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Abstract

We describe a neural network system that predicts
the locations of transmembrane helices in integral
membrane proteins. By using evolutionary
information as input to the network system, the
method significantly improved on a previously
published neural network prediction method that had
been based on single sequence information. The
input data was derived from multiple alignments for
each position in a window of 13 adjacent residues:
amino acid frequency, conservation weights, number
of insertions and deletions, and position of the
window with respect to the ends of the protein chain.
Additional input was the amino acid composition
and length of the whole protein. A rigorous cross-
validation test on 69 proteins with experimentally
determined locations of transmembrane segments
yielded an overall two-state per-residue accuracy of
95%. About 94% of all segments were predicted
correctly. When applied to known globular proteins
as a negative control, the network system incorrectly
predicted fewer than 5% of globular proteins as
having transmembrane helices. The method was
applied to all 269 open reading frames from the
complete yeast VIII chromosome. For 59 of these at
least two transmembrane helices were predicted.
Thus, the prediction is that about one fourth of all
proteins from yeast VIII contain one transmembrane
helix, and some 20% more than one.

Introduction

Given the rapid advance of large scale gene-
sequencing projects (Oliver et al., 1992, Johnston et
al., 1994), most protein sequences of key organisms
will be known in about five years' time.
Experimental structure determination is becoming

more of a routine (Lattman, 1994); and the number
of proteins with known sequence for which the 3D
structure can be predicted rather accurately by
homology modelling is constantly increasing (today
more than 25% of all sequences in the SWISSPROT
sequence data base (Bairoch & Boeckmann, 1994)
can be modelled with reasonable accuracy by
homology (Sander & Schneider, 1994)). Even in
such an optimistic scenario, experimental knowledge
about membrane proteins is likely to be sparse.
However, membrane proteins represent a very
important class of protein structures. To what extent
can structural aspects for membrane proteins be
predicted from sequence information?

Two types of membrane proteins. So far, the 3D
structures of two types of membrane proteins have
been determined, so far. The first type are helical
proteins: photosynthetic reaction centre (Deisenhofer
et al., 1985), bacteriorhodopsin (Henderson et al.,
1990) and the light harvesting complex II (Wang et
al., 1993, Kühlbrandt et al., 1994); these proteins
consist of typically apolar helices of some 20
residues that traverse the membrane perpendicular to
its surface (Fig. 1). The second type is represented
by the structure of porin (Weiss & Schulz, 1992,
Cowan & Rosenbusch, 1994), a 16-stranded β-
barrel.

Membrane proteins easier to predict than globular
ones. Typical methods for the prediction of
transmembrane segments focus on helical
transmembrane proteins (von Heijne, 1981, Argos et
al., 1982, Eisenberg et al., 1984a, Engelman et al.,
1986, von Heijne, 1986, von Heijne & Gavel, 1988).
It is commonly believed that the prediction of
structure is simpler for membrane proteins than for
globular ones as the lipid bilayer imposes strong
constraints on the degrees of freedom of structure
(Taylor et al., 1994).
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Fig. 1:  Prediction of the location of transmembrane helices.  In one class of membrane proteins, typically apolar
helical segments are embedded in the lipid bilayer oriented perpendicular to the surface of the membrane.  The helical
segments can be regarded as more or less rigid cylinders.  Thus, the 3D structure of the membrane spanning protein region
can be determined by: the location of segments with respect to sequence; the orientation of helical axes; the inclination of
helical axes with respect to lipid bilayer; and the phase of helices with respect to each other (orientation of helical wheel).
Here, we simplify extremely by projecting 3D structure onto a 1D string describing which residues of the protein are part
of a transmembrane helices.  Input to the prediction tool (neural network system) is a protein sequence (in general a
sequence alignment), output is a prediction of the location of transmembrane segments.
The example shown (sequence of cytochrome O ubiquinol oxidase subunit I, cyob_eco in SWISSPROT , Bairoch &
Boeckmann, 1994) contained one of the few segments that were under-predicted (missed).  The numbers give the
reliability of the prediction for each residue on a scale of 0 to 9 (Fig. 2).  Non-transmembrane regions, when predicted
correctly, usually reached the highest reliability (9).  Thus, the unusually low reliability values for the under-predicted
segment might have enabled the expert user to improve the automatic prediction by interpreting this region as non-loop.

Prediction of transmembrane segments. Methods for
prediction of transmembrane helices are usually
based on (i) hydrophobicity analyses (Argos et al.,
1982, Kyte & Doolittle, 1982, Engelman et al., 1986,
Cornette et al., 1987, Degli Esposti et al., 1990); (ii)
the preponderance of positively charged residues on
the cytoplasmic side of the transmembrane segment
(interior), established as the "positive inside rule"
(von Heijne, 1981, von Heijne, 1986, von Heijne &
Gavel, 1988, von Heijne, 1991, von Heijne, 1992,

Sipos & von Heijne, 1993); or (iii) statistical
procedures which perform significantly better when
combined with multiple alignments (Persson &
Argos, 1994). In general, prediction of
transmembrane segments  is  re lat ively
straightforward. But, can detailed aspects of 3D
structure be predicted from sequence for helical
transmembrane proteins?

