace equations in one coordinate

system using the solutions of the same equation in another coordinate system, translated

with respect to the first one. This problem arises when one needs to relate boundary

conditions for two or more bodies in the problems of electrodynamics, acoustics, geody-

namics, heat conduction, in quantum mechanical problems, in multipole expansions of

the interaction energy for gravitating bodies, charge or current distributions, spacecraft

motion, etc. For these types of problems it is necessary to know the translation operator

transforming the solution from one coordinate system into another.

The transformational formulas (addition theorems) for scalar solutions of the

Helmholtz equation (scalar wave functions) under translations were first obtained by
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Friedman and Russek [1]; these results were extended by Stein [2] and Cruzan [3] on

vectors and by Danos and Maximon [4] on tensor solutions. Jones [5] derived addition

theorems for tensor solutions from the group theory point of view in the context of geo-

dynamics. These derivations were based on rather tedious mathematical manipulations.

Later Borghese et al. [6], Felderhof and Jones [7] presented a more compact and elegant

derivation of the addition theorem for vector solutions using irreducible tensor formalism

[8]. Weniger [9,10] also used irreducible tensors and spherical gradient operators; Urman

[11] used irreducible tensor formalism to derive addition theorems for the general case of

tensor solutions. Then a number of alternative derivations of vector addition theorems

have been presented with discussion of effective calculation of the translation coefficients.

Wittmann [12] derived addition theorems for scalar and vector waves using a different

approach based on differential operator representations of the wave functions. Chew [13]

presented an alternative derivation of the vector addition theorem using the completeness

of vector wave functions and integration by parts. Mackowsky [14], Chew and Wang [15],

and Kim [16], [17] rederived vector addition theorems and presented simple recurrence

relations for the addition coefficients. Kim also discussed the symmetry relationships

for the translation coefficients [18]. Rokhlin [19] constructed the diagonal forms of the

translation operators for the scalar Helmholtz equation, which simplifies the structure of

translational operators and admits stable numerical implementation. This form is impor-

tant in the design of fast algorithms for computational physics methods. This theory was

improved by Epton and Dembart [20]. Later, Chew [21] presented a derivation of vector

and He and Chew of tensor [22] addition theorem with emphasis on the diagonalization

of the addition theorem. Dufva et al. [23] presented a unified derivation for scalar and

vector wave functions based on the concepts of radiation pattern and incoming wave pat-

tern with a note on an efficient calculation of the translation coefficients. Yan et al. [24]

presented a review of efficient methods for calculating both scalar and vector translation

coefficients and studied the convergence properties of the translational addition theorem

from a numerical point of view. He and Chew [25] derived the tensor addition theorem

from the group theory point of view, using quantum-mechanical notation.

The applications described in the literature include electromagnetic and acoustic wave

scattering (Twersky (1962) [26], Ivanov (1968) [27], Borghese (1984) [28], Borghese (2007)

[29], Chew (2008) [25], Martin [31]), multipole expansions ([31], [32], [33], [34], [35], [36],

[37]), problems of geodynamics [5,39] and less-known applications of finding interactions

of bodies with force fields of various physical nature developed by Urman [40]. The latter

is not well known despite its tremendous advantages.

In this paper, using methods from [41], we derive translational operator transform-

ing Helmholtz equation solutions, then using irreducible tensor formalism [8], we derive

addition theorems for tensor wave functions as well. The use of group theory and irre-

ducible tensor formalism makes derivation very compact and clear, which differs from

the aforementioned references [4, 5] and does not use quantum-mechanical notation as

in [25]. Transformations for scalar and for vector solutions of the Helmholtz equation

follow as particular cases from these theorems.

In the second part of the manuscript, we give a little-known application of the addition

theorem to finding force function for bodies in force fields of different physical nature,
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which allows us to solve such problems as motion of space objects, motion of rotors of

non-contact gyroscopes and various devices using non-contact suspensions [40]. The force

function is expressed as an invariant expansion, not related to a particular coordinate

system, which is very compact and gives explicit dependence on the phase variables of

the problem. It allows us to see the physical meaning of complicated interactions, to

easily use symmetries of a body and force fields, and to apply asymptotic methods of

nonlinear mechanics.

As examples we consider motion of a satellite in the gravitational field of a non-

spherical planet, interaction of current distributions and motion of a space vehicle in

terrestrial gravitational and magnetic fields.

2. Translational operator and addition theorem for the scalar solutions

of the Helmholtz equation. It is known that the group of motions of space E(3),

consisting of rotations with respect to the origin of coordinates and translations, is a

symmetry group for the Helmholtz equation. It maps Helmholtz equation solutions

again into its solutions. Elements of E(3) in 3d space can be represented as elements

from a set of real 4 by 4 matrices of the form [41]

g (A, a) =

⎡
⎢⎢⎣ A

0

0

0

a1 a2 a3 1

⎤
⎥⎥⎦ , A ∈ SO3, a = (a1, a2, a3) ∈ R3.

The group element g (A, a) maps the point x ∈ R3 to the point xg = xA+ a ∈ R3. The

group product is determined by the matrix multiplication

g (A, a) g (A′, a′) = g (AA′, aA′ + a′) .

Geometrically, g corresponds to the rotation A with respect to the origin (0, 0, 0) ∈ R3

with the following translation on the vector a.

Let ψ (r) be a solution of the equation
(
Δ+ ω2

)
ψ (r) = 0. Its Fourier transform

ψ (r) =

∫∫
S2

exp (iωrk)h (k) dΩ = I (h) (2.1)

also satisfies the Helmholtz equation. In (2.1), k is a unit vector ((k · k) = 1), running

over the unit sphere S2: k
2
1 + k22 + k23 = 1, dΩ is an element of solid angle on this sphere

and h is an arbitrary measurable complex function on S2 (with respect to dΩ), such that∫∫
S2

h (k)2 dΩ (k) < ∞.

