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Transmission Capacity of Ad-hoc Networks

with Multiple Antennas using Transmit Stream

Adaptation and Interference Cancelation

Rahul Vaze and Robert W. Heath Jr.

Abstract

The transmission capacity of an ad-hoc network is the maximum density of active transmitters per

unit area, given an outage constraint at each receiver for a fixed rate of transmission. Assuming that

the transmitter locations are distributed as a Poisson point process, this paper derives upper and lower

bounds on the transmission capacity of an ad-hoc network when each node is equipped with multiple

antennas. The transmitter either uses eigen multi-mode beamforming or a subset of its antennas to

transmit multiple data streams, while the receiver uses partial zero forcing to cancel certain interferers

using some of its spatial receive degrees of freedom (SRDOF). The receiver either cancels the nearest

interferers or those interferers that maximize the post-cancelation signal-to-interference ratio. Using the

obtained bounds, the optimal number of data streams to transmit, and the optimal SRDOF to use for

interference cancelation are derived that provide the best scaling of the transmission capacity with the

number of antennas. With beamforming, single data stream transmission together with using all but

one SRDOF for interference cancelation is optimal, while without beamforming, single data stream

transmission together with using a fraction of the total SRDOF for interference cancelation is optimal.

I. INTRODUCTION

In an ad-hoc wireless network, multiple transmitter-receiver pairs communicate simultaneously

without the help of any fixed infrastructure. Inter-user interference is a major bottleneck in an ad-
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hoc wireless network, severely limiting the rate of successful transmissions. One way to quantify

the performance in an ad-hoc network is through the notion of the transmission capacity. Defined

in [1], and subsequently studied in [2]–[5], the transmission capacity of an ad hoc network is the

maximum allowable transmission density of nodes, satisfying a per transmitter receiver rate, and

outage probability constraints. The transmission capacity characterizes the maximum density of

spatial transmissions that can be supported simultaneously in an ad hoc network under a quality

of service constraint.

Employing multiple antennas at each node is one way to manage interference and increase

data rate in an ad-hoc wireless network. For example, multiple antennas can be used to increase

the per-link rate through spatial multiplexing, or to increase spatial diversity for reducing fading

outages, or for receiver interference cancelation to remove strong interferers. The transmission

capacity of some specific multiple antenna strategies like beamforming, maximum ratio com-

bining (MRC), spatial multiplexing, and zero forcing have been derived in prior work [6]–[11].

The general problem of finding the optimal use of multiple transmit and receive antennas to

maximize the transmission capacity has however remained unsolved.

To characterize the optimal use of multiple antennas in ad hoc networks, in this paper we

derive upper and lower bounds on the transmission capacity in multiple antenna ad hoc networks,

with multi-stream transmission and interference cancelation at the receiver. We assume that the

transmitter locations are distributed as a Poisson point process (PPP), and each node of the

ad-hoc network is equipped with N antennas for transmission and reception.

We consider two transmission strategies: multi-mode spatial multiplexing without channel

state information at the transmitter (CSIT) [12], and multi-mode beamforming with CSIT [13].

We assume that each receiver uses partial zero forcing (ZF), where some of the spatial receive

degrees of freedom (SRDOF) are used for decoding the signal of interest leaving the remaining

SRDOF for interference cancelation. We derive results when each receiver cancels the nearest

interferers in terms of their distance from the receiver, or cancels the interferers that maximize

the post-cancelation signal-to-interference ratio (SIR). Our results are summarized as follows.

• Spatial Multiplexing (without CSIT)

– Canceling the nearest interferers in terms of their distance from the receiver, or the

interferers that maximize the post-cancelation SIR: Transmitting a single data stream

together with using a fraction of total SRDOF for interference cancelation provides the
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best scaling of the transmission capacity with respect to N ; the transmission capacity

lower bound scales linearly with N . 1

• With Transmit Beamforming (with CSIT)

– Canceling the nearest interferers in terms of their distance from the receiver:

Single stream beamforming together with using N − 1 SRDOF for interference can-

celation provides the best scaling of the transmission capacity with respect to N ; the

transmission capacity lower bound scales linearly with N . 2

The differences between our paper and prior work are summarized as follows. Without CSIT,

the transmission capacity has been analyzed for single transmit antenna with no interference

cancelation [6], multiple transmit antennas with no interference cancelation [9], [10], single

transmit antenna with canceling N − 1 interferers [7], and single transmit antenna and using a

fraction of total SRDOF for interference cancelation [8]. In this paper we consider multi-stream

transmission, unlike [6]–[8], and canceling a fraction of the received interferers, generalizing

[6]–[10]. Without CSIT, and when receiver employs interference cancelation, we show that it is

optimal to transmit a single data stream and use a fraction of the total SRDOF for interference

cancelation. Our work shows that the strategy proposed in [8] is transmission-capacity scaling

optimal in terms of the number of antennas.

With CSIT, the transmission capacity has been computed for single stream beamforming

without interference cancelation in [6]. We generalize [6] by considering interference cancelation

together with multi-mode beamforming, where multiple data streams are sent by the transmitter

on multiple eigenmodes of the channel. Our results show that using interference cancelation at

the receiver in conjunction with single stream beamforming, the transmission capacity scales

linearly with N in contrast to sublinear scaling without interference cancelation [6].

Notation: Let A denote a matrix, a a vector and a(i) the ith element of a. The field of real

and complex numbers is denoted by R and C, respectively. The space of M ×N matrices with

complex entries is denoted by CM×N . An N × N identity matrix is represented by IN . The

Euclidean norm of a vector a is denoted by |a|. The superscripts T ,∗ represent the transpose,

and the transpose conjugate, respectively. The expectation of a function f(x) of random vari-

1The results for canceling the nearest interferers without transmit beamforming have appeared in [14] in part.
2The results for canceling the nearest interferers with transmit beamforming have appeared in [15] in part.
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able x is denoted by E{f(x)}. The integral
∫∞

0
xk−1e−xdx is denoted by Γ(x). A circularly

symmetric complex Gaussian random variable x with zero mean and variance σ2 is denoted as

x ∼ CN (0, σ2). The factorial of an integer n is denoted as n!. Let S1 be a set, and S2 be a subset

of S1. Then S1\S2 denotes the set of elements of S1 that do not belong to S2. The cardinality

of any set S is denoted by |S|. Let f(n) and g(n) be two function defined on some subset of

real numbers. Then we write f(n) = Ω(g(n)) if ∃ k > 0, n0, ∀ n > n0, |g(n)|k ≤ |f(n)|,

f(n) = O(g(n)) if ∃ k > 0, n0, ∀ n > n0, |f(n)| ≤ |g(n)|k, and f(n) = Θ(g(n)) if

∃ k1, k2 > 0, n0, ∀ n > n0, |g(n)|k1 ≤ |f(n)| ≤ |g(n)|k2. We use the symbol := to define a

variable.