Prediction of 3D structure for helical
transmembrane proteins. Cytoplasmic and extra-
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Fig. 2 (caption next page)
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Fig. 2: Two level system of neural networks for helical transmembrane prediction.  For each position in the
alignment the amino-acid frequencies were compiled, the numbers of insertions and deletions counted, and a conservation
weight computed (defined in Rost & Sander, 1993b).  Furthermore, 'global information' (beyond the window of 13
adjacent residues) about the search sequence was compiled: amino acid composition, length, and the position of the
current window with respect to the N-, and C-terminal end of the protein.  All this information was fed into the neural
network input for w  = 13  adjacent residues (shown w  = 7 ).  The input layer was fully connected to a layer with three
hidden units, and from there to the two output units coding for the central residues in the window (here 'LII') to be in a
helical transmembrane region (HTM ) or not.  The output of the first level was fed into a second level of structure-to-
structure network, which additionally used the global information and the conservation weight as input.  For this network
15 hidden units were used.  The two output units code again for the secondary structure state of the central residues (here
'LII').
Abbreviations for 1st level input units:  the local information is coded by w  ¥ (21+3)  units, 20 for each amino acid, one
for a spacer (for allowing windows to extent beyond protein ends, such that the first and last w-1  residues in a protein can
be used as central residue), and three for conservation weights, numbers of insertions and numbers of deletions.  The
global information is coded by 32 additional units; 20 for the frequency of each amino acid in the protein, four for the
length of the protein, and four for the distance of the central residue to the N- and four for the distance to the C-term of the
protein.
Abbreviations for 2nd level input units:  the local information is coded by w  ¥ (3+1)  units, two for each output unit of the
first level (HTM , not HTM ), one for a spacer, and one for the conservation weight of that residue.  The global
information is used as in the 1st level input.
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Fig. 3: Generating multiple alignments for the network input.  First, for each protein the SWISSPROT  data base of
protein sequences (Bairoch & Boeckmann, 1994) was searched for putative homologues with a fast alignment method
(FASTA , Pearson & Lipman, 1988, Pearson & Miller , 1992).  Second, the list of putative homologues was re-examined
with a more sensitive profile-based multiple alignment method (MaxHom,  Sander & Schneider, 1991).  Third, a length
dependent cut-off for the sequence identity between the search sequence and the aligned ones was applied to distinguish
correct hits for homologues from false positives (for more than 80 residues aligned, the cut-off was chosen 25%+5%;
where the '+5%' reflects a safety margin above the line observed to separate correct and false homologues (Sander &
Schneider, 1991)).  Fourth, a window of 13  adjacent residues was shifted along the protein sequence.  Each such window
constituted one training or testing example for the neural network.
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cytoplasmic regions have different amino acid
compositions (von Heijne & Gavel, 1988,
Nakashima & Nishikawa, 1992). This difference
allows for a successful prediction of not only the
location of helices but, as well, of their orientation
with respect to the cell (pointing inside or outside the
cell) (Landolt-Marticorena et al., 1992, Sipos & von
Heijne, 1993, Jones et al., 1994). Going further,
Taylor and colleagues enumerate all possible models
for packing seven-helix transmembrane proteins and

select the "better models" (Taylor et al., 1994). The
selection criterion for "better models'' is the crucial
point of the method. The authors report that the
native conformation is found in "most cases" tested.
However, the N-, and C-terminal ends of the
transmembrane helices have to be predicted very
accurately for a successful automatic prediction of
3D structure from sequence (Taylor et al., 1994).

Table 1  Prediction accuracy cross-validated on helical transmembrane proteins.
overall helical transmembrane segments only

per-residue score segment based scores

set method N
  

Q2 Info
%obs

Q TM
%prd

Q TM Corr <L>
%obs
Sov

%prd
Sov

Nseg
over

Nseg
under

set 1
no profiles 69 90 0.45 84 70 0.71 23 90 81 15

6.3%
47
17%

PHDhtm          69 95 0.64 91 84 0.84 23 96 96   5
1.9%

10
3.8%

set 2
PHDhtm     37 95 91 0.85 23
Edelman, 1993 37 88 90 0.70 26

set 3
Jones+; 1994 67 15

4.5%
  6
1.9%

set 4
PHDhtm 28 3-2‡

1.6%
  3
2.3%

Persson+;1994
not cross-validated

28 2-3‡
1.6%

  3
2.3%

Abbreviations for performance accuracy:  N , number of proteins used for prediction; Q2 , percentage of correctly
predicted residues; Info , information or entropy of prediction (Rost & Sander, 1993b); QTM,  accuracy of predicting
transmembrane helices (HTM); %obs QTM , correctly predicted residues in HTM as percentage of residues observed in
HTM; %prd QTM  , correctly predicted residues in HTM as percentage of residues predicted as HTM; Corr , Matthew
correlation (Matthews, 1975) for residues in HTM; <L> , average length of predicted HTM (the observed average is <L>
= 22); %obs Sov , segment overlap for HTM computed as percentage of observed segments (Rost et al., 1994); %prd Sov
, segment overlap for HTM computed as percentage of predicted segments (Rost et al., 1994); Nseg over , number of
segments predicted but not observed as HTM; Nseg under , number of segments observed but not predicted as HTM.
Abbreviations for methods:  no profiles , two-level network system using single sequences as input (Casadio et al.,
1994);  PHDhtm , three-level network system + filter using all information from multiple alignments as input (Fig. 2);
Jones+,1994  = (Jones et al., 1994);  Edelman, 1993 = (Edelman, 1993);  Persson+,1994 =  (Persson & Argos, 1994).
Data sets used: set 1: set of 69 proteins with experimentally well determined transmembrane helices (see Methods);
set 2:  set of 37 transmembrane proteins used by (Edelman, 1993);  set 3:  set 1 without glra_rat and 2mlt;  set 4:  set of 28
transmembrane proteins used by (Persson & Argos, 1994).
 ‡ :  discrepancy in assigning transmembrane helices for atpi_pea; both methods compared predict five transmembrane
helices, in SWISSPROT  only four are annotated, thus we initially counted our prediction as wrong, whereas Persson &
Argos (Persson & Argos, 1994) based their evaluation on the hypothesis that the protein contains five and not four
transmembrane helices.
Note 1, Nseg : whenever predicted and observed segments overlapped by at least three residues the segment was counted
as correct (Rost et al., 1993, Rost et al., 1994).  A similar measure seems to have been used by others.  A more reasonable
score is the segment overlap Sov  (Rost et al., 1994).
Note 2, cross-validation: all results except for those in the last row were based on cross-validation tests.  Persson &
Argos (Persson & Argos, 1994) report that for their method the results with or without cross-validation analysis are
similar and only give the 'non-cross-validated results on proteins in their training set.
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Can the accuracy of predicting not just the location
of transmembrane helices but, as well, of the N-, and
C-terminal ends be improved?