The set L2 (S2) of such functions h defines a Hilbert space with scalar product

(h1, h2) =

∫∫
S2

h1 (k)h
∗
2 (k) dΩ (k) .

Elements g (A, a) from the group E (3) act on a Helmholtz equation solution via operators

T̂ (g). Using (2.1), we can find that

T̂ (g)ψ (r) = I
(
T̂ (g)h

)
(2.2)
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every time ψ = I (h). Operators T̂ (g) in the space L2 (S2) are defined by the following

relationships:

T̂ (g)h (k) = exp (iωa · kA)h (kA) , g = (A, a) , A ∈ SO3, a ∈ R3. (2.3)

Therefore, operators T̂ (g) acting on the functions ψ (r) induce operators (which we

also denote T̂ (g)) acting on functions h. It can be shown that operators (2.3) have the

property of homomorphism T̂ (g1g2) = T̂ (g1) T̂ (g2). Moreover, due to the invariance of

the measure under rotation (dΩ (kA) = dΩ (k)), these operators are unitary in the space

L2 (S2): (
T̂ (g)h1, T̂ (g)h2

)
= (h1, h2) . (2.4)

Infinitesimal operators of the Lie algebra in L2 (S2) are defined by the following relations:

P1 = iωk1, P2 = iωk2, P3 = iωk3,

X1 = k3
∂

∂k2
− k2

∂
∂k3

, X2 = k1
∂

∂k3
− k3

∂
∂k1

, X3 = k2
∂

∂k1
− k1

∂
∂k2

.
(2.5)

The relationship between these operators and group operators (2.3) is given by the ex-

pression

T̂ (g) = exp (αX3) exp (βX1) exp (γX3) exp (a ·P) , (2.6)

where α, β, γ are the Euler angles, parametrizing the elements of the rotations group.

Therefore, operators T̂ (g) define unitary (irreducible) representation of the group E (3)

on the functional space L2 (S2).

Now consider a space H consisting of the Helmholtz equation solutions ψ (r) defined

by the formula (2.1): ψ (r) = I (h) for some h ∈ L2 (S2). The space H is a Hilbert space

with scalar product

(ψ1, ψ
∗
2) = (h1, h

∗
2) , ψj = I (hj) . (2.7)

It follows that I is a unitary transformation from L2 (S2) into H. The existence of a

unitary mapping allows us to switch in problems from the space H to the space L2 (S2).

In problems related to the solution of the Helmholtz equation, it is of great importance to

find the formulas, giving expansions for basis functions with separating variables ψ
(j)
n in

one coordinate system as a sum or integral of basis functions ψ
(l)
m in another coordinate

system. It is often necessary to apply Euclid transformation to function ψ
(j)
n and then

expand it into the basis ψ
(l)
m . Since H is a Hilbert space, we have

T̂ (g)ψ(j)
n =

∑
m

(
T̂ (g)ψ(j)

n , ψ(l)
m

)
ψ(l)
m , (2.8)

where the sum should be replaced with an integral if ψ
(l)
m are eigenfunctions with a

continuous spectrum. From formula (2.7),(
T̂ (g)ψ(j)

n , ψ(l)
m

)
=

(
T̂ (g) f (j)

n , f (l)
m

)
, (2.9)

where f
(j)
n , f

(l)
m are the bases in the space L2 (S2) corresponding to the bases ψ

(j)
n , ψ

(l)
m

in the mapping I.

Consequently we can find expansion coefficients in the space L2 (S2) instead of finding

them in the space H. This significantly simplifies the problem. For the case when j = l

and arbitrary g ∈ E (3), expression (2.9) yields the so-called addition theorem for basis
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ψ
(j)
n , and coefficients T

(j)
nm =

(
T̂ (g) f

(j)
n , f

(j)
m

)
are called matrix elements for the operator

T̂ (g) in the basis ψ
(j)
n .

Consider an irreducible representation T̂ (g) of the group E (3) in L2 (S2), defined by

relationship (2.3). If T̂ is restricted to the subgroup SO3, then it becomes reducible and

splits on the direct sum

T̂ |SO3
∼=

∞∑
l=0

⊕Dl, (2.10)

where Dl are unitary irreducible representations of the group SO3. It is known that

these representations are finite-dimensional and dimDl = 2l + 1, l = 0, 1, 2... . There-

fore, L2 (S2) can be expanded into a direct sum of mutually orthogonal subspaces Vl,

where dimVl = 2l + 1 and the action of operation T̂ (A) on an invariant subspace Vl is

unitarily equivalent to Dl. Elements h from these subspaces are eigenfunctions for the

Laplace operator on the sphere S2 and coincide with spherical functions (unit vectors of

canonical basis of irreducible representation with integer weight l). Therefore, the basis

for subspaces Vl consists of the eigenfunctions

f l
m (θ, ϕ) = Y (θ, ϕ) =

1√
2π

eimϕPm
l (cos θ) ,

where Pm
l (cos θ) is the normalized associated Legendre function. In the following we will

be using spherical functions, defined without factor
√

2l+1
4π . Spherical functions are not

orthonormal with this definition; however, this simplifies many expressions which appear

in the following.

Matrix elements of the translation operator T̂ (E, a) = exp (a · p) on the basis func-

tions L2 (S2) are defined by

Tlm,l′ m′ (a) =

(
T̂ (E, a) f

(
l
′)

m′ , f (l)
m

)
=

∫∫
S2

exp (iωa · k)Yl′ m′ (k)Y ∗
l′m′ (k) dΩ (k) .