Organization: The rest of the paper is organized as follows. In Section II, we describe the

system model under consideration. In Section III, upper and lower bounds on the transmission

capacity are derived for the case when the transmitter sends multiple independent data using

spatial multiplexing and the receiver uses partial ZF decoder. In Section IV, upper and lower

bounds on the transmission capacity are derived for the case when the transmitter uses multi-

mode beamforming, and the receiver uses partial ZF decoder. Numerical results are illustrated

in Section V followed by conclusions in Section VI.

II. SYSTEM MODEL

Consider an ad-hoc network where each node is equipped with N antennas for transmission

and reception. We adopt the assumptions considered in previous transmission capacity analysis

of ad-hoc networks [1], [2], [7]. The location of each source is modeled as a homogenous PPP

on a two-dimensional plane with intensity λ0. Thus, the mean number of sources in an unit

area is λ0. Each source node communicates with one destination located at a fixed distance d

away. We consider a slotted ALOHA like random access protocol, where each source attempts to

transmit with an access probability pa, independently of all other transmitters. 3 An active source

is referred to as a transmitter, and a destination associated with a transmitter is referred to as a

receiver. Consequently, the transmitter process is also a homogenous PPP on a two-dimensional

plane with intensity λ = paλ0. Let the location of the nth transmitter be Tn for n ∈ N. The

3Other more intelligent MAC strategies such as not allowing interferers inside a guard zone to transmit have been considered

in prior work for computing the transmission capacity [16]. Their analysis, however, is quite complicated and is outside of the

scope of this paper.
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set of all transmitters is denoted by Φ = {Tn}. Following [1], we consider a typical transmitter

receiver pair (T0, R0) to compute the transmission capacity, since from the stationarity of the

homogenous PPP, and Slivnyak’s Theorem (Page 121) [17], it follows that the statistics of the

signal received at the typical receiver are identical to that of any other receiver.

A. Signal Model

Let xn = [xn(1), . . . , xn(k)]T , k ∈ [1, 2, . . . , N ], denote the data stream vector to be sent

by transmitter Tn to its receiver Rn, where each xn(m), m = 1, . . . , k is i.i.d. CN (0, P/k)

distributed, and P is the average power constraint at the each transmitter. Let H0n ∈ CN×k be

the channel coefficient matrix between Tn and R0 with i.i.d. CN (0, 1) distributed entries, and

dn be the distance between Tn and R0. We assume that the path loss exponent α > 2.

We consider two transmission strategies. Under a no CSIT assumption, we consider spatial

multiplexing where transmitter Tn sends vector Pnxn, where Pn = IkN , where Ak denotes the

matrix consisting of first k columns of any matrix A. Under a CSIT assumption, we suppose that

the transmitter Tn knows the channel Hnn between itself and its corresponding receiver Rn, and

sends Pnxn, where Pnn = Vk
nn, and the singular value decomposition of Hnn := UnnDnnV

∗
nn.

We use the path loss model of D−α, if the Euclidean distance between any two nodes is D.

We describe the signal model in detail for the typical transmitter-receiver pair (T0, R0). The

received signal at the typical receiver R0 is

y0 = d−
α
2 H00P0x0 +

∞∑
n:Tn∈Φ\{T0}

d
−α

2
n H0nPnxn + z0, (1)

where z0 is the additive white Gaussian noise. We consider the interference limited regime, i.e.

the noise power is negligible compared to the interference power, and henceforth ignore the

noise contribution. We assume that each entry of H0n, and Hnn is independent and identically

distributed (i.i.d.) CN (0, 1) to model a richly scattered fading channel with independent fading

coefficients between different transmitting receiving antennas similar to [6]–[8].

The decoding strategy used at each receiver depends on the transmit signaling assumption.

Without CSIT, where Pn = IkN , we assume that the receiver performs single stream decod-

ing using partial ZF [8], where the receiver R0 uses N − m SRDOF for decoding any data

stream x0(j), j = 1, 2, . . . , k, leaving the remaining m SRDOF for canceling the c(k,m) :=
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k+1

N

1

N

H
0

x  (1)
0

x  (k)
0      Spatial 

Interference 
   Canceler

Fig. 1. System block diagram with no CSI at the transmitter and spatial interference cancelation at the receiver

⌊
m
k

⌋
interferers.4 Partial ZF allows to keep the analysis tractable while incurring low decoding

complexity. With partial ZF, to decode data stream x0(j) at Rn, all the other data streams

x0(1), . . . x0(j − 1), x0(j + 1), . . . x0(k) sent from transmitter T0 also appear as interference.

Therefore effectively only N −m − k + 1 SRDOF are used to decode any data stream x0(j).

The transmit receive strategy without CSIT is depicted in Fig. 1.

For analytical purposes, we assume that the number of canceled interferers c(k,m) > α
2
− 1.

Since the typical range of the path-loss exponent α is between 2 and 4, c(k,m) > α
2
− 1

implies that at least one interferer should be canceled. Thus our analysis precludes the case of

no interference cancelation, which has already been studied in [6], [18]. Moreover, since we

are interested in finding the optimal scaling of the transmission capacity with the number of

antennas N at each node, the constraint c(k,m) > α
2
− 1 is not that restrictive, since for large

values of N , there is sufficient flexibility for choosing optimal k,m, with c(k,m) > α
2
− 1.