Better prediction of transmembrane helix location.
Prediction accuracy has recently been improved
significantly (Sipos & von Heijne, 1993, Jones et al.,
1994, Persson & Argos, 1994). A system of neural
networks using single sequences as input (Fariselli et
al., 1993, Casadio et al., 1994) appears to be slightly
inferior to these methods. However, using
information from multiple sequence alignments as
input, neural networks have been shown to yield the
most accurate prediction of secondary structure for
globular proteins (Rost & Sander, 1993c, Rost &
Sander, 1993a, Rost & Sander, 1994a). Here, we
used a similar system of neural networks to predict
transmembrane helices based on evolutionary
information (Fig. 1, Fig. 2). The goal was to predict
the location of transmembrane helices (defined as
helix caps given in Swissprot (Bairoch &
Boeckmann, 1994)) more accurately than alternative
methods (Sipos & von Heijne, 1993, Casadio et al.,
1994, Jones et al., 1994, Persson & Argos, 1994).
The neural network system was tested in five-fold

cross-validation on 69 proteins with experimentally
well determined transmembrane helices (Methods).
Network input was the information derived for
successive windows of 13 adjacent residues from a
multiple sequence alignment (Fig. 3). Output were
two units, one for each state of the central residue (in
membrane helix / not in membrane helix; Fig. 2).

Results and Discussion

Evolutionary information improves prediction
accuracy significantly

Better prediction in terms of per-residue and
segment based scores. Compared to a simple neural
network, the per-residue accuracy of the full three-
level system using explicitly various aspects of
evolutionary information increased by some five
percentage points (Table 1). The improvement in
prediction accuracy was even more significant in
terms of segment-based scores: from some 75%
correctly predicted segments to 94%.

Fig. 4a Fig. 4b
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Fig. 4:  Reliability of prediction.  The reliability index for the prediction was defined as proportional to the difference
between the two output units: RI = INTEGER (10 * out(HTM) – out (not-HTM).
The factor 10 scales the reliability index to values 0-9.  (a) Overall two-state per-residue accuracy versus the cumulative
percentage of residues with a reliability index RI ≥ n, n = 0, ..., 9.  Note that with RI ≥ 0 is the rightmost point
representing 100% of the predicted residues.  Results were averaged over the residues in all 69 transmembrane proteins
used for the cross-validation test.  A network system that used multiple alignments as input was compared to a network
using single sequence information only.  For example, 90% of all residues were predicted with RI ≥ 6.  For these the
prediction accuracy for the network using multiple alignment information reached a value of Q S DO3(2) > 97%.  (b)
Percentage of residues correctly predicted in transmembrane helices versus cumulative percentage of residues predicted in
transmembrane helices with a reliability index RI ≥ n.  Results are given as percentages of the number of residues
observed in transmembrane helices (open triangles) and as percentages of the number of residues predicted in
transmembrane helices (filled circles).  For example,  about 70% of all residues predicted in transmembrane segments had
a reliability index RI ≥ 7.  95% of these were predicted correctly.
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Table 2  Observed and predicted transmembrane helices for 69 proteins.

protein observed predicted
HTM HTM

1brd (bacr_halha)
23-42 24-43
57-76 55-87
95-114 92-116
121-140 121-143
148-167 145-169
191-210 185-211
217-236 213-239

1prc_H
12-35 12-31

1prc_M
52-76 43-59
- 63-78
111-137 110-130
143-166 143-170
198-223 198-223
260-284 262-292

1prc_L
33-53 21-38
- 42-58
84-111 81-103
116-139 115-146
171-198 173-196
226-249 223-255

2mlt
2-10 -
12-25 -

protein observed predicted
HTM HTM

4f2_human
82-104 82-104

5ht3_mouse
246-272 238-270
278-296 282-301
306-324 307-331
465-484 457-484

a1aa_human
54-79 56-79
92-117 92-116
128-150 128-150
172-196 173-189
210-233 213-235
307-331 309-329
339-363 -

a2aa_human
34-59 32-60
71-96 69-100
107-129 106-133
150-173 151-169
193-217 196-221
375-399 375-399
407-430 405-429

a4_human
700-723 702-722

protein observed predicted
HTM HTM

aa1r_canfa
11-33 12-35
47-69 39-53
- 61-74
81-102 80-110
124-146 125-144
177-201 176-206
236-259 235-261
268-292 266-291

aa2a_canfa
8-30 10-32
44-66 40-71
78-100 77-105
121-143 122-141
174-198 174-203
235-258 234-260
267-290 266-290

adt_ricpr
34-54 31-46
68-88 60-87
93-113 92-115
148-168 134-148
- 156-170
185-205 185-206
219-239 217-239
280-300 271-298
321-341 322-342

protein observed predicted
HTM HTM

adt_ricpr (continued)
349-369 348-371
380-400 377-400
439-459 444-461
466-486 469-485

bach_halhm
23-42 24-43
57-76 55-87
95-114 92-116
121-140 121-143
148-167 145-169
191-210 185-211
217-236 213-239

cb21_pea
62-81 69-75
114-134 115-134
182-198 184-196

cek2_chick
365-389 371-389

cyoa_ecoli
- 12-24
51-69 44-66
93-111 90-109

protein observed predicted
HTM HTM

cyob_ecoli
17-35 -
58-76 61-77
102-121 101-131
144-162 146-158
195-213 191-212
232-250 227-252
277-296 286-302
320-339 315-335
348-366 349-368
382-401 380-401
410-429 415-440
457-476 457-470
494-513 498-519
588-607 592-608
614-634 612-626

cyoc_ecoli
32-50 29-50
67-85 67-85
102-120 101-116
143-161 138-162
185-203 178-202

cyod_ecoli
18-36 20-39
46-64 45-64
81-99 80-101

protein observed predicted
HTM HTM

cyoe_ecoli
10-28 12-24
38-56 44-66
79-97 90-109
108-126 109-127
- 142-158
- 166-181
198-216 198-222
229-247 228-252
269-287 265-287