To evaluate this integral we will use expansion of a plane wave

eikr =
∑
l,m

il (2l + 1)Jl (kr)Ylm (k)Y ∗
lm (r)

and value of the integral∫
Y ∗
lm (k) Yl1 m1

(k) Yl2 m2
(k) dΩ = Cl 0

l1 0 l2 0C
lm
l1 m1 l2 m2

,

where Jl (kr) are the Bessel spherical functions, and Clm
l1 m1 l2 m2

are Clebsch-Gordan

coefficients for SO3 [8]. Then we will have(
T̂ (E, a)Yl′ m′ , Ylm

)
=

∑
s,q

is (2s+ 1)Js (ωa)Y
∗
s q (a)

∫
Ys q (k) Yl′ m′ (k) Yl m (k) dΩ

=
∑
s,q

is (2s+ 1)Js (ωa) C
l 0
s 0 l′ 0

Clm
s q l′ m′Y ∗

s q (Ωa) .

Therefore, matrix elements of the translation operator have the form

Tlm,l′ m′ (a) =
∑
s,q

is (2s+ 1)Js (ωa) C
l 0
s 0 l′ 0

Clm
s q l′ m′Y ∗

s q (Ωa) . (2.11)
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Matrix elements (2.11) can be used to obtain an addition theorem for solutions of the

Helmholtz equation in a spherical coordinate system. Using formulas (2.8) and (2.9), we

will have

ψL
M (R) =

∑
l,m

Tl m, LM (a)ψl
m (r) , R= r+ a. (2.12)

The addition theorem can be explicitly expressed as an expansion of a solution in
bipolar harmonics (irreducible tensor product of spherical functions with different argu-
ments).

Zj (ωR)YjM (ΩR) =
∑

l,Q

il+Q−j (2l + 1) (2Q+ 1)

2j + 1
Cj0

l 0Q 0Jl (ωa)ZQ (ωr) {Yl (Ωa)⊗ YQ (Ωr)}jM ,

(2.13)

a < r.

Here ZL (ωr) is any spherical Bessel function. In the case when a > r, one has to switch

a and r in (2.13). The expression in the curly brackets is an irreducible tensor which can

be expanded as [8]

{Yl ⊗ YQ}jM =
∑
m,n

Cj M
lmQnYlmYQn.

Choosing the spherical Bessel function jL (ωr) for ZL (ωr) in (2.13) and limiting ω → 0

taking into account that jL (x) ⇒ 2LL!
(2L+1)x

L, we will have translation transformations for

the solutions of the Laplace equation without singularities at zero


j (r+a = R) =

∞∑
l,Q=0

l+Q=j

√
(2j)!

(2l)! (2Q)!
{
l (a)⊗
Q (r)}j . (2.14)

Similarly, choosing a Neumann function nL (ωr) and limiting ω → 0, taking into

account that nL (ωr) ⇒ − (2L− 1)!!x−(L+1) gives the solutions of the Laplace equation

with singularities in zero

�j (R) =
∞∑

l,Q=0

Q−l=j

√
(2Q+ 1)!

(2j + 1)! (2l)!
{
l (r)⊗�Q (a)}j (2.15)

In formulas (2.14) and (2.15),


n (r) → 
nm (r) = rnYnm (Ωr) ,

�n (r) → �nm (r) = r−(n+1)Ynm (Ωr)
(2.16)

are the regular and irregular (corresponding to their behavior at the point r = 0) solid

spherical harmonics.

3. Addition theorem for the tensorial spherical waves. Tensor spherical func-

tions are the solutions of the Helmholtz equation of the form

ZL (kr)Y LS
jM (θ, ϕ) , (3.1)
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where ZL (kr) is any spherical Bessel function, and

Y LS
jM (θ, ϕ) = {YL ⊗ χS}jM =

∑
m,μ

YLmχSμC
jM
LmS μ (3.2)

is a spherical tensor [8], which is an irreducible tensor product of rank l of spherical and

spin functions.

Particular solutions for the scalar (when S = 0) and particular solutions for the vector

(when S = 1) Helmholtz equation follow from the equation (3.2). Choosing the spherical

Bessel function jL (kr) or Neumann function nL (kr) as ZL (kr) and making limit tran-

sition k → 0 yields particular tensor solutions of the Laplace equation rLY LS
jM (θ, ϕ) with

a singularity at infinity and r−(L+1)Y LS
jM (θ, ϕ) with singularity at zero. We will denote

them correspondingly as


LS
jM (r) = rLY LS

jM (θ, ϕ) , �LS
jM (r) = r−(L+1)Y LS

jM (θ, ϕ) . (3.3)

To derive transformational formulas for translations of tensor Helmholtz equation

solutions ZL (kr)Y LS
jM , we will make use of a change in the coupling scheme in irreducible

tensor products [8] and addition theorem for scalar waves. Sequentially we will have

ZL (ωR)Y LS
jM (ΩR) = ZL (ωR) {YL (ΩR)⊗ χS}jM = {ZL (ωR)YL (ΩR)⊗ χS}jM

=
∑

il+Q−L (2l+1)(2Q+1)
2j+1 CL0

l 0Q 0JL (ωa)ZQ (ωr)
{
{Yl (Ωa)⊗ YQ (Ωr)}L ⊗ χS

}
jM

.

(3.4)

Changing the coupling scheme for an irreducible tensor product in (3.4), we will have{
{Yl (Ωa)⊗ YQ (Ωr)}L ⊗ χS

}
j

=(−1)
l+Q+j+S ∑

h

√
(2h+ 1) (2L+ 1)

{
l Q L

S j h

}
×
{
Yl (Ωa)⊗{YQ (Ωr)⊗ χS}h

}
j

=(−1)
j+S−L∑

h

√
(2h+ 1) (2L+ 1)

{
Q l L

S j h

}{
Yl (Ωa)⊗ Y QS

h (Ωr)
}
j
.

(3.5)

Substituting (3.5) into (3.4) gives the resulting transformation rule for spherical tensor

waves under translation:

ZL (ωR)Y LS
jM (ΩR) =

∑
Q,h,l i

l+Q−L (−1)S+Q−j (2l + 1)
√
(2h+ 1) (2Q+ 1)CQ 0

l 0L 0

×
{

L l Q

h S j

}
Jl (ωa)ZQ (ωr)

{
Yl (Ωa)⊗ Y QS

h (Ωr)
}
jM

.