Let S0 ⊂ Φ\{Tn} be the subset of interferers to be canceled at R0 with |S0| = c(k,m). With

partial ZF, matrix Q0 = [q1(1)q0(2) . . .q0(k)]T is multiplied to the received signal y0, where

q0(`) ∈ CN×1 lies in the null space N (H0`) of the matrix

H0` :=
[
H00(1) . . .H00(`− 1) H00(`+ 1) . . .H00(k) H0S0(1) H0S0(2) . . .H0S0(c(k,m))

]
,

4If c(k,m) < m
k

due to the floor, then the receiver uses use k×c(k,m) < m SRDOF for cancelation, leaving N−kc(k,m) >

N −m for decoding the signal of interest.
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T0

1

N

H
0
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0

x  (k)
0

V0
k

         Beamforming 
               Matrix

R0

1

N

     Spatial 
Interference 
   Canceler

Fig. 2. System block diagram with transmit beamforming and interference cancelation at the receiver

where H00(p) represents the pth column of H00, and S0(j) is the jth element of S0. Multiplying

Q0 to y0, we get ŷ0 := Q0y0, where the `th element of ŷ0 is

ŷ0(`) = d−
α
2 qT0`H00x0(`) +

∑
n:Tn∈Φ\{S0,{T0}}

d
−α

2
n

k∑
j=1

qT` H0n(j)xn(j). (2)

Therefore without CSIT, the SIR for the `th data stream from T0 while canceling the interferers

belonging to S0 is

SIRS0,` :=
d−α|qT0`H00(`)|2∑

n:Tn∈Φ\{{T0},S} d
−α
n

∑k
j=1 |qT0`H0n(j)|2

. (3)

With CSIT, recall that we consider multi-mode beamforming for transmission Pn = Vk
nn,

where Vnn is the matrix of the right singular vectors of matrix Hnn. With CSIT, we assume

that each receiver uses k SRDOF to receive the intended signal, while the remainder of N − k

SRDOF are used to cancel the c(k) :=
⌊
N
k

⌋
− 1 interferers. Similar to the case without CSIT,

for the purposes of analysis we assume that c(k) > α
2
− 1. A block diagram depicting the

transmit-receive strategy with CSIT is illustrated in Fig. 2. Let S0 ⊂ Φ\{Tn} be the subset

of interferers to be canceled at R0 with |S0| = c(k). Let S0 be the basis of the null space of

the c(k) interferers of S0 to be canceled at R0. Since N − k SRDOF are used for interference
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cancelation, Sn ∈ Ck×N . For the typical receiver R0, multiplying S0 to the received signal,

S0y0 = d−
α
2 S0U00D00V

∗
00V

k
00 x0 +

∑
n: Tn∈Φ\{{T0},S0}

d
−α

2
n S0H0nV

k
nnxn,

= d−
α
2 S0U

k
00D

k
00x0 +

∑
n: Tn∈Φ\{{T0},S0}

d
−α

2
n S0H0nV

k
nnxn,

where Uk
00 is the N × k matrix consisting of the first k columns of U00, and Dk

00 ∈ Ck×k is the

diagonal matrix consisting of the first k rows and k columns of D00. Since S and Uk
00 are both

of rank k, and are independent with each entry drawn from a continuous distribution, SUk
0 is

full rank with probability 1. Multiplying
(
SUk

00

)−1 to the received signal,

ŷ0 = d−
α
2 Dk

00x0 +
∑

n: Tn∈Φ\{T0,S}

d
−α

2
n

(
SUk

0

)−1
SH0nV

k
nnxn.

Note that D00 is the diagonal matrix of the singular values of H00. Denoting the `th eigenvalue

of H00H
∗
00 by γ`, with γ1 ≥ γ2 ≥ . . . , the received signal can be separated in terms of x0(`), ` =

1, 2, . . . , k as

ŷ0(`) = d−
α
2
√
γ`x0(`) +

∑
n: Tn∈Φ\{T0,S}

d
−α

2
n

k∑
j=1

cn`jxn(j), ` = 1, 2, . . . , k, (4)

where cn`j is the (`, j)th element of
(
SUk

0

)−1
SH0nV

k
nn. Note that ŷ0(`) has no contribution

from x0(1), . . . , x0(`− 1), x0(`+ 1), . . . , x0(k), ` = 1, 2, . . . , k. Thus, multi-mode beamforming

removes the intra-stream interference, and provides k parallel channels between each transmitter

and receiver. Let µ`n :=
∑k

j=1 |cn`j|2. Therefore with CSIT, using multi-mode beamforming, the

SIR for the `th data stream from T0 while canceling interferers belonging to S0 is

SIRBFS0,` :=
d−αγ`∑

n:Tn∈Φ\{{T0},S0} d
−α
n µn

. (5)

B. Interference Cancelation Algorithms

We consider two different choices of selecting S0, the subset of interferers to cancel, that are

described as follows.

1) Canceling the c(k,m) (without CSIT) or c(k) (with CSIT) nearest interferers in terms of

distance from the receiver. Let the indices of the interferers be sorted in an increasing

order in terms of their distance dn from R0, i.e. d1 ≤ d2 ≤ . . . ≤ dc(k,m) ≤ dc(k,m)+1 ≤ . . ..
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Then the subset of interferers to cancel is S0 = {1, 2, . . . , c(k,m)} (without CSIT) or

S0 = {1, 2, . . . , c(k)} (with CSIT).

Without CSIT, while canceling the c(k,m) nearest interferers, the optimal qT` that maxi-

mizes the signal power s := |qT` H00(`)|2 is qT` = H00(`)∗SS∗

|H00(`)∗SS∗| [8], where S is the basis of the

null space of the canceled interferers. Moreover, as shown in [8], s is Chi-square distributed

with 2(N − k−m+ 1) DOF when each channel coefficient is Rayleigh distributed. Note

that since qT` is independent of H0n for n /∈ S0, ρ`n :=
∑k

j=1 |qT` H0n(j)|2 is Chi-square

distributed with 2k DOF. Thus, without CSIT, from (3), the SIR for the `th stream is given

by

SIRS0,` =
d−αs∑

n:Tn∈Φ\{{T0},S0} d
−α
n ρn

. (6)

While with CSIT, from (5), the SIR for the `th data stream is

SIRBFS0,` :=
d−αγ`∑

n:Tn∈Φ\{{T0},S0} d
−α
n µn

, (7)

where µ`n =
∑k

j=1 |cn`j|2, and S0 is the set of c(k) nearest interferers. Since S0, Uk
00

and Vnn are independent of H0n, n /∈ {S0, {0}}, and each channel coefficient is Rayleigh

distributed, using the definition of µ`n, it follows from [8] that µ`n is a Chi-square distributed

random variable with 2k DOF ∀ n, `.

2) Without CSIT, from (3), with partial ZF and canceling interferers from the set S0, the SIR

for data stream ` at R0 is

SIRS0,` :=
d−αn |qT` H00(`)|2∑

n:Tn∈Φ\{{T0},S0} d
−α
n

∑k
j=1 |qT` H0n(j)|2

.