edg1_human
47-71 45-72
79-107 80-107
122-140 116-145
160-185 160-180
202-222 201-227
256-277 254-282
294-314 288-312

egfr_human
646-668 648-666

fce2_human
22-47 27-47

glp_pig
63-85 63-84

glpa_human
92-114 91-114
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protein observed predicted
HTM HTM

glpc_human
58-81 57-81

glra_rat
539-558 536-557
585-603 -
614-632 615-636
806-826 807-826

gmcr_human
321-346 326-351

gp1b_human
148-172 147-171

gpt_crilo
7-32 12-38
58-79 59-83
95-114 96-115
126-145 127-150
165-184 157-181
195-211 187-210
222-240 224-242
253-269 249-269
275-294 277-292
379-397 379-402

hema_cdvo
35-55 37-58

hema_measi
35-55 37-58

hprotein observed predicted
HTM HTM

ema_pi4ha
35-59 37-59

hg2a_human
46-72 50-67

iggb_strsp
- 18-32
- 91-103
423-443 425-439

il2a_human
241-259 235-258

il2b_human
241-265 236-267

ita5_mouse
356-381 355-383

lacy_ecoli
11-33 11-36
47-67 46-67
75-99 75-98
103-125 104-126
145-163 148-161
168-187 169-187
212-234 219-238
260-281 265-288
291-310 294-314
315-334 320-337
347-366 343-371
380-399 377-400

lech_human
40-60 40-59

leci_mouse
40-60 40-59

protein observed predicted
HTM HTM

lep_ecoli
4-22 4-23
58-76 63-82

magl_mouse
517-536 515-534

malf_ecoli
17-35 21-35
40-58 43-58
73-91 71-93
277-295 278-306
319-337 318-339
371-389 370-390
418-436 418-444
486-504 486-505

motb_ecoli
28-49 30-51

mprd_human
186-210 185-211

myp0_human
- 14-31
154-179 155-183

ngfr_human
251-272 253-272

protein observed predicted
HTM HTM

nep_human
28-50 30-49

oppb_salty
10-30 10-29
100-121 96-120
138-158 130-162
173-190 168-193
227-250 228-259
272-293 273-298

oppc_salty
38-59 39-59
102-122 98-126
140-160 141-158
164-180 166-182
216-236 210-225
- 232-248
268-290 268-289

ops1_calvi
48-72 47-75
85-110 85-110
125-144 116-145
164-187 162-187
212-239 212-239
275-298 275-298
306-330 306-329

ops2_drome
57-81 55-84
94-119 94-118
134-153 124-153
173-196 171-196
221-248 221-248
284-307 284-307
315-339 315-338

protein observed predicted
HTM HTM

ops3_drome
58-82 57-85
95-119 95-119
134-152 125-153
172-196 169-194
221-248 221-248
285-308 285-308
317-341 317-340

ops4_drome
54-78 53-81
91-113 91-115
130-149 121-150
168-192 166-191
217-244 217-244
281-304 281-304
313-337 313-336

opsb_human
34-58 33-59
71-96 71-100
111-130 112-135
150-173 149-173
200-227 200-227
250-272 251-275
282-306 281-306

opsd_bovin
37-61 36-62
74-99 74-104
114-133 115-139
153-176 152-176
203-230 203-230
252-276 253-279
285-309 285-309

opsg_human
53-77 52-78
90-115 90-120
130-149 131-155
169-192 168-192
219-246 219-245
269-292 269-295
301-325 301-325

protein observed predicted
HTM HTM

opsr_human
53-77 52-78
90-115 90-119
130-149 131-155
169-192 168-192
219-246 219-245
269-292 270-295
301-325 301-325

pigr_human
621-643 624-643
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protein observed predicted
HTM HTM

pt2m_ecoli
25-44 20-42
51-69 54-65
135-154 133-156
166-184 167-181
- 249-262
274-291 270-283
314-333 312-332

protein observed predicted
HTM HTM

sece_ecoli
19-36 20-34
45-63 42-62
93-111 93-123

suis_human
13-32 12-33

tcb1_rabit
292-313 285-312

protein observed predicted
HTM HTM

trbm_human
516-539 515-536

trsr_human
63-88 67-86

vmt2_iaann
25-42 27-51

vnb_inbbe
19-40 19-42

For the 69 transmembrane proteins used for cross-validation the following data is listed: (i) the protein name, given by the
SWISSPROT  identifier (Bairoch & Boeckmann, 1994); if the 3D structure is known then the PDB  code plus chain
identifier is used (Bernstein et al., 1977, Kabsch & Sander, 1983)) (ii) the positions for the transmembrane helices
observed (= SWISSPROT  documentation, or DSSP  (Kabsch & Sander, 1983), counted from the first residue in
SWISSPROT  or DSSP ), and (iii) the cross-validated prediction by the network system  PHDhtm  .  Except for 2mlt and
glra_rat the list comprises a subset of the proteins used by David Jones (Jones et al., 1994) and Gunnar von Heijne (von
Heijne & Gavel, 1988, von Heijne, 1992, Sipos & von Heijne, 1993).

Reliability index of practical use to refine prediction
accuracy. For some 70% of all proteins 100% of all
segments were predicted correctly (data not shown).
The reliability of the prediction (reliability index
defined in Fig. 4) can help to estimate whether or not
a protein is likely to belong to the majority of
proteins for which all segments are predicted
correctly (Fig. 4). Furthermore, the reliability index
was used to control the filtering procedure (Fig. 5).

Performance similar to that of the best alternative
methods

Recently, two groups reported significant
improvements in predicting transmembrane helices.
Jones et al. (1994) use a new method with five
output states (HTM-inside/middle/outside and not-
HTM inside/outside, where inside/outside refers to
inside/outside the cell). Persson and Argos (1994)
use four output states (HTM-begin/middle/end and
not-HTM) plus multiple alignment information. The
system described here resulted in an accuracy in
predicting the transmembrane helices similar to these
two methods although we used only two output
states. An exact comparison of the performance
accuracy is made difficult as for both methods
neither per-residue scores are published nor the
segment measures used are defined (caption Table
1). Surprisingly, the errors made by the network
system are often different from those made by the
two statistical methods (Table 2 in comparison to
(Jones et al., 1994, Persson & Argos, 1994)).