(3.6)

Similarly to the translational rule for scalar solutions of the Laplace equation, we get

the rules for the tensor solution of the Laplace equation.


LS
jM (R) =

∞∑
l,Q,h

l+Q=h

(−1)S+l+h

√
(2L+ 1)! (2h+ 1)!

(2l)! (2Q)!

{
l Q L

j S h

}{

lS

h (r)⊗
Q (a)
}
jM

,

(3.7)
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�LS
jM (R) =

∞∑
l,Q,h

l+Q=h

(−1)S+l+h

√
(2L+ 1)! (2h+ 1)!

(2l)! (2Q)!

{
l Q L

j S h

}{

lS

h (r)⊗�Q (a)
}
jM

.

(3.8)

In these expressions

{
l Q L

S j h

}
are 6j Wigner symbols [8].

4. Invariant expansion of the force function for spatial mass or charge

distributions. The addition theorems derived above may be used in various problems of

mathematical physics, where it is required to relate boundary conditions for two or more

bodies (diffraction on many bodies, heat conduction problems, diffusion problems, etc.).

In [42], an important problem of celestial mechanics on the invariance of the expansion of

interaction energy for N spatial gravitating bodies was considered. The same approach

is applicable for describing the interaction of electric charge distributions. In this section

we will present an invariant expansion of the force function for mutual gravitational

attraction between two bodies of arbitrary shape; it demonstrates the application of the

scalar addition theorem. In the next section we will consider an example of satellite

motion in the gravitational field of a non-spherical planet.

From potential theory it is known that the force function VG of mutual gravitational

attraction between two bodies v1 and v2 is

VG = f

∫
v2

dv2

∫
v1

dv1/Δ =

∫
v2

V̄ (2) dv2, (4.1)

where V̄ = f
∫
v1
dv1/Δ is the force function of body v1 in the gravitational field of a

particle of unit mass located at the point 2 and belonging to body v2; Δ is the distance

between particles of the bodies v1 and v2, and f is the gravitational constant. Denote

by ri the radius vectors of the particles of the body vi with respect to the center of the

body vi, and by R the radius-vector of the center of body v2 relative to that of body v1
(Fig. 1). Then

Δ = |r1 − a|, (4.2)

where a= r2+R; r1 , r2 < R.

Fig. 1. Two gravitating bodies of arbitrary shape

To find the expression for V̄ (2) we use the well-known series

1

Δ
=

1

|r1 − a| =
∞∑
l=1

(
l (r1 ) · �l (a)) , (4.3)
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where 
l (r1 ) and �l (a) are regular and irregular (by their behavior in the point r=0)

solid spherical harmonics, defined in (2.16); they correspond to the case S = 0 in (3.3).

The expression in the parentheses in (4.3) is a scalar product of two irreducible tensors.

Substituting (4.3) in the integral for V̄ gives

V̄ = f

∞∑
l=1

(Il (1) · �l (a)) , (4.4)

where

Il (1) =

∫
v1


l (r1 ) dv1 (4.5)

is an irreducible tensor of rank l; its physical meaning will be clarified later. Substituting

(4.4) in (4.1) yields

VG = f
∞∑
l=0

(
Il (1) ·

∫
v2

�l (a) dv2

)
. (4.6)

To evaluate the integral in (4.6) we use addition theorem (3.8) with S = 0 or its particular

form for scalar fields (2.15),

�l (a) = �l (r2 +R) =
∞∑

n=0

√
(2l + 2n+ 1)!

(2l + 1)! (2n)!
{
n (r2)⊗�n+l (R)}l , (4.7)

where the expression in the parentheses is a tensor product of irreducible tensors of rank

n and l. Substituting (4.7) in (4.6) after integration, we have

VG = f
∑
l,n

√
(2l + 2n+ 1)!

(2l + 1)! (2n)!
(Il (1) · {In (2)⊗�n+l (R)}l) . (4.8)

Applying the change of coupling scheme for irreducible tensors [8], we find more sym-

metric expression for the force function

VG = f
∑
l,n

(−1)n

√
(2l + 2n)!

(2l)! (2n)!

(
{Il (1)⊗ In (2)}l+n · �n+l (R)

)
. (4.9)

The phase factor in (4.9) depends on the direction of the vector R. If R points from

body v2 toward body v1, then in (4.9) (−1)n should be replaced with (−1)l, because

�n+l (−R) = (−1)n+l �n+l (R).

We should emphasize that in deriving (4.8) and (4.9) we didn’t introduce any coordi-

nate system, and the form of expansion (scalar product of two invariant objects) shows

that every term of the expansion is an invariant object, independent of any coordinate

system. Every term is (4.8) can be considered as an interaction described by a scalar

product of a tensor related to the body v1 with gravitational field of body v2, defined

by tensors {In (2)⊗�n+l (R)}l. There is a more common in physics interpretation of

formula (4.9) in terms of multipoles interaction: it describes the interaction of multipoles

of different orders associated with the bodies v1 and v2.

Series (4.8) and (4.9) converge absolutely and uniformly if R > max (r1 + r2), where

max (r1 + r2) is the maximum of distance from the centers of bodies v1 and v2 to their

surfaces.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



10 YURI M. URMAN AND SERGEY I. KUZNETSOV

We will write here the first few terms of the expansion (4.9) assuming that the centers

of both bodies coincide with their centers of inertia with precision up to the fourth power

of the ratio of the biggest linear dimension to the distance between their center:

VG = f m1m2

R + f m1

R3

(
I2 (2) · Y2

(
R̂
))

+ f m2

R3

(
I2 (1) · Y2

(
R̂
))

+f m1

R4

(
I3 (2) · Y3

(
R̂
))

+ f m2

R4

(
I3 (1) · Y3

(
R̂
))

+f m1

R5

(
I4 (2) · Y4

(
R̂
))

+ f m2

R5

(
I4 (1) · Y4

(
R̂
))

+ f
√
70

R5

(
{I2 (1)⊗ I2 (2)}4 · Y4

(
R̂
))

+... .
(4.10)

The force function expansion was performed with the same accuracy in the work

by A. A. Orlov [43], where the expansion was found using another method. It has a

different, non-invariant, and a rather tedious form. Due to its invariance, expression

(4.10) undoubtedly is more preferable.