To maximize SIRS0,`, the optimal set of interferers to cancel S0, and the optimal q` is

given by the solution of the following optimization problem:

arg max
q`, S0, S0⊂Φ, |S0|=c(k,m)

SIRS0,`. (8)

The transmission capacity analysis with the optimal interference cancelation algorithm is

hard, and we are not able to find closed form analytical transmission capacity with the

optimal ordering. See Remark 1 for more discussion. For analytical tractability, we add an

additional constraint that if S0 is the set of interferers chosen for cancelation, and S0 is

the orthonormal basis of the null space of S0, then qT` =
H00(`)∗S0S∗0
|H00(`)∗S0S∗0|

. This choice of q` is
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motivated by the fact that it maximizes the signal power |qT` H00(`)|2 when q` ∈ N (S0)

[8]. With this extra constraint, S?` is the optimal set of interferers to cancel where

S?0` = arg max
S0, S0⊂Φ, |S0|=c(k,m), qT` =

H00(`)
∗S0S

∗
0

|H00(`)
∗S0S

∗
0|

SIRS0,`. (9)

We call this the constrained maximum SIR (CMSIR) algorithm. Note that similar to the

case of canceling the nearest interferers, qT` =
H00(`)∗S0S∗0
|H00(`)∗S0S∗0|

with the CMSIR algorithm

as well, and hence the signal power s = |qT` H00(`)|2 with the CMSIR algorithm is also

Chi-square distributed with 2(N − k −m + 1) DOF. Moreover, since qT` is independent

of H0n for n /∈ S?0`, ρ`n = |qT` H0n(j)|2 is Chi-square distributed with 2 DOF.

Thus, without CSIT, from (3), the SIR for the `th stream using the CMSIR algorithm is

given by

SIRCMSIR
S0,` =

d−αs∑
n:Tn∈Φ\{{T0},S?0`}

d−αn ρn
. (10)

Remark 1: The CMSIR algorithm (9) is restrictive since we have fixed qT` = H00(`)∗SS∗

|H00(`)∗SS∗| ,

where S is the orthonormal basis of the null space of interferers to be canceled. The advantage of

this restriction is that the canceling vector qT` does not depend on H0n, n ∈ {Φ\{{0},S?0`}}, and

consequently the signal and interference powers after interference cancelation are not correlated.

In general, with unrestricted SIR maximization (8), qT` could depend on H00, H0n, n ∈ S?0` as

well as H0n, n ∈ {Φ\S?` }, and consequently the signal and interference powers are correlated,

and finding the distribution of the signal and the interference power after interference cancelation

is challenging. Even though the CMSIR algorithm is restrictive, by definition it is better than

canceling the nearest interferers, since canceling the nearest interferers lies in the feasible set of

the optimization problem (9) solved with the CMSIR algorithm.

Remark 2: (CSI requirement:) For canceling the nearest interferers, each receiver requires

information about the distance of each interferer, and CSI for only the nearest interferers it wishes

to cancel. Since the distances of the interferers are assumed to vary slowly with time, it is easy

to acquire the distance information with low overhead. In practical systems this can be done by

averaging the received signal strength indicator for example. In contrast, the CMSIR algorithm,

requires CSI from all the interferers for finding the SIR maximizing subset S?. Thus, the CMSIR

algorithm is computationally expensive as compared to canceling the nearest interferers, however,

it provides better performance compared to canceling the nearest interferers.
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C. Problem Formulation

The original definition of the transmission capacity with a single transmit antenna is Csiso
ε :=

λ(1−ε)R [1], where λ is the maximum density of transmitters per unit area such that the outage

probability at any receiver is less than ε with rate of transmission R bits/sec/Hz. With an outage

probability constraint of ε at rate R bits/sec/Hz, the average throughput of each transmitter-

receiver link is (1− ε)R, and the transmission capacity metric accounts for the average network

throughput by adding the average throughput of all the λ transmitters per unit area. We take a

similar viewpoint in defining the transmission capacity with multiple data stream transmission

as follows. Similar definition can also be found in [18], [19].

Let the rate of transmission on each data stream be R bits/sec/Hz. Then the transmission is

considered successful on any stream if the per-stream SIR is above a threshold β (function of

R). Consequently, the per-stream outage (failure) event is defined as the event that the SIR on

that stream is below a threshold β, and the outage probability for the `th stream without CSIT

is defined to be

Pout(`) := P (SIRS0,` ≤ β) , ` = 1, 2, . . . , k, (11)

and with CSIT to be

PBF
out (`) := P

(
SIRBFS0,` ≤ β

)
, ` = 1, 2, . . . , k. (12)

Since all the k data streams are independent, we model each transmitter-receiver link as k bit

pipes (interfering) with each pipe operating at R bits/sec/Hz. Let ε be the outage probability

constraint of each bit pipe, i.e. Pout(`) ≤ ε or PBF
out (`) ≤ ε at rate R bits/Hz. Then combining

the k data streams, the average throughput for each transmitter-receiver link is k(1− ε)R.

From (3), note that without CSIT, SIRS0,` is identically distributed for ∀ `, ` = 1, 2, . . . , k.

Thus, without CSIT, outage probability of any stream can be used for defining the transmission

capacity. With CSIT, however, from (5), we can see that the SIRBFS0,` is a decreasing function

of `, ` = 1, 2, . . . , k, since eigenvalues γ` are indexed in the decreasing order, and therefore

PBF
out (`) is not identically distributed for `, ` = 1, . . . , k. Hence with CSIT, to account for the

worst case scenario, we use PBF
out (k) for defining the transmission capacity, since it provides an

upper bound on PBF
out (`), ` = 1, 2 . . . , k. The formal definitions of the transmission capacity for

multiple antennas with and without CSIT are as follows.
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Definition 1: Without CSIT, since Pout(`) is identically distributed for ` = 1, 2, . . . , k, the

multiple antenna transmission capacity without CSIT is defined as Cε := kλ?(1 − ε)R, where

λ? = arg maxλ{Pout(1) ≤ ε}.

Definition 2: With CSIT, as described before, PBF
out (k) provides an upper bound on PBF

out (`), ` =

1, 2 . . . , k. Thus accounting for the worst case scenario, the transmission capacity with CSIT and

multiple antennas is defined as CBF
ε := kλ?BF (1− ε)R, where λ?BF = arg maxλ{PBF

out (k) ≤ ε}.