High reliability in discriminating between
proteins with and without transmembrane helices

Does the prediction method distinguish
transmembrane from non-transmembrane proteins?
Two questions are of interest. First, did the network
system correctly predict all transmembrane proteins
used for the cross-validation analysis as
transmembrane proteins? And second, were some
globular proteins falsely predicted to contain
transmembrane segments?

Transmembrane proteins correctly identified. Both
the network system using single sequences as input
and the network using only profiles did identify all
but two proteins in the test set as transmembrane
proteins: melittin (2mlt) and the immunoglobulin G-
binding protein precursor (iggb_strsp). Melittin is a
special case, as the DSSP (Kabsch & Sander, 1983)
assignment of secondary structure splits the long
helix of the 26-residue molecule into two that were
so short that the filtering procedure would miss this
protein even on the basis of the known 3D structure.
The ultimate network system PHDhtm missed only
melittin, all other membrane proteins were correctly
identified.

Fewer than 5% false positives. To test whether
globular proteins were falsely predicted to contain
transmembrane helices we chose a set of 278 unique
globular proteins. (No network predicted a
transmembrane helix in the b-barrel porin.) PHDhtm
mispredicted fewer than 5% of the globular proteins
(Table 3). False positives were often globular water-
soluble proteins with highly hydrophobic beta
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Table 3  Prediction accuracy on globular proteins (negative control).

method number of globular
proteins used

number of    proteins
predicted with HTM

number of HTM
segments longer than
16 residues

%  o f  f a l s e
classifications

no profiles 278 18 7   6.5%
profiles only 278   5 4   1.8%
PHDhtm 278 12 7   4.3%

Jones+, 1994 155   5 -   3.2%
Edelman, 1993   14   3 - 21.4%

Abbreviations for methods as in Table 1  and Table 4 .  We considered a globular protein to be mispredicted if either at
least two transmembrane segments are predicted with more than 10 residues, or at least one with more than 17 residues.
Results from Edelman, 1993 and Jones et al., 1994 (Jones+, 1994 )  were taken from the literature.

strands in the core. An exception was the only
globular protein predicted to contain more than three
segments: photo-synthetic reaction centre (4rcr) for
which 11 segments with an average length of 21
residues were predicted as transmembrane helices
(mandelate race mace (2mnr) was predicted with
three long helices). The network using only profiles
as input predicted transmembrane helices for less
than 2% of the globular proteins.

Multi-level system improves significantly over
simple neural network

Alignment information improves performance. The
most significant improvement in prediction accuracy
(compared to a simpler neural network prediction)
stemmed from including the information contained
in multiple alignments. Roughly one half of the
improvement attributed to simply using residue
substitution frequencies (Table 4), and one half to
using additionally more details contained in the
alignments (conservation weight, number of
insertions and deletions) and information about the
whole protein (Table 4).

Balanced versus unbalanced training. The balanced
training procedure (equally often presenting residues
in transmembrane and residues not in transmembrane
segments, Methods) tended to over-predict
transmembrane helices, while an unbalanced training
procedure (presentation of examples according to the
distribution in the training set, Methods) tended to
under-predict transmembrane segments.

Jury decision finds a compromise between balanced
and unbalanced training. Both, balanced and
unbalanced training had advantages and
disadvantages. Which of the two methods should be
used for prediction? A reasonable compromise
(effectively between over- and under-prediction) was
found by the jury decision, i.e. the arithmetic average
over the output values of balanced and unbalanced
networks.

Second level elongates helices. The effect of the
second level (structure-to-structure) network was to
elongate or delete short helical segments. The effect
was an increase in the average length of a predicted
helical segment from 15 residues for the first level,
to 27 residues for the second level (Table 4). In other
words, the first level networks (Fig. 2) yielded an
average length for transmembrane segments 5-7
residues shorter than observed, the second level
networks (Fig. 2) resulted in segments up to 13
residues longer than observed. Thus, the second level
networks tended to elongate helices (Table 4).

Final filtering procedure. Short loop regions were
often missed by the second network that tended to
elongate helices too much (note that the input
window is too narrow to learn a maximal length for
transmembrane segments). This drawback was
compensated by a relatively straightforward filtering
procedure (Methods). Filtering improved the
prediction accuracy both in terms of per-residue and
segment-based measures for prediction accuracy
(Table 4).
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Table 4  Analysis of the performance for each element of the network system

overall transmembrane helices only
per-residue score segment based

scores

et method
ystem
levels Q2 Info

%obs
QTM

%prd
Q M Corr <L>

%obs
Sov

prd
ov

et 5
no profiles 2 + filter 90 0.45 84 70 0.71 23 90 81
profiles only 2 + filter 94 0.56 86 82 0.80 23 93 90
PHDhtm 3 + filter 95 0.65 91 84 0.85 23 96 96

et 1
1st unbalanced 1 93 0.52 78 81 0.75 15 84 80
1st balanced 1 91 0.53 91 71 0.76 17 80 72

1st unbalanced- 2nd unbalanced 2 93 0.52 83 80 0.77 22 88 83
1st balanced    - 2nd unbalanced 2 93 0.52 83 80 0.77 22 88 83
1st unbalanced- 2nd balanced 2 91 0.55 91 69 0.75 36 71 63
1st balanced    - 2nd balanced 2 93 0.58 93 75 0.79 29 80 75

jury over 4 networks 3 91 0.58 94 69 0.75 36 71 63

PHDhtm 3 + filter 95 0.64 91 84 0.84 23 96 96

The column 'system levels'  describes which levels of the network system were used (Fig. 2): 1, only 1st level, 2, 1st and
2nd level; 3, jury average over different 2nd level networks (Methods); filter, application of the filtering procedure (Fig.
5).  Set 1  contains 69 transmembrane proteins (Methods), set 5 , is the subset of set 1 without the PDB proteins 2mlt, 1prc
(chains H, L, M) and 1brd.  Abbreviations of measures as in Table 1 .
Abbreviations of methods:  PHDhtm ,  three-level network system + filter using all information from multiple
alignments as input (Fig. 2);  no profiles ,  two-level network system using single sequences as input (Casadio et al.,
1994);  profiles only ,  same as before, but using evolutionary profiles (and no further information derived from the
multiple alignment) as input; 1st unbalanced , first level network with unbalanced training (Methods); 1st balanced , first
level network with balanced training (Methods); 1st x - 2nd y , a second level network with y (balanced or unbalanced)
training which uses as input the prediction from a first level network with x (balanced or unbalanced) training; jury over 4
networks , arithmetic average over the four different second level networks given above.

