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Abstract—This paper contributes to the ongoing discussion
within the photonic crystal community by providing essential in-
sight into the limiting conditions of the coupled cavity waveguiding
mechanism. A theoretical and numerical description of coupled
defects in PBG crystals is applied to quantify the conditions under
which reflections occur within coupled cavity photonic crystal
systems. We present an analysis of coupled cavity systems that
form a straight and bent waveguide, a Y-shaped symmetric power
splitter, and a waveguide incorporating two bends. The method is
based on a weak interaction approach; the actual configuration of
the defects (chain, lattice, bend, splitter, or anything else) enters
the equations as a linear coupling between neighboring defects.
The strength of this method is that many solutions of this system
are known analytically, and that the band structure as well as
the transmission and reflection response of the system can be
determined.

Index Terms—Electromagnetic crystals, periodic structures,
photonic bandgap crystals.

I. INTRODUCTION

PHOTONIC crystals (PCs) allow us to control the emis-
sion and propagation of electromagnetic waves to an ex-

tent that was previously not possible. These periodic structures
have been investigated energetically in recent years. They are
characterized by three parameters: the spatial period, the frac-
tional volume of the constituent materials, and their dielectric
constants. By properly selecting these parameters, one can gen-
erate gaps in the electromagnetic dispersion relation in which
propagating electromagnetic modes are forbidden.
An ideal PC is constructed by the infinite repetition of iden-

tical structural units in space. Considerable effort in theoretical,
experimental, and material fabrication research has predicted
and demonstrated many of the properties of these ideal crys-
tals. Introducing some disorder by placing a “defect unit” within
an otherwise perfect photonic crystal can create localized trans-
mission peaks within the forbidden bandgap of the structure. A
single planar defect can form a mechanism for wave guiding.
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Fig. 1. Planar defect introduced into a hexagonal PC. Reproduced from [19]
with permission.

Previous work [1] has suggested PC channel waveguides
that consist of a line defect introduced into an otherwise perfect
two-dimensional (2-D) crystal. Various bends, couplers, and
add–drop multiplexers have also been proposed [2]–[4]. Some
of the theoretical analysis was based on a single-mode air
waveguide created within a square lattice of dielectric pillars.
However, air waveguiding solutions in 2-D lack confinement in
the third vertical direction. Furthermore, they require infinitely
deep structures that can be readily analyzed but are more
challenging to fabricate. A more pragmatic solution would be
based on a dielectric waveguide and uses the inverse geometry,
i.e., air holes in a dielectric host (see Fig. 1) [5], [6]. However,
this complicates the issue because mode mixing occurs at
interfaces and discontinuities such as bends. Conversely,
dielectric channel guidance does have the added benefit that
guiding is maintained within the periodic plane by total internal
reflection, which is not the case for guides made from air.
Dielectric guides are also inherently more compatible with
conventional ridge waveguides and active elements, easing
material mismatch and interface problems.
Another type of waveguide has attracted considerable atten-

tion recently. Instead of a continuous dielectric linear defect,
this type makes use of a periodic chain of localized defects that
have been either completely or partially in-filled. The introduc-
tion of several localized defects, within coupling distance of
each other, opens up a mini-band of allowed transmission [7],
[8]. Chains or cascades of localized defects form a mechanism
for waveguiding, commonly referred to as coupled cavity wave-
guides (CCWs), a known concept in 1-D structures [9]. Experi-



Fig. 2. A CCW into a hexagonal PC. The bottom picture shows the detail of
an “in-filled” defect unit.

mental verification of 3-D CCWs has successfully been demon-
strated for various PCs in the microwave regime by Bayindir,
Temelkuran, and Ozbay [3], [10]–[12] and research into equiv-
alent 2-D structures is underway at optical wavelengths [13],
[14]. Fig. 2 shows a CCW and close up of the coupled cavity
guiding region for optical wavelengths.
It has frequently been assumed that bends can be introduced

into the waveguide path by taking advantage of the crystal’s in-
herent lattice symmetry without consequential bend reflection
loss. In this paper, we build upon our method based on a weak
interaction approach, deriving explicit expressions for defect in-
teraction [15], to demonstrate analytically that the mini pass-
band created by CCW bends may only reach 100% transmis-
sion for a strict set of criteria. The basis is formed by a system
of coupled ordinary differential equations for the field ampli-
tudes for individual defects. The actual configuration of the de-
fects (chain, lattice, bend, splitter, or anything else) enters the
equations as a linear coupling between neighboring defects. The
strength of this method is that many solutions of this system are
known analytically; the band structure as well as the transmis-
sion and reflection response of the system can be determined. In
this paper, this approach is applied to elegantly describe CCW
waveguides, bends, and power splitters, which are difficult to
simulate with transfer matrix codes. The analysis intuitively de-
termines the reflection and transmission properties of the struc-
ture providing essential insight into the limiting conditions of
the CCW mechanism.