5. Example: Satellite motion in the gravitational field of a non-spherical

planet. Consider the motion of a satellite in the field of a planet. Assume that the

satellite (body v2) has a spherical shape with homogeneous or spherical density. The

planet (body v1) is assumed to be non-spherical; for example, the earth is non-spherical,

its gravitational shape, that of a geoid, has a number of terms in its expansion in spherical

functions [44], and its animated image can be found in [45].

Since v2 is spherical, then all In (2) for n > 0 are equal to zero and the force function

reduces to

VG = fm2

∑
l

(Il (1) · � (R)) = fm2

∑
l=0

vl. (5.1)

Formula (5.1) yields the force function describing the attraction of a sphere by a non-

spherical body. In the problem of motion of a satellite in the gravitational field of a

non-spherical planet, it is necessary to transform the force function to the osculating

variables. The representation of the force function in terms of a scalar product of two

irreducible tensors allows easy transforming to the Kepler elements.

To describe the satellite’s motion we will introduce the following coordinate systems:

CXY Z is an inertial coordinate system placed at the center of the planet C (the Z

axis coincides with the rotation axis of the planet, axes X and Y are placed in the

equatorial plane, and the X axis points to the vernal equinox); Cξηζ is a coordinate

system associated with the planet and spinning about axis Z with angular velocity ω0

(λ is Greenwich sidereal time); OX1X2X3 is a perigee coordinate system (the X3 axis is

directed along the normal to the orbital plane, the X1 axis is directed along the radius

vector of the orbit’s perigee, and the X2 axis is directed along the tangent in the perigee

orbit toward the moving direction of the satellite’s centre of mass).

The orientation of the coordinate system OX1X2X3 with respect to the coordinate

system CXY Z is defined by the following angles: Ω (longitude of ascending node of

the orbit from the vernal equinox), I (inclination of orbit to the equator), ωp (perigee

argument). The orientation of the satellite’s radius vector in the perigee coordinate

system is defined by the spherical angles θ = π/2 and ν (true anomaly) and in the

planet’s coordinate system by the angles θ and ϕ.
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TRANSLATIONAL TRANSFORMATIONS OF TENSOR SOLUTIONS 11

Therefore, the orientation of the satellite in space is defined by three independent

angles: Ω, ωp, I. We introduce additionally two more parameters defining the shape and

the size of the satellite’s orbit: a is the semimajor axis of the ellipse, e is its eccentricity.

Finally, the satellite’s location on the orbit is determined by the parameter t0. Therefore,

we have six independent parameters defining satellite motion in space.

Since spherical function is an irreducible tensor, transforming it from the perigee

coordinate system to the coordinate system associated with the planet yields

Ylm (θ, ϕ) =
∑
m′

Dl∗
mm′

(
Ω− λ− π

2
, I, ωp +

π

2

)
Ylm′

(π
2
, ν

)
. (5.2)

Substituting this expression in (5.1) and using the fact that the unperturbed orbit

has expression R =
a(1−e2)
1+e cos ν = P

1+e cos ν (P is a focal parameter), we will have an explicit

expression of the force function of the non-spherical planet in terms of the Kepler’s

parameters

vl =
fM

P l+1
Il0 (1 + ε cos ν)

l+1
∑
mm′

IlmDl∗
lm

(
Ω− λ− π

2
, I, ωp +

π

2

)
Ylm′

(π
2
, ν

)
. (5.3)

For an axisymmetric planet one should take m = 0; then

vl =
fM
P l+1 Il0 (1 + ε cos ν)l+1 Pl (cosφ)

cosφ = sin I sin (ωp + ν)
(5.4)

Therefore, we have expressed the force function in terms of Kepler elements.

In the unperturbed motion, the elements a, e, ωp, Ω, I are constants. They slowly

evolve when the motion is perturbed. To find long-period terms, one has to average V

over τ because τ in unperturbed motion is not constant and is changing linearly with

time.

However, the force function (5.3) depends on τ implicitly through the true anomaly

ν. Thus one can perform averaging over the period of revolution in the following way:

〈V 〉 = 1
2π

∫ 2π

0
V (ν) dτ = 1

2π

∫ 2π

0
V (ν) dτ

dν dν = 1
2π

∫ 2π

0
V (ν) dτ

dt
dt
dν dν

1
2π

∫ 2π

0
V (ν)n dt

dν dν

= n√
μp

1
2π

∫ 2π

0
V (ν) r2dν = np3/2

√
μ

1
2π

∫ 2π

0
V (ν) (1 + e cos ν)

−2
dν.

(5.5)

In (5.5) the area integral r2 dν
dt =

√
μp and the equation of unperturbed orbit were used.

Consider the eccentricity function

Slm (e)=
1

2π

∫ 2π

0

(1 + e cos ν)l eimνdν=
l!

(l+|m|)!e
|m|x|m|−l d

|m|Pl (x)

dx|m| ; x=
(
1− e2

)−1/2
.