Conclusions

Selection of data set. The 3D structure is
experimentally known for only five (1prc_H,
1prc_L, 1prc_M, 1brd, 2mlt) of the 69 protein chains
used for the cross-validation analysis. This implies
that the results ought to be taken with caution. To
increase confidence in the results, we deliberately
chose proteins for which there is 'reliable'
experimental evidence about the locations of the
transmembrane regions (list taken from Jones et al.,
1994), rather than working with a larger data set
including less well known segments.

Improved prediction of transmembrane helices.
Using various aspects of evolutionary information
improved the overall per-residue accuracy of
predicting residues in transmembrane helices by
some five percentage points. This improvement
could be significant enough to warrant use of the
predictions as a starting point for a complete ab initio
prediction of 3D structure for transmembrane regions
(Baldwin, 1993, Taylor et al., 1994). Our best
network system (called PHDhtm) correctly predicted
some 94% of all segments and the correct location of
some 90% of all residues observed in transmembrane
helices. For only four out of 15 incorrectly predicted
(either under-, or over-predicted) segments the
defined reliability index would have lead the user to
have suspect a wrong prediction (Fig. 1).
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Prediction for globular proteins sufficiently
accurate. The two-level network system using only
profiles as input mispredicted less than 2% of
globular proteins as containing transmembrane
helices (Table 3). An unsatisfactory disadvantage of
the most accurate network system PHDhtm was that
this error rate was clearly higher (<5%). However,
for most practical purposes this rate of false positives
is sufficiently low. All transmembrane proteins were
predicted to contain at least one transmembrane
helix, except for melittin which would not have been
recognised as transmembrane helix even from the
crystal structure: the strongly bent helix is split into
two short helices by the program assigning the
secondary structure automatically from 3D structures
(DSSP, Kabsch & Sander, 1983).

Weak point. A rather inconvenient aspect of the
method described here is the necessity to apply a
filter procedure (Fig. 5) at the end of the prediction.
This disadvantage will be one of the details which
still have to be improved in a more general tool.

Possible improvements of the prediction. There are
methods which predict whether or not a loop region
is located inside or outside the cell (von Heijne &
Gavel, 1988, Nakashima & Nishikawa, 1992, von
Heijne, 1992, Sipos & von Heijne, 1993, Jones et al.,
1994). Such tools could be used to either
complement the network prediction, or directly to
train a network to predict transmembrane topology
(direction of transmembrane helices with respect to
cell).

β -strand membrane proteins. How can
transmembrane segments for b-barrel proteins such
as porin be predicted from sequence? Interestingly,
the network system trained on water-soluble globular
proteins (PHDsec ), predicts the b-strands of the
membrane protein porin more accurately than the
helices of  the photo-reaction centre,
bacteriorhodopsin or the light harvesting complex.
The reason may be that the pore of porin is exposed
to solvent and thus resembles globular proteins in
some respects. The prediction of b-strands, combined
with hydrophobicity scales (Eisenberg et al., 1984b)
and/or predictions of solvent accessibility (Rost &
Sander, 1994b) has been used to infer which of the
porin strands may be in contact with lipids.
Unfortunately, however, the structure of very few b-
strand membrane proteins are known. Thus, training
of neural networks, as well as the application of
statistical methods is premature.

3D structure prediction. How can one come closer to
the goal of 3D prediction for helical membrane
proteins? One way to go from accurate predictions of

helical transmembrane locations to 3D structure has
been indicated by Taylor et al. (Taylor et al., 1994).
Whether or not the network predictions described
here in combination with a prediction of segment
orientation relative to the membrane surface will be
useful remains to be shown.

Keeping up with the flow of genome data. All results
reported here, refer to completely automatic usage of
PHDhtm . In some cases, prediction accuracy can
certainly be improved by expert knowledge, e.g. by
fine tuning the alignment. However, fully automatic
use permits the analysis of many proteins, e.g. all
open reading frames of complete chromosomes. For
example, less than an hour of CPU time (on a SUN
SPARC10 workstation) was required for the
transmembrane helix prediction of all proteins of
yeast chromosome VIII (Johnston et al., 1994), given
the multiple sequence alignments. For 59 of the 269
proteins at least two transmembrane helices were
predicted (Table 5), for another 27 of the proteins
one transmembrane helix was predicted. Given an
error rate of 5%, this implies that 20-25% of all yeast
VIII proteins were predicted to contain
transmembrane helices.

Availability of the network prediction. Predictions of
transmembrane helices (as well as secondary
structure and solvent accessibility for globular
proteins) using the method presented here are
provided via an automatic electronic mail server. If
you send the sequence of your protein, the server
will return a multiple sequence alignment and a
prediction of the location of transmembrane helices.
For further information, send the word help to the
internet  address PredictProtein@EMBL-
Heidelberg.DE by electronic mail, or use the World
Wide Web (WWW) site http://www.embl-
heidelberg.de/predictprotein/predictprotein.html.
( N O T E :  n e w  w w w  s i t e
http://cubic.bioc.columbia.edu/predictprotein).