II. COUPLED-MODE THEORY FOR COUPLED DEFECT SYSTEMS

The method is described in full detail elsewhere [15]; there-
fore, only the main principle is reiterated here. Coupled-mode
theory provides us with a deeper insight into the energy transfer
dynamics of coupled defect systems. In the case of weak inter-
action, the modal field structure of individual defects remains
unchanged, and only the respective field amplitudes evolve in
time. Provided that the individual defects are similar and single

mode, the dynamics of the coupled defect system are described
by a set of ordinary differential equations, generally

(1)

where the sum accounts for the energy transfer between the
defect modes, is the eigenfrequency of the defect, and

is the decay rate. There are two possible reasons for
this decay. First, dielectric losses as well as out-of-plane-scat-
tering into substrate or cladding give rise to energy losses. The
magnitude of these losses should not depend on the position of
the defect within the crystal and is represented by . Second,
further decay is attributed to power transfer to the environment
of the crystal and is represented by . Real PC systems are fi-
nite; therefore, boundaries play an important role. The fields at-
tached to the defect transform from bound states, which decay
exponentially into every space direction to leaky modes, which
have oscillating tails outside the PC and contribute to either the
transmitted or the reflected fields. The same defect mode can
be excited by external radiation allowing for an interaction of
the coupled defect system with its environment. Obviously,
is different from zero for defects close to the side facet or inter-
face of the crystal. The driving field at the defect couples to
the outermost defects via and is represented in the evolution
integral via the term . As with , this term will play a role
only at the outermost defects.
Conservation of energy determines the relations between the

coupling to external fields and radiative losses (see [15]). The
transmitted field is always proportional to the amplitudes of the
defect amplitudes closest to the output facet. The overall dynam-
ical response of the defect system is determined by the coupling
coefficients . They are real valued and given by the mutual
overlap between the field structures of the defect modes and

and the changes of the dielectric constant , which has
induced the defects

(2)

III. COUPLED-MODE THEORY FOR PHOTONIC COMPONENTS

As demonstrated in [15], coupled-mode theory can provide us
with insight into the frequency response and transmission char-
acteristics of defect lattices. Previously it was applied to a super-
lattice of defects, but the main potential of this approach is that
it can be applied to create an elegant description of CCW com-
ponents such as waveguides, bends, and power splitters [16],
which are difficult to simulate with transfer matrix codes. Here
we sketch the procedure while evaluating the dynamical re-
sponse of a defect chain.

A. Straight Defect Chain

A simple CCW chain consists of regularly spaced defects
(see Fig. 2). For the case of a straight chain, the next-nearest



Fig. 3. Field evolution on a chain of coupled defects after an excitation of
defect 0 at time 0 (the power at the individual defects is plotted).

neighbor interaction has to cover double the spacing compared
with nearest neighbor interaction. Because all the interactions
should be weak and the fields of defect modes decay exponen-
tially in space, only the nearest neighbor interaction is consid-
ered. Hence, the amplitudes of the defect modes far from inter-
faces follow the evolution equation

(3)

For vanishing losses ( ), there are waves traveling along
the chain as

(4)

The wavenumber and the frequency are linked to each
other via the dispersion relation

(5)

which also defines the mini band structure of the CCW. To get
an impression of the dynamical response of the straight defect
chain, we assume a point-like excitation of a single element of
the CCW. This could be either by spontaneous emission or by
some external excitation. We define our initial condition as

for and

The solution of (3) is known [15] as

(6)

where is the Bessel function of order . The respective spa-
tial temporal field evolution for vanishing losses is displayed in
Fig. 3. Obviously the excitation rapidly expands in space. The
respective front is determined by those frequency components
of the mini-band with the maximum group velocity

(7)

which amounts to for or . Pulses with a
frequency in the middle of the mini-band travel with the highest
velocity. This maximum velocity limits the speed of any signal
transfer along the chain.