(5.6)

Averaging the force function (5.3) using (5.5) yields

〈V 〉 =
√
μn

P l−1/2

∑
m,m′

IlmDl
mm′

(
Ω− λ− π

2
, I, ωp +

π

2

)
Ylm′

(π
2
, 0
)
Sl−1,m′ (e) . (5.7)

Substituting (5.7) in the system of equations of motion in osculating variables [46,47],

one can see the orbit’s semimajor axis does not evolve. If the planet’s gravitational
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12 YURI M. URMAN AND SERGEY I. KUZNETSOV

potential is axisymmetric, then (5.7) reduces to

〈V 〉 =
√
μn

P l−1/2

∑
m′

I20Y
∗
l−m′

(
I, ωp +

π

2

)
Ylm′

(π
2
, 0
)
Sl−1,m′ (e) .

In this case, the equations of motion have integrals a = const, st
√
1− e2 cos I = const,

〈Vl〉 = const, and for some values of the index, l can be integrated [47].

6. Invariant expansion of the force function for spatial current distribu-

tions. In this section we will obtain invariant expansion of the interaction energy for

spatial distributions of electric currents, which demonstrates application of the vector

addition theorem. Consider two spatial regions streamlined by quasi-stationary currents.

The interaction energy of the two currents can be expressed by the integral

VM =
μ0

8π

∫
v1

dv1

∫
v2

(j (1) · j (2))
Δ

dv2 (6.1)

where dv1 and dv2 are the volume elements of spatial regions where currents j (1) and

j (2) flow, and Δ is the distance between points of spatial current distributions. We

denote the radius-vector of points in the volumes v1 and v2 with respect to their centers

correspondingly as r1 and r2; R will denote the radius-vector of the center of current

distribution 2 with respect to the center of current distribution 1. Then Δ = |r1 −
a|; a = r2+R, r1 , r2 < R, and μ0 is a magnetic constant.

Assuming r1 < a we will use the expansion of the Green function for the vector

Laplace equation [8],

j (1)

|r1 − a| =
∑
l,L,q

(
j (1) · 
L∗

lq (r1 )
)
�L

lq (a) , (6.2)

where 
L
lq (r) is a regular and �L

lq (r) is an irregular solid spherical vector corresponding

to the expression (3.3) when S = 1. Substituting (6.2) into (6.1) gives

VM =
μ0

8π

∑
l,L,q

ML
lq (1)

∫
v2

(j (2) · � (a)) dv2, (6.3)

where

M
L
lq (1) =

∫
v1

(
j (1 ) · 
L

lq (r)
)
dv1 (6.4)

is a vector multipole moment.

In the expression for multipole moment (6.4), index L, due to the properties of a solid

spherical vector 
L
lq, can take values L = l, L = l + 1, L = l − 1. We will show that a

multipole moment is zero when L = l − 1.

Taking into account that 
l−1
lq (r) = 1√

l(2l−1)
∇ (
lq (r)) when L = l − 1 [8] and using

the vector relation div (A · ϕ) = ϕdivA+A∇ϕ, we will have

M
l−1
lq =

1√
l (2l + 1)

∫
v

(j · ∇ (
lq (r))) dv

=
1√

l (2l + 1)

∫
v

[div (j · 
lq (r))−
lq (r) divj] dv .
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Changing in the first integral to the surface integration and noting that because of

quasistatics Jn = 0 and divj= 0 , we will have M
l−1
lq = 0.

We will now show that
∫
v
j�l+1

lq dv = 0 when L = l + 1. To do so, we notice that

�l+1
lq = [(l + 1) (2l − 3)]−

1
2 ∇ (�lq). Then, using similar reasoning, we will get the desired

result. Therefore, by the virtue of proven, index L in (6.3) takes only the single value l.

Consider now a vector multipole moment Ml
lq. Using the definition of solid spherical

vector we will have, consequently,(
j · 
l

lq

)
=

∑
μ,σ

Clq
l μ 1σ
l μ 1σ · j =

∑
μ,σ

Clq
l μ 1σ
l μ j1σ = {
l ⊗ j1}lq . (6.5)

Substituting (6.5) into the integral (6.4) we will get an expression where the upper

index may be omitted and thus the expression for a vector multipole moment will have

the form

Mlq =

∫
v

{
l ⊗ j1}lq dv . (6.6)

Assume that l = 1 in (6.6); then

M1q =

∫
v1

{r1 ⊗ j1}1q dv1 = i
√
2M1q, (6.7)

which corresponds to the known expression for the vector of a full magnetic dipole mo-

ment of a system M= 1
2

∫
[r× j] dv .

To evaluate the integral in (6.3), we use the addition theorem (3.7) for a solid spherical

vector �l
lq (a). After some manipulations we have

�l
lq (a) = �l

lq (r2+R) = −
∑

n[
√

(2l+2n+1)!l·n
(2l+1)!(2n)!(l+1)(n+1) {
n

n (r2)⊗�l+n (R)}lq
+
√

(2l+2n−1)!(l+n)
(2l+1)!(2n−2)!(l+1)n

{

n−1

n (r2)⊗�l+n−1 (R)
}
lq
].

(6.8)

Substituting (6.8) into (6.3) and noting that Ml−1
lq = M

l+1
lq = 0, we will have an expres-

sion for the interaction energy of spatial current distributions

VM = −μ0

8π

∑
l,n

√
(2l + 2n)!l · n

(2l + 1)! (2n)! (l + 1) (n+ 1)
(Ml (1) · {Mn (2)⊗�l+n (R)}l) . (6.9)

Using the change of coupling scheme for irreducible tensors, (6.9) can be transformed to

the form

VM =−μ0

8π

∑
l,n

(−1)
n+1

√
(2l + 2n)!l · n

(2l+1)! (2n)! (l+1) (n+1)

(
{Ml (1)⊗Mn (2)}l+n · �l+n (R)

)
(6.10)

Expression (6.9) may be considered as the interaction of vector multipoles of one

current distribution with field, created by another current distribution. Expression (6.10)

describes the interaction of vector multipoles of one current distribution with vector

multipoles of another current distribution.