In the next two sections we derive upper and lower bounds on the transmission capacity with

and without CSIT to derive the optimal k and m that maximize the transmission capacity.

III. WITHOUT CSIT

In this section we derive upper and lower bounds on the multiple antenna transmission capacity

without CSIT. We consider both the interference cancelation algorithms, canceling the c(k,m)

nearest interferers, as well as using the CSMIR algorithm, and find the optimal number of

streams k, and the optimal SRDOF for interference cancelation m, that maximize the transmission

capacity without CSIT.

A. Canceling the Nearest Interferers

To calculate the transmission capacity, we first calculate the outage probability defined in (11).

From (11), Pout(`) is identically distributed ∀ `, we drop the index ` from Pout(`) and write it

as Pout. Without CSIT, from (6) and (11), the outage probability while canceling the c(k,m)

nearest interferers at the receiver is

Pout = P

(
d−αs

Isum
≤ β

)
,

where s is Chi-square distributed with 2(N −m− k+ 1) DOF, and Isum :=
∑∞

n=c(k,m)+1 d
−α
n ρn,

dn ≤ dm, n < m, and ρn is Chi-square distributed with 2k DOF. An upper and lower bound on

Pout is presented in the following Theorem to obtain a lower and upper bound on the transmission

capacity, respectively.

Theorem 1: Without CSIT and canceling the c(k,m) =
⌊
m
k

⌋
nearest interferers using partial
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ZF at the receiver, the outage probability is bounded by

Pout ≥

 1− N−m−k+1

(k−1)dαβ(πλ)
α
2

(⌊
m
k

⌋
+ 5

8
+ α

4

)α
2 , for k > 1,

1− (N−m)

dαβ(πλ)
α
2

(
m+ 13

8
+ α

4

)α
2 , for k = 1,

Pout ≤

 1− e−β(τ+dα)(πλ)
α
2 (α2−1)

−1
(bmk c+1)

1−α2
, k +m = N,

kβdα(πλ)
α
2

N−m−k

((
α
2
− 1
)−1 (⌊m

k

⌋
+ 1
)1−α

2

)
, otherwise.

Proof: The outline of the proof is as follows. To derive a lower bound, we consider the

interference contribution from only the nearest non-canceled interferer (the c(k,m) + 1st in-

terferer) Ic(k,m)+1 := d−αc(k,m)+1ρc(k,m)+1, since Ic(k,m)+1 < Isum, and Pout =
(
d−αs
Isum
≤ 2R − 1

)
≥(

d−αs
Ic(k,m)+1

≤ 2R − 1
)
. To derive an upper bound, we use the Markov inequality with Isum

s
as

the random variable. With E{s} = N − m − k + 1, since s is distributed as Chi-square with

2(N−m−k+1) DOF, the detailed proof is derived in Appendix A, and Appendix B, respectively.

Using Theorem 1, the optimal k and m that provide the best scaling of transmission capacity

with respect to N is given by the next Corollary.

Corollary 1: Without CSIT and canceling the
⌊
m
k

⌋
nearest interferers, using a single transmit

antenna (k = 1) and a fraction of the total SRDOF for interference cancelation (m = θN, θ ∈

(0, 1)) maximizes the upper and lower bound on the transmission capacity, and provides with

the best scaling of the transmission capacity with the number of antennas N .

Proof: Let Pout = ε, then from Theorem 1,

Cε ≤


kR(1−ε)1−

2
α

π

(
N−m−k+1
(k−1)dαβ

) 2
α (⌊m

k

⌋
+ 5

8
+ α

4

)
, for k > 1,

R(1−ε)1−
2
α

π

(
(N−m)
dαβ

) 2
α (
m+ 13

8
+ α

4
+ 1
)
, for k = 1,

Cε ≥


kR(1−ε)

π

(
− ln(1−ε)
kβdα

) 2
α
((

α
2
− 1
)−1 (⌊m

k

⌋
+ 1
)1−α

2

)− 2
α
, for k +m = N,

kR(1−ε)
π

(
(N−k−m)ε

kβdα

) 2
α
((

α
2
− 1
)−1 (⌊m

k

⌋
+ 1
)1−α

2

)− 2
α
, otherwise.

We evaluate the upper and lower bound for different values of k and m to identify the scaling

behavior of the transmission capacity as follows.

• k = 1,m = c, where c is a constant that does not depend on N : Cε = Θ
(
N

2
α

)
. Note that

same scaling is obtained for any constant value of k and m.

• k = 1,m = N − c, where c is a constant that does not depend on N : Cε = Ω
(
N1− 2

α

)
,

and Cε = O (N).
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• k = 1,m = θ1N
p, p ∈ [0, 1], θ1 ∈ (0, 1]: Cε = Ω

(
N

2
α

+p(1− 2
α)
)

, and Cε = O
(
N

2
α

+p
)

.

The upper and lower bound is maximized at p = 1, and results in Cε = Ω (N), and

Cε = O
(
N

2
α

+1
)

.

• k = θ2N
t,m = θ1N

p, p, t ∈ [0, 1], θ1, θ2 ∈ (0, 1]: If p < t, Cε = Θ
(
N t(1− 2

α)+ 2
α

)
,

which is maximized at t = 1 and results in Cε = Θ (N), else Cε = Ω
(
N

2
α

+p(1− 2
α)
)

, and

Cε = O
(
Np+ 2

α
(1−t)

)
. The upper and lower bound is maximized at p = 1, and t = 0, and

results in Cε = Ω (N), and Cε = O
(
N

2
α

+1
)

.

Thus, with k being any constant independent of N , and m = θN, θ ∈ (0, 1] provides the best

scaling of transmission capacity with N . Note that the derived upper bound on the transmission

capacity is larger for k = 1 than for k > 1, hence the upper bound on the transmission capacity

is maximized at k = 1. Moreover, the lower bound on the transmission capacity is proportional

to k1−2/α(N−k)2/α

((b θNk c+1)1−α/2+κ2)
2
α

, for small constant κ2. Thus, the lower bound on the transmission capacity

for k = 1 is greater than for k > 1. Hence, k = 1 maximizes the derived upper and lower bound

on the transmission capacity.5

With k = 1 and m = θN, θ ∈ (0, 1],

Cε ≥
NR(1− ε)

π
(1− θ)

2
α θ1− 2

α


(

1− 1
N(1−θ)

)
ε

βdα
((

α
2
− 1
)−1

+
(

1
θ

)1− 2
α
∑1+dα2 e

i=1 σ (i)

)


2
α

.