Methods
Database

Selection of proteins

We based our analyses on a set of 69 proteins for
which experimental information about the location of
transmembrane helices is annotated in the
SWISSPROT data base (Manoil & Beckwith, 1986,
von Heijne & Gavel, 1988, von Heijne, 1992, Sipos
& von Heijne, 1993, Jones et al., 1994). This set in
particular was chosen to meet three criteria: (i) the
experimental information should be as reliable as
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Table 5   Prediction of transmembrane helices for yeast chromosome VIII.
Identifier Nres Nali location of predicted segments Nhtm

YHL040c 627  5  75-  88 116- 127 141- 157 173- 190
205- 216 231- 252 285- 308 326- 342
363- 387 404- 418 429- 441 458- 477
568- 581   13

YHL047c 637  5  70-  83 111- 122 136- 152 168- 185
200- 211 226- 247 280- 303 321- 337
358- 382 400- 413 425- 436 453- 473
563- 576   13

YHR092c 560 21  70-  87 124- 139 152- 171 179- 196
215- 226 247- 261 369- 385 400- 413
435- 459 474- 492 500- 518   11

YHR096c 592 18  85- 101 138- 154 167- 186 194- 212
230- 241 262- 276 385- 400 415- 428
450- 475 489- 507 515- 533   11

YHR094c 570 17  64-  80 118- 133 146- 165 173- 191
209- 220 241- 255 363- 379 394- 407
429- 453 468- 486 494- 512   11

YHR026w 213 18  20-  37  56-  80  94- 122 145- 168
180- 205    5

YHR002w 357  8  37-  53 102- 115 141- 153 201- 227
271- 281    5

YHL048w 381  4  39-  62  70-  93 233- 252 260- 277    4
YHR190w 444  4 272- 283 295- 310 425- 440    3
YHR129c 384 258 137- 153 349- 360    2
YHR005c 472 153 337- 347 377- 387    2
YHR183w 489 39 360- 371 418- 429    2
YHR046c 295  7 103- 117 201- 216    2
YHR176w 373  6 262- 272 338- 351    2
YHR039c 644  5  49-  66 247- 264    2
YHL011c 320 22  73-  92    1
YHR028c 818  8  26-  44    1
YHR007c 530  7  25-  47    1
YHR037w 575  4 209- 227    1

YHL016c 735  1  17-  33  91- 108 137- 153 167- 186
193- 213 256- 266 287- 311 339- 350
358- 375 402- 421 429- 450 458- 476
500- 516 620- 642 651- 674   15

YHL035c 1592  1  33-  48 172- 187 201- 217 229- 239
335- 357 378- 395 465- 486 490- 510
574- 591 977- 998 1042-1058 1120-1137
1141-1158 1226-1247 1255-1274   15

YHL036w 546  1  69-  92 100- 122 149- 171 187- 203
211- 235 261- 273 298- 315 345- 367
398- 413 433- 445 461- 477 492- 519   12

YHR048w 514  1  75-  91 112- 126 143- 160 168- 184
197- 221 229- 249 308- 334 343- 364
390- 407 415- 438 478- 498   11

YHR050w 549  1  92- 106 135- 156 164- 181 199- 218
246- 257 309- 333 361- 376 409- 423
434- 451 518- 538   10

YHR123w 391  2  40-  67 123- 156 177- 199 218- 235
267- 286 294- 312 320- 342 350- 372    8

YHL003c 411  3  82- 100 133- 160 181- 198 216- 238
256- 288 303- 319 353- 383    7

YHL017w 532  2 194- 212 227- 243 260- 290 307- 318
331- 353 376- 399 420- 438    7

YHR050w 549  1  92- 106 135- 156 164- 181 199- 218
246- 257 309- 333 361- 376 409- 423
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CAPTION:  Table 5
As typical example for the application of the method and as an independent test of the predictive power of the method, we
predicted the transmembrane helices for all proteins from the complete yeast chromosome VIII (Johnston et al., 1994).
For 59 proteins (out of 269) two or more transmembrane helices were predicted.  The proteins are labelled by the
identifier used in (Johnston et al., 1994).  Shown are the predictions only for those proteins for which sufficient alignment
information was available (Bork, Ouzounis, Sander, manuscript in preparation) or which were predicted to have more than
six transmembrane segments.  Abbreviations: Nres : length of protein; Nali : number of sequences in the multiple
alignment ('1' means that the prediction is based on a single sequence only); Nhtm : predicted number of transmembrane
segments.
In some cases confirmation of the correctness of the prediction comes from detailed sequence analysis (Johnston et al.,
1994, Bork, Ouzounis and Sander, unpublished): the likely function identified on the basis of sequence similarity to
proteins of known function is consistent with the presence of helical transmembrane regions.  Examples are: YHR026w,
an ATPase; YHR048w, a resistance protein, probably works by pumping substances out of the cell through a membrane
pore; YHR050w /92c /94c /96c, potential transporters; YHR190w, farnesyltransferase; YHR123w, phosphor transferase;
YHR005c, G-protein alpha subunit; YHR183w /39c, dehydrogenase.

possible (Manoil & Beckwith, 1986, von Heijne,
1992); (ii) comparability: to enable a comparison to
similar methods, the data set should be similar to
those used by others; (iii) availability: the list (Table
2) was the subset of those proteins used by Jones et
al. (1994) that were available in SWISSPROT when
we had started the project (melittin (2mlt) and the
glutamic receptor (glra_rat, O'Hara et al., 1993) were
added). For the few known 3D structures, the
location of the transmembrane regions was taken
from DSSP (Kabsch & Sander, 1983). The exact
locations of the transmembrane helices are often
controversial. To enable a straightforward
comparison to future methods and for making our
results easily reproducible for others, we decided to
always use the definitions found in Swissprot
(Bairoch & Boeckmann, 1994).

Generation of multiple alignments

For each of the initial 69 proteins a multiple
sequence alignment was generated using the program
MaxHom (Sander & Schneider, 1991; Fig. 3). All
sequences from Swissprot with a sequence identity
above a length-dependent cut-off were included in
the alignment (Sander & Schneider, 1991), assuming
that this is valid not only for globular but also for
membrane proteins.