B. Transmission Response of a Bend

Next we discuss the spectral response of a slightly more
involved photonic component—a bend in a defect guide in
a hexagonal PC lattice. For a bending angle of 120 within
a hexagonal lattice, defects close to the corner may start
to interact via next-nearest neighbor interaction [coupling
coefficient , see Fig. 4(a)]. To demonstrate the effect of
nonvanishing next-nearest-neighbor interaction, we assume
additional losses to be negligible ( ). The respective
evolution equations are

or

(8a)

(8b)

For a monochromatic excitation, the field before the bend
( ) consists of incident and reflected components

(9a)

where only the transmitted fields leave the bend toward defects,
with corresponding increasing as follows:

(9b)

All the waves are eigensolutions of the straight defect chain
and obey the dispersion relation (5). Note that the dispersion re-
lation (5) means that the defect chain itself is only transparent
in a limited frequency domain . Otherwise is
imaginary andwaves are evanescent. Inserting (9a) and (9b) into
(8), we can determine the reflectivity of the bend analytically as
shown in (10), at the bottom of the page, where
is the detuning from the defect frequency. Hence, the reflection
of the bend can only vanish if next-nearest neighbor interaction
is negligible ( ). In this case, the evolution equations of
the bend (8) become similar to those of the straight defect chain
(3), and the system remains transparent. For strong next-nearest
neighbor interaction, the bend is transparent at a particular fre-
quency point , which is only in the transparency
region of the defect chain for . Fig. 4(b) shows plots of
the reflection response of a bend for some particular values of

. For realistic values of (in [15] was determined
to amount to about 1/3 in case of a 1 in 3 defect lattice) the re-
flection is noticeable and pronounced at the band edges.

(10)



(a)

(b)

Fig. 4. Spectral response of a bend in a defect chain in a hexagonal PC
lattice. (a) Top: image of a bend in a 1-in-2 defect chain. Middle: schematic
drawing. (b) Reflection for varying ratio of the next-nearest to nearest neighbor
interaction.

However, for a hexagonal lattice and a bending angle of 60 ,
the defects interact via the next-nearest neighbor in-
teraction and therefore resulting in significant levels
of reflection. It is interesting to note that next-nearest neighbor

interaction not only reduces the transmission of a bend, but can
also introduce new peaks into an overall transmission response.
For , the bend gives rise to the formation of a bound
state. The frequency and mode profile of the bound state can be
determined by setting in (9a) and solving with an imag-
inary value of . A bound state with even symmetry ( )
always exists. However, the eigenfrequency is outside the trans-
parent region of the defect chain and is determined by

(11a)

where is a solution of the equation

For a strong next-nearest neighbor interaction ( ), a
second bound state with odd symmetry (
) appears on the other side of the transparent domain with an
eigenfrequency

(11b)

A complete device will show a transmission peak outside the
mini-band, if the frequency of the incident wave hits one of the
eigenfrequencies given in (11a) and (11b).

C. Response of a Splitter

A simple power splitter is shown schematically in Fig. 5(a).
To simplify the analytical treatment, we restrict the analysis to
nearest neighbor interactions and assume vanishing losses. The
power splitter is assumed to be symmetric, but the coupling co-
efficients in the input and output channels can be different. The
respective evolution equations are

(12a)

(12b)

(12c)

For a monochromatic excitation, the field before the splitter
consists of incident and reflected components

(13a)
and only the transmitted fields leave the splitter toward defects
with positive

(13b)

The respective propagation constants are elements of the band
structure of the defect chains and are determined by the actual
frequency detuning as

(13c)



(a)

(b)

Fig. 5. Spectral response of a Y -junction. (a) Schematic drawing.
(b) Reflection for different ratios of the coupling constants.

The spectral response of the splitter is investigated for fre-
quencies, where the input channel is transparent. By assuming
that the coupling coefficient in the output channels is similar,
symmetry dictates that the transmitted fields are equal in the
right and left output channels. Inserting (13a)–(13c) into (12),
we can determine the reflectivity of the junction analytically as
shown in (14) at the bottom of the page.
Equation (14) can only vanish if the real and imaginary parts

of its numerator cross zero simultaneously. This happens for
particular points in parameter space only, namely for

and . Generally the splitter reflects some of the

power [see Fig. 5(b)]. Equation (14) can be simplified for the
case of equal coupling in input and output channels (

). In this case, the portion of the reflected energy
amounts to

(15)

Note that, as in the case of the simple bend, the slow waves at
the edges of the mini-band experience the strongest reflection.
The transparent spectral range is effectively narrowed by the
action of the splitter. This result does not change, even if long-
range coupling is taken into account.