Expression (6.10), describing the interaction of two spatial current distributions, can

be easily generalized on pair-wise interactions of N spatial current distributions. De-

note one of the interacting current distributions by index k and the other by index j.
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14 YURI M. URMAN AND SERGEY I. KUZNETSOV

Then, summing interactions, when k and j run over values from 1 to N and noting that

interactions Vkj = Vjk, we will have

VM = −μ0

8π

∑N−1

k=0,

k �=j

∑N−1
j=0

∑
l,n (−1)

n+1
√

(2l+2n)!l·n
(2l)!(2n)!(l+1)(n+1)

×
(
{Ml (k)⊗Mn (j)}l+n · �l+n (Rkj)

)
.

If we use (6.7), then the expression for energy (6.10) for the case l = n = 1 will take the

form
VM = −μ0

4π

√
6 ({M1 (1)⊗M1 (2)}2 · �2 (R))

= −μ0

4πR
−3 [(M (1) ·M (2))− 3 (M (1) ·R) (M (2) ·R)]

(6.11)

which corresponds to dipole-dipole interaction. The field, generated by dipole M (1), is

expressed using irreducible tensors by the formula

H1 =
μ0

4π

√
10 {M1 (1)⊗�2 (R)}1 (6.12)

and then (6.11) will take the known form of interaction of dipole M1 (1) with dipole

M1 (2):

VM = (H1 ·M1) . (6.13)

Similarly, one can consider the interaction of multipoles with higher order.

If a conductor carrying current is thin enough, then volume integration can be replaced

with contour integration by substituting jdv → Idl in (6.4), where I is the total current

flowing though the conductor. Making this substitution in (6.6) we will have

Mlq = I

∫
{
l ⊗ dl1}lq . (6.14)

We will apply this formula to determine the multipole moments of a loop of radius b

with current I. Assume that the z-axis of a Cartesian coordinate system associated with

the loop coincides with the symmetry axis of the loop. Then axes x, y will be in the

plane of the loop. Determining cyclic projections of the vector dl1μ = ibμY1μ

(
π
2 , ϕ

)
dϕ

and considering integral (6.14), we have

Mlq = Ibl+1i
∑
μ,ν

Clq
lν1μYlν

(π
2
, 0
)
Y1μ

(π
2
, 0
)∫ 2π

0

ei(μ+ν)ϕdϕ,

which yields, after integration,

Ml0 = 2πIibl+1Yl1

(π
2
, 0
)
. (6.15)

Knowledge of these multipole moments allows finding interaction energy of the loops

when they are arbitrarily arranged.

7. Interaction of two spatial current loops. We will apply the results obtained

in the previous section to find the force function for two interacting current loops. To

find explicit dependence of the force function on angles, one has to express components of

tensors Ml in the source coordinate system through the components of the same tensor
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Fig. 2. Two current loops: the center of the arbitrarily oriented
second loop is placed on the axis of the first loop

in the coordinate system related to the body, using the formula for irreducible tensors

transformation

Mlq =
∑
q′

M
lq′

Dl ∗
qq′

(α, β, γ) , (7.1)

where α, β, γ are the Euler’s angles, characterizing the orientation of the body with

respect to the chosen coordinate system.

We will associate the reference coordinate system with the first loop. Let the unit

vector e1 be directed along the axis of the first loop, and let the unit vector e2 be

directed along the axis of the second loop. Then, due to axial symmetry, the multipole

moment for the first and second loops are correspondingly Mlq (1) = Ml0 (1)Ylq (e1) and

Mlq (2) = Ml0 (2)Ylq (e2). Let the first loop have radius a and the second loop have

radius b. Then the expression for the interaction energy of the two loops (6.10) will be

VM = −μ0

8π

∑
l,n (−1)

n+1
√

(2l+2n)!l·n
(2l)!(2n)!(l+1)(n+1)Ml0 (1)Mn0 (2)

×
(
{Yl (e1)⊗ Yn (e2)}l+n · �l+n (R)

)
.

(7.2)

Consider a few particular cases:

(1) The loops are placed as shown on Fig. 2. The value for energy will be

VM = μ0πIaIb
2

∑
l,n (−1)n (l+n)!

l!n!

√
l·n

(l+1)(n+1)
al+1bn+1

rl+n+1

×Yl 1

(
π
2 , 0

)
Yn 1

(
π
2 , 0

)
Pn (cosβ) ; cos (β) = (e1 · e2) .

(7.3)

(2) If the loops are placed in parallel as shown on Fig. 3, then expression (7.1) using

the rule {Yl 1 ⊗ Yn 1}l+n = Cl+n 1
l 1n 1Yl+n 1 [8] will take the form

VM = μ0πIaIb
2

∑
l,n (−1)n (l+n)!

l!n!

√
l·n

(l+1)(n+1)
al+1bn+1

rl+n+1

×Yl 1

(
π
2 , 0

)
Yn 1

(
π
2 , 0

)
Pl+n (cos γ) ; cos (γ) = (e1 · er) .

(7.4)

(3) For the case shown on Fig. 4, the expression for the energy will be

VM = μ0πIaIb
2

∑
l,n,q (−1)

n−q (l+n)!
l!

√
l·n

(l+1)(n+1)(n+q)(n−q)
al+1bn+1

rl+n+1

×Yl 1

(
π
2 , 0

)
Yn 1

(
π
2 , 0

)
Ynq (e2)Yl+n −q (er) .

(7.5)
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Fig. 3. Two current loops: the second loop is placed at an arbitrary
point and is parallel to the first loop

Fig. 4. Two current loops: the second loop is placed at an arbitrary
point and has arbitrary orientation with respect to the first loop

8. Example: Calculation of multipole moments for permanent magnets

with constant density of magnetic moment. We will give here one more represen-

tation for the integral Mlq, which is convenient for evaluating multipole moments for the

interaction of permanent magnets with homogeneous density of magnetic moment λ. We

have consequently(
j · 
l

lq (r)
)
= − i√

l(l+1)
rl−1 (j · [r×∇]Ylq) =

i√
l(l+1)

rl−1 (∇Ylq · [r× j])

= − i√
l(l+1)

(
∇
(
rlYlq

)
[j× r]

)
= −i

√
2l−1
l+1

(

l−1

lq ·[j×r]
)
= i

√
2l−1
l+1 {
l−1⊗[j× r]1}lq .