For large N , to find the optimal value of θ1 that maximizes the lower bound, we need to

maximize the function (1−θ) 2
α θ1− 2

α . Solving by setting the derivative to zero, the optimal value

of θ = 1 − 2
α

. Note that the lower bound on the transmission capacity is concave in m. Thus,

to enforce the integer constraint on m, m should be chosen as
⌊(

1− 2
α

)
N
⌋

or
⌈(

1− 2
α

)
N
⌉

depending on whichever value maximizes the lower bound.

Discussion: In this subsection we showed that without transmit beamforming, transmitting a

single data stream k = 1 and using m = θN, θ ∈ (0, 1] SRDOF with partial ZF for canceling the

nearest interferers maximizes the derived upper and lower bound on the transmission capacity.

With this optimal choice of k and m, the transmission capacity scales linearly with the number

of antennas N . Our result is a generalization of [8], where k was fixed to 1 and a lower bound

5 For example, in Fig. 6 we plot the upper and lower bound on the transmission capacity for N = 10 as a function of k for

m = min
{(

1− 2
α

)
N,

⌊
N−k
k
c
)}

, d = 1 m, α = 3, β = 1 and ε = 0.1.



15

on the transmission capacity was shown to scale linearly with N , for m = θN . Thus it is

optimal to use a single transmit antenna (k = 1) even when there are multiple transmit antennas

available at the transmitter. Compared to the sublinear scaling of the transmission capacity with

the number of receive antennas when no interference cancelation is used [6], we show that

by using interference cancelation, the transmission capacity scales linearly with the number of

receive antennas. Thus, our result confirms the importance of interference cancelation in ad-hoc

networks, and reveals that significance performance gains can be achieved from its application.

The physical interpretation of our result is as follows. Transmitting k data streams simulta-

neously, the transmission capacity is k times the per stream transmission capacity. Increasing k,

however, decreases the per stream transmission capacity because of : 1) reduced power of the

signal of interest, which is distributed as Chi-square with 2(N − k−m+ 1) DOF, 2) increased

power of each interferer which is distributed as Chi-square with 2k DOF, since k data streams are

transmitted simultaneously, and 3) reduction in the number of interferers c(k,m) ∼ m
k

that can

be canceled. The reduction in per stream transmission capacity with increasing k outweighs the

linear increase in k because of simultaneous transmission of k data streams, and k = 1 provides

the best scaling of transmission capacity with N . At the receiver, using m SRDOF for interference

cancelation, the power of the signal of interest ∼ Chi-square with 2(N −m− k + 1) DOF, and

the number of interferers that can be canceled is ∼ m
k

. Thus using k = 1,m = θN, θ ∈ (0, 1),

allows the power of the signal of interest and the number of interferers canceled to grow linearly

with N , and provides the best scaling of the transmission capacity.

B. Cancelation Using the CMSIR Algorithm

From (10) and (11), with the CMSIR algorithm, the outage probability for the `th stream

PCMSIR
out (`) = P (SIRCMSIR

S?0`
≤ β) is identically distributed ∀ ` = 1, 2, . . . , k. Hence we drop the

index ` from PCMSIR
out (`), and represent it as PCMSIR

out = P
(
SIRCMSIR ≤ β

)
, where

SIRCMSIR = max
S, S⊂Φ\{T0}, |S|=c(k,m)

d−αs∑
n:Tn∈Φ\{T0,S} d

−α
n ρn

.

Following Remark 1, since CMSIR algorithm is better than canceling the nearest interferers,

SIRCMSIR is greater than or equal to the SIR while canceling the nearest interferers as in Section

III-A. Therefore the outage probability with the CMSIR algorithm is upper bounded by the

outage probability while canceling the nearest interferers. As a result, the outage probability
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with the CMSIR algorithm is upper bounded by the upper bound derived in Theorem 1. Finding

a lower bound on the outage probability with the CMSIR algorithm is comparatively non-trivial.

Both bounds are summarized in the next Theorem.

Theorem 2: Without CSIT and canceling the c(k,m) =
⌊
m
k

⌋
interferers using the CMSIR

algorithm, the outage probability bounds are given by Theorem 1.

Proof: The upper bound follows from Theorem 1, while the lower bound is derived in Appendix

C.

Note that the upper and lower bounds derived in Theorem 2 are identical to that of Theorem 1,

hence, we get the transmission capacity upper and lower bounds are identical to that of Corollary

1.

Corollary 2: Without CSIT and canceling the c(k,m) =
⌊
m
k

⌋
interferers with the CMSIR

algorithm, using a single transmit antenna (k = 1) and a fraction of total SRDOF for interference

cancelation (m = θN, θ ∈ (0, 1)) maximizes the scaling of the transmission capacity with the

number of antennas N .

Discussion: In this subsection we showed that transmitting a single data stream k = 1 together

with using m = θN SRDOF for interference cancelation provides the best scaling of the

transmission capacity with N when the receiver uses the CMSIR algorithm, and the transmission

capacity lower bound scales linearly with the number of antennas N . Note that this is identical

to the transmission capacity scaling obtained by canceling the nearest interferers ( Section III-A).

Thus, the optimal transmission capacity scaling is invariant to the two cancelation algorithms

considered. Since the CMSIR algorithm has a much higher CSI requirement, from a scaling

perspective canceling the closest interferers is preferred. From a non-asymptotic perspective this

is confirmed in the simulations, where we see that the transmission capacity while canceling

the nearest interferers is not very inferior to that of the transmission capacity of the CMSIR

algorithm, and most of the gain with multiple antennas can be obtained by canceling the nearest

interferers, which is fairly easy to implement in practice.

IV. WITH CSIT

In this section we consider multi-mode beamforming at the transmitter Tn using CSIT of the

direct link between each transmitter and its corresponding receiver Hnn.
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With CSIT, where we consider that each transmitter uses multi-mode beamforming, from defi-

nition 2, the transmission capacity is CBF
ε := kλ?BF (1−ε)R, where λ?BF = arg maxλ{PBF

out (k) ≤

ε}. In this section we only consider the case when each receiver cancels the c(k) nearest

interferers in terms of their distance from R0. Deriving exact analytical expression for PBF
out (k)

requires knowledge of the distribution of γk, which is known but not amenable to analysis. To

obtain upper and lower bounds on the outage probability, as will be seen later, it suffices to

know the expected value of the maximum eigenvalue of H00H
∗
00, γ1, and the expected value

of the reciprocal of γ1. For large N , asymptotic results are available about the the maximum

eigenvalue of H00H
∗
00, γ1, which are summarized as follows.