IV. PHOTONIC COMPONENTS IN REAL CRYSTALS

Having evaluated the response of different photonic compo-
nents, we evaluate how these structures behave in real crys-
tals by examining in more detail the influence of losses and
boundaries.

A. Transmission of a Straight Defect Chain

The straight defect chain is homogenous; therefore, reflection
only occurs at external boundaries. Assume the chain to be ex-
tended between two interfaces, the first ( ) and the last de-
fects ( ) will experience additional loss ( , )
and lack one neighbor. While (3) is still valid within the chain,
the defects at both ends are now described by a slightly different
evolution equations

(16a)

(16b)

Here we assume defect to be driven by the external
radiation . The overall transmitted field is proportional
to the field amplitude at defect like . Radia-
tive damping, represented by , and coupling to external ra-
diation are related to each other due to energy conservation

. The first defect of the chain also radiates to outer
space, interfering with the field that is directly reflected by the
crystal interface. Consequently, the overall reflectivity depends
not only on the CCW itself, but also on the shape of the excita-
tion and on the structure of the surface of the crystal.
We concentrate here on the transmission of the structure. Be-

cause the efficiency of the excitation represented by is not
known, we can only give qualitative estimates of the transmis-
sion. Even in the presence of losses, forward and backward
propagating waves exist, and each defect amplitude is a super-
position of two wave amplitudes

(17a)

(14)



Fig. 6. Transmission of a straight CCW for varying losses  =c (number of
defects: 10, strength of radiative losses at the interfaces:  =  = 0:4c ).

where the complex wavenumber and the frequency detuning
are now linked by

(17b)

Inserting (17a) and (17b) into (16) and solving the respective
system of linear equations determines the transmission as shown
in (18) at the bottom of the page.
Fig. 6 shows a typical transmission spectrum of a straight

defect chain for varying losses . As expected, every single
defect produces a separate peak in the transmission band. In
the middle of the mini-band, the peaks are wider, because the
excited wave travels fast and decays quickly [see (5) and (7)].
Increasing losses reduce the overall transmission and wash out
the internal structure of the response function.

B. Transmission of a CCW With Two Internal Bends

Finally, we evaluate the spectral response of a more compli-
cated structure—a CCWwith two internal bends [see Fig. 7(a)].
Such structures were used to evaluate the efficiency of wave-
guide bends in PCs [18]. Here we demonstrate that a nonzero
next-nearest neighbor interaction can alter the performance of
such a device considerably. Basically, the transmission function
of this structure can also be determined analytically in the same
manner as was done above for the straight CCW. However, be-
cause a system of six coupled linear equations has to be solved
(every bend adds two equations), the resulting analytical solu-
tion is too bulky to be reproduced.
If only neighboring defects interact, the spectral response is

that of a straight chain of defects. As soon as the next-nearest
neighbor interaction comes into play, the whole transmission
function becomes distorted [see Fig. 7(b)]. Induced changes are
asymmetric in frequency space and can clearly be distinguished
from any changes, which are induced by losses; compare Figs. 6
and 7(b). It is interesting to note that peaks are shifted outside the
mini-band. For a frequency detuning of , the CCW is

(a)

(b)

Fig. 7. Transmission of a double-bend structure: (a) two possible realizations
and (b) spectral response (gray area: without next-nearest neighbor
interaction c = 0, solid line: next-nearest neighbor interaction in the bends
c = c =3;  =  = 0:4c ).

not transparent and the resonance originates from bound states
formed in the bends [see (11a)].

V. CONCLUSION

We have shown that a set of coupled ordinary differen-
tial equations describing defect coupling within a photonic
crystal creates a powerful analytical tool. This tool has then
been applied to analyze a straight, coupled cavity waveguide, a
waveguide bend, and a symmetrical power splitter. Next-nearest
neighbor interactions between defects have shown to be critical
in governing the reflection from a waveguide bend. The overall
reflectivity of the crystal will also depend on the shape and
type of interface at the surface of the crystal. We have shown

(18)



that, generally, power will always be reflected from a CCW
splitter as the criteria for zero reflection are quite stringent.
Furthermore, a CCW splitter narrows the spectral range of the
CCW system.
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