(8.1)

Substituting (8.1) in (6.4) and noting that [j× r] dv = 2λdv gives

Mlq = i

√
2l − 1

l + 1

∫
{
l−1 ⊗ λ1}lq dv . (8.2)

Expression (8.2) is convenient for calculation of the interaction for the bodies with

homogeneous density of magnetization. In this case, λ1 can be taken outside the integral,

and we will have

Mlq = i

√
2l − 1

l + 1
{λ1 ⊗ Il−1}lq (8.3)

where Il−1 =
∫

l−1dv is the irreducible inertia tensor of the rank l − 1 with unit mass

density.
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In the study [38], irreducible inertia tensors for bodies with various geometrical shape

were calculated. They can be used to find interaction for magnets of various geometrical

shapes.

9. The motion of a space vehicle in the terrestrial gravitational and mag-

netic fields. As a last example, consider the motion of a space vehicle in both gravita-

tional and magnetic fields of the earth. If one accounts only for potential components

of the external torque acting on a space vehicle in terrestrial gravitational and magnetic

fields, then the force function creating these torques can be written as

V =
fm2

R3

(
I2 · Y2

(
R̂
))

+ (M1H1) +

√
3

2
(L2 · {H1 ⊗H1}2) . (9.1)

Here the first term describes the force function of the gravitational torques, the second

term describes magnetic torques caused by the terrestrial magnetic field and permanent

magnetization of the space vehicle, and the third term describes the force function of

magnetic moments caused by the magnetization of the vehicle’s coating by an external

magnetic field.

It is assumed that the terrestrial magnetic field H1 is created by a magnetic dipole;

its orientation in general does not coincide with the Earth’s rotation axis. H1 can be

expressed analytically in terms of irreducible tensors as

H1 = −
√
10

μE

R3

{
g1 ⊗ Y2

(
R̂
)}

1
, (9.2)

where g1 is a unit vector aligned along the Earth’s magnetic dipole, R̂ is a unit vector

along the radius-vector of the orbit R, and μE is the magnitude of the Earth’s dipole

magnetic moment (μE = 8 · 1025Oe.cm3). Orientation of the dipole is defined by the

coordinates ϕ0 = 11.7 degrees, λ0 = −69.6 degrees, H0 =
μ2
E

RE

∼= 30824γ (1γ = 10−5Oe),

and RE is the Earth’s radius.

Using the coupling scheme for irreducible tensors [8], {H1 ⊗H1}2 can be rewritten in

the form

{H1 ⊗H1}2 =
√

2
3
μ2
E

R6 [Y2

(
R̂
)
+ 1

5Y2 (m̂) +
√

2
7

{
Y2 (m̂)⊗ Y2

(
R̂
)}

2

+ 54
5

√
2
7{Y2(m̂)⊗ Y4(R̂)}2].

(9.3)

Substituting (9.2) and (9.3) in (9.1) yields an invariant form of force function, where

tensors I2, M1, L2 characterize properties of the space vehicle’s body, tensors Yl

(
R̂
)

characterize the position of the center of mass of the space vehicle, and tensors Yl (m̂)

characterize the orientation of the Earth’s magnetic dipole. This representation of force

functions significantly simplifies the averaging procedure used to find the averaged equa-

tions.

The problem of motion of a space vehicle in terrestrial gravitational and magnetic fields

was considered in [48] with the following assumptions: the space vehicle is dynamically

symmetric, the magnetization is aligned along the vehicle’s dynamic symmetry axis, and
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the vehicle’s coating is magnetized along its symmetry axis. In the following we don’t

use these conditions.

We will express the force function in terms of phase variables of the rotary motion of

the space vehicle in the perigee coordinate system. We will use the magnitude of the

kinetic moment K and angles ρ and σ, characterizing the orientation of the kinetic mo-

ment with respect to the perigee coordinate system, as phase variables. The orientation

of the body with respect to the coordinate system of the kinetic moment will be defined

by the Euler angles α, β, γ.

Since the tensors I2, M1, L2 are related to the body of the space vehicle, then trans-

forming them to the perigee coordinate system yields

V = fMR−3
∑

nmq I
∗
2nY2n

(
R̂
)
D2

mq (σ, ρ, 0)D
2
qn (α, β, γ)

+
∑

nmq M
∗
1nH1mD1

mq (σ, ρ, 0)D
1
nq (α, β, γ)

+
√
3/2

∑
nmq L

∗
2n {H1 ⊗H1}2m D2

mq (σ, ρ, 0)D
2
nq (α, β, γ) .

(9.4)

In the following it is assumed that there are no resonant relations between frequen-

cies. Then the force function can be independently averaged over the free Euler-Poinsot

motion, over the motion of the center of mass of the vehicle, and over the rotary motion

of the earth [46]. The general form of the averaged force function will be

〈V 〉 = 1

2
(k, Bk) + (Bk) (9.5)

where B is a symmetric matrix; its coefficients are given in [46].

The averaged force function is the sum of two homogeneous polynomials of first and

second order, depending on the projections of the unit vector of kinetic moment k on the

axes of the perigee coordinate system. Coefficients of these polynomials depend on the

orbit elements I, ωΠ, e, θ0, determining the orientation of the magnetic dipole relative to

the earth’s rotation axis, parameters characterizing inertial and magnetic properties of

the space vehicle and initial conditions.

Using this averaged force function, one can study the dynamics of the space vehicle,

in particular to find integrals determining the change of the vector of kinetic moment

[46].
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