Lemma 1: Let H be a N ×N matrix with i.i.d. CN (0, 1) entries, and let γ1 be the maximum

eigenvalue of the matrix HH∗. Then

1) γ1
N

a.s.→ 4, where a.s. stands for almost sure convergence,

2) E{γ1} = Θ(N),

3) E
{

1
γ1

}
= Θ

(
1
N

)
.

Proof: 1) follows from Proposition 6.1 [20], while 2) and 3) can be derived using an identical

proof to Theorem 6.1 [20] by replacing log function by identity function, and 1/x function,

respectively.

We illustrate the scaling behavior of E{ 1
γ1
} with N in Fig. 3, and find that E{ 1

γ1
} is sandwiched

between 1
3.5N

and 1
4N

.

An upper and lower bound on the outage probability while canceling the nearest interferers

with CSIT is presented in the next Theorem.

Theorem 3: With CSIT, when the transmitter uses multi-mode beamforming and the receiver

cancels the c(k) =
⌊
N
k

⌋
− 1 nearest interferers using partial ZF, the outage probability Pout is

bounded by

PBF
out ≥

 1− E{γk}
(k−1)dαβ(πλ)

α
2

(⌊
N
k

⌋
− 1 + 5

8
+ α

4

)α
2 , for k > 1,

1− E{γk}
dαβ(πλ)

α
2

(⌊
N
k

⌋
− 1 + 13

8
+ α

4

)α
2 , for k = 1,

PBF
out ≤

{
(πλ)

α
2 kβdαE{ 1

γk
}
((

α
2
− 1
)−1 (⌊N

k

⌋)1−α
2

)
.

Proof: The proof is identical to Theorem 1, where γk takes the role of s, and m = N − k. The

lower and upper bound are derived in Appendix A and Appendix B, respectively.
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Fig. 3. Empirical expected value of the reciprocal of the largest eigenvalue of H00H
∗
00.

An immediate consequence of Theorem 3 is that it can be used to find the optimal number of

transmitted streams k that maximizes the transmission capacity.

Corollary 3: Single stream beamforming (k = 1) together with canceling the c(k) = N − 1

nearest interferers using partial ZF, maximizes the upper and lower bound on the transmission

capacity, and provides the best scaling of the transmission capacity with respect to N .

Proof: For N → ∞, from Lemma 1, E{γ1} ≤ c1N , and E
{

1
γ1

}
≥ c2

N
, where c1 and c2 are

constants. Moreover, since γk ≤ γ1, ∀ k, E{γk} ≤ c1N , and E
{

1
γk

}
≥ c2

N
, ∀ k. Thus, with

Pout = ε, from Theorem 3,

CBF
ε ≤


(1−ε)1−

2
α kR

π

(
c1N

(k−1)dαβ

) 2
α (⌊N

k

⌋
+ 3

8
+ α

4

)
, for k > 1,

(1−ε)1−
2
αR

π

(
c1N
dαβ

) 2
α (
N + 5

8
+ α

4

)
, for k = 1,

CBF
ε ≥ (1− ε)Rk1− 2

α

π

 ε

dαβc2
N

((
α
2
− 1
) (⌊

N
k

⌋)1−α
2

)
 2

α

.

Therefore, from the upper and lower bound, using a single data stream k = 1, CBF
ε = Ω (N),
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and CBF
ε = O

(
N1+ 2

α

)
. For any other constant value of k that is independent of N also leads

to the same scaling law as k = 1, however, both the lower and upper bound on the transmission

capacity are decreasing functions of k. The only option that can change the scaling behavior of

the upper and lower bound is when k is a function of N , k = θN t, θ ∈ (0, 1], t ∈ [0, 1]. Using

k = θN t, for t = 1, CBF
ε = Θ(N), else, CBF

ε = Ω(N), and CBF
ε = O

(
N1+ 2

α
(1−t)

)
which is

maximized at t = 0. Thus, k = 1 provides the best scaling of the transmission capacity with

respect to N .

Discussion: In this subsection we showed that single stream beamforming (k = 1) together

with canceling the N−1 nearest interferers, maximizes the upper and lower bound on the trans-

mission capacity. This is in contrast to the findings of Section III-A where without beamforming

the use of k = 1 and m = θN SRDOF for canceling the nearest interferers is shown to be

optimal. This difference can be explained by noting the fact that with beamforming, for k = 1,

and N − 1 SRDOF for interference cancelation, the expected value of the signal power is of

order N . In comparison, without beamforming, the expected value of the signal power is of order

N −m, if m SRDOF are used for interference cancelation. Therefore, with no beamforming,

using m = N − 1, the expected signal power is independent of N , and m = θN is needed for

the expected signal power to grow linearly with N . Also note that using interference cancelation

with single stream beamforming, the transmission capacity scales linearly with N in comparison

to the sublinear scaling without interference cancelation [6]. Thus, similar to the case of spatial

multiplexing without CSIT, interference cancelation is critical even when CSIT is available in

an ad-hoc network.

For single stream beamforming, each transmitter requires only the knowledge of the eigen-

vector corresponding the strongest eigenvalue of the channel between the transmitter and its

intended receiver. Thus, the feedback requirements with the optimal strategy are minimal, and

the optimal strategy can be implemented in practice fairly easily.

V. SIMULATIONS

In this section we present numerical simulations to show how the results of this paper (order

wise in N ) apply with finite values of number of antennas N . For all the transmission capacity

simulations in the paper, the simulated ad hoc network lies on a two-dimensional disk and

contains a number of transmitter-receiver pairs, which follows the Poisson distribution with the
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mean equal to 200. The locations of the nodes are uniformly distributed on the disk and the disk

area is adjusted according to the node density with the typical receiver placed at the center of

the disk. We set the distance between the typical transmitter and receiver as d = 1m or d = 5m

(specified for each plot), the SIR threshold β = 1, and the path-loss exponent α = 3.