Cross-validation test

The set of 69 transmembrane proteins (Table 2) was
divided into 52 proteins used for training and 17
used for testing the method. This was repeated five
times (five-fold cross-validation), until each protein
had been in a test set once. The sets were chosen
such that no protein at in the multiple alignments
used for testing had more than 25% sequence
identity to any protein in the multiple alignments of

the training set. All results reported are averages
over proteins in various test sets.

Neural network system

First level: sequence-to-structure

The principles of neural networks for secondary
structure prediction (Fariselli et al., 1993, Rost &
Sander, 1993a) and of coding multiple sequence
information (Rost & Sander, 1993b, Rost & Sander,
1994a, Rost & Sander, 1994b) are described in detail
elsewhere. Here, only some basic concepts will be
recapitulated and details regarding the application to
transmembrane helices will be introduced.

Input to the first level network consisted of two
contributions, (i) one local in sequence, i.e. taken
from a window of 13 adjacent residues; and (ii)
another global in sequence, i.e. compiled from the
whole protein (Fig. 2). (i) The local information
computed for each residue in the window was the
frequency of occurrence of each amino acid at that
position in the multiple alignment, the number of
insertions and deletions in the alignment for that
residue, and a position specific conservation weight
(Fig. 2). (ii) As global information we used the
amino acid composition and length of the protein
and, furthermore, the distance (number of residues)
of the first residue in the window of 13 adjacent
residues from the protein begin (N-term), and the
distance of the last residue in the window to the
protein end (C-term).

Output of the first level network were two units, one
representing examples with the central residue of the
window being in a transmembrane helix, the other
representing examples with the central residue not
being in transmembrane helices (Fig. 2).
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Balanced and unbalanced training

Training was performed with the usual gradient
descent (also known as back-propagation Rumelhart
et al., 1986)):

∆ ∆J Jij ij (t +1) =     
E (t)
J  (t)

 +     (t)
ij

ε α⋅ ⋅   (1)

where t is the algorithmic time step (i.e. change of all
connections for one pattern), E is the error, given by
the difference between actual network output and the
desired output (i.e. the value observed for the central
residue); Jij is the connection from unit j to unit i on
the next layer (input to hidden, hidden to output); ε is
the learning speed, chosen here to be 0.01; and α the
momentum term (permitting up-hill moves), chosen
here to be 0.2. Two modes were used. First,
unbalanced training: at each time step of the error
minimisation one pattern was chosen at random from
the training set, and all connections of the network
were changed. Second, balanced training: at each
time step of the error minimisation (eqn. 1) one

pattern from the class 'transmembrane helix' and one
from the class 'not transmembrane helix' was used to
change all connections.

Network parameters

All units were connected to all those on the next
layer (input to hidden, hidden to output). The
network parameters such as criterion to terminate the
training procedure, number of hidden units, training
speed (e in eqn. 1), and momentum term (a in eqn. 1)
were chosen arbitrarily based on our experience with
secondary structure prediction for globular proteins.
In other words, these parameters were not influenced
by the test set. Training was stopped when the
training set had been learned to an accuracy of 93%
for the first and of 95% for the second level network.
As for the number of hidden units, we started
arbitrarily with 3 hidden units for the first level of
network, and increased the number for the second
level network to 15 since training too often ended in
local minima.

too short helices

if { L < 17  ∩   RI>7 (at either end of helix) }--> elongate helix by one residue
       until L ≥ 17
if { only one helix predicted }
 if { L < 17 }    --> cut helix
if { at least 2 helices predicted }
 if { L < 11 }    --> cut helix

too long helices

if { L > 35  }     --> split helix at position L/2
                  into two helices of length L/2
if { L > n × 22, n=3,4,...  }   --> split helix into n of length L/n

Fig. 5: Filtering the prediction.  The output of the third level (jury prediction) was filtered to delete too short and to split
too long predicted transmembrane helices.  The splitting of too long segments was usually done exactly in the middle of
the segment by flipping the prediction for one residue from HTM  (helical transmembrane) to not-HTM .  Two exceptions
were: (i) if there was a residue in a three-residue neighbourhood of the central residue with a lower reliability index than
that of the central one, than splitting was performed at that residue; (ii) if the two residues on both sides of the central
residue were predicted with a reliability index (RI) < 3, than up to five residues in total are flipped from the state HTM  to
not-HTM .
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Second level: structure-to-structure

The input to the second level network consisted - as
to the first level - of a contribution local in sequence
and a contribution global in sequence (Fig. 2). (i) For
each residue in the input window the local input
were the values of the two output units of the first
level network and the conservation weight. (ii) The
global input information was the same as for the first
level network. The output of the second level
network - as for the first - consisted of two units for
the central residue either being in a transmembrane
helix or not.

Third level: jury decision

To find a compromise between networks with
balanced and those with unbalanced training a final
jury decision was performed (effectively a
compromise between over- and under-prediction,
Results). The jury decision was a simple arithmetic
average over four differently trained networks: all
combinations (2 ¥ 2) of first level network with
balanced and unbalanced training, and with balanced
or unbalanced training of second level network. The
final prediction was assigned to the unit with
maximal output value ('winner takes all').

Fourth level: filtering the prediction

In contrast to earlier prediction methods (Jones et al.,
1992, von Heijne, 1992, Persson & Argos, 1994),
which explicitly fix the length of predicted
transmembrane segments to typically 17-25 residues,
the second level network occasionally resulted in
transmembrane helices that were either too short or
too long. This was corrected by a non optimised
filter that was guided by the experiences of previous
work (von Heijne, 1986, von Heijne & Gavel, 1988,
von Heijne, 1992, Sipos & von Heijne, 1993,
Casadio et al., 1994, Jones et al., 1994).

Too long helices were either split in the middle into
two shorter helices or were shortened (Fig. 5). Too
short helices were either elongated or deleted. All
these decisions (split or shorten; elongate or delete)
were based both on the strength of the prediction
(reliability index, Fig. 2) and on the length of the
predicted transmembrane helix (Fig. 5).
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