Without CSIT and canceling the nearest interferers: To illustrate the scaling behavior

of the transmission capacity with interference cancelation without CSIT, we plot the simulated

transmission capacity for k = 1,m = (1 − 2/α)N (partial ZF), k = 1,m = 0 (MRC), k =

1,m = N − 1, k = N/2,m = N/2 (multiple data streams with interference cancelation),

and k = N/2,m = 0 (multiple data streams with no interference cancelation) in Fig. 4. As

expected, k = 1,m = (1 − 2/α)N achieves the best performance in terms of transmission

capacity with increasing N , in contrast to all other cases. An important observation from Fig.

4 is that if the number of data streams is scaled linearly with N , no interference cancelation

leads to better performance compared to performing interference cancelation at the receiver. The

justification for this result is that when the number of data streams is scaled linearly with N ,

employing interference cancelation can remove only a few interferers, but decreases the signal

power significantly. For example if k = N/2, and m = N/2 SRDOF are used for interference

cancelation, only one interferer is canceled, and the signal power is Chi-square distributed with 2

DOF. In comparison with no interference cancelation, the signal power is Chi-square distributed

with 2(N/2−1) DOF and no interferer is canceled. Since there are a large number of interferers,

canceling one interferer does not significantly increase the SIR, however, the decreased signal

power severely affects the performance. To illustrate the behavior of the transmission capacity

as a function of the number of data streams k, we plot the simulated transmission capacity for

N = 10 by varying k with m = min
{(

1− 2
α

)
N,
⌊
N−k
k
c
)}

in Fig. 8. Clearly, the transmission

capacity decreases with k as predicted by the derived upper and the lower bounds.

Without CSIT and canceling using the CMSIR algorithm: To illustrate the scaling behavior

of the transmission capacity with the CMSIR algorithm as a function of N , we plot the simulated

transmission capacity for k = 1,m = (1 − 2
α

)N in Fig. 7. We also illustrate the performance

gain of the CMSIR algorithm in comparison to canceling the nearest interferers. To illustrate the

behavior of the transmission capacity as a function of the number of data streams k, we plot the

simulated transmission capacity for N = 10 by varying k in Fig. 8. Clearly, the transmission

capacity decreases with k as predicted by the derived upper and the lower bounds.



21

With CSIT and canceling the nearest interferers: To understand the exact behavior of

the transmission capacity with respect to the number of transmitted data streams k when each

transmitter uses multi-mode beamforming, we plot the simulated transmission capacity as a

function of k in Fig. 9. From Fig. 9 we can see that the transmission capacity is maximized for

k = 1 as suggested by the derived upper and lower bound, and we conclude that k = 1 is optimal

for maximizing the transmission capacity when transmitter uses multi-mode beamforming and

the receiver cancels the nearest interferers. To illustrate the scaling behavior of the transmission

capacity with N , we plot the derived lower and upper bound, and the simulated transmission

capacity in Fig. 10, for k = 1, d = 5 m, α = 4 and ε = 0.1 with increasing N .

VI. CONCLUSIONS

In this paper we showed that interference cancelation is critical in ad-hoc networks for

maximizing the scaling of the transmission capacity with respect to the number of antennas.

A main result of this paper is that most of the gain from multiple antennas is obtained by

using them for interference cancelation at the receiver. For the case of spatial multiplexing at the

transmitter without CSIT, we showed that a single transmit antenna is sufficient at the transmitter,

and the transmission capacity increases at least linearly with the number of receive antennas,

by using an appropriate fraction of SRDOF for interference cancelation and leaving the rest of

SRDOF for decoding the signal of interest. With beamforming, we showed that a single stream

beamforming is optimal at the transmitter, and provides with linear scaling of the transmission

capacity with N , if all but one of the SRDOF are dedicated for interference cancelation at the

receiver. Comparing the beamforming and no-beamforming cases in simulation, we found that

there is not much gain by using beamforming in an ad-hoc network in terms of scaling of the

transmission capacity with respect to the number of antennas. This is explained by the fact that

there is only a constant increase in the signal power (independent of the number of antennas)

with beamforming in comparison to the no beamforming case.

VII. ACKNOWLEDGEMENTS

We would like to thank Dr. Marios Kountouris and Dr. Nihar Jindal for useful comments and

discussions.



22

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.5

Nr. of Antennas N

Tr
an

sm
iss

io
n 

Ca
pa

cit
y 

bi
ts

/H
z/

se
c/

m2

Transmission Capacity v/s N for d=1, !=0.1, " = 1, # =3

 

 

Partial ZF k=1, m= N/3
No Cancelation MIMO, k=N/2, m=0
MRC k=1, m=0
ZF, k=1, m=N−1
Cancelation with MIMO, k=N/2, m=N/2
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APPENDIX A

LOWER BOUND ON THE OUTAGE PROBABILITY WHILE CANCELING THE NEAREST

INTERFERERS

Let s be the power of the signal of interest. For Section IV, s = γk. To lower bound the

outage probability we consider the interference contribution from only the nearest non-canceled
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interferer, that is the c(k,m) + 1st interferer, as follows. Recall that

1− Pout = P

(
d−αs

Isum
> β

)
,

≤ P

(
d−αs

Ic(k,m)+1

> β

)
, since Ic(k,m)+1 ≤ Isum,

≤
E
{

s
Ic(k,m)+1

}
dαβ

, from the Markov inequality,

=
E{s}
dαβ

E
{

1

Ic(k,m)+1

}
, since s and Ic(k,m)+1 are independent. (13)

Recall that Ic(k,m)+1 = d−αc(k,m)+1ρc(k,m)+1, where ρc(k,m)+1 and dc(k,m)+1 are independent of each

other. Moreover, ρc(k,m)+1 is Chi-square distributed with 2k DOF, and πλd2
c(k,m)+1 is Chi-square

distributed with 2(c(k,m) + 1) DOF [8]. Therefore from (13)

1− Pout ≤
E{s}
dαβ

E
{
dαc(k,m)+1

}
E
{

1

ρc(k,m)+1

}
.

Since ρc(k,m)+1 is Chi-square distributed with 2k DOF, E
{

1
ρc(k,m)+1

}
= 1

k−1
for k > 1, and

E
{

1
ρc(k,m)+1

}
=∞ for k = 1. Thus, this lower bounding technique is useful only for k > 1. For

k = 1 a lower bound is obtained separately.
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Fig. 6. Transmission capacity upper and lower bound versus k with no beamforming and canceling the nearest interferers for

N = 10, d = 1 m, β = 1, α = 3, ε = 0.1

Case 1 (k > 1): Using change of variables E
{
dαc(k,m)+1

}
= 1

(πλ)
α
2

∫∞
0

xc(k,m)+α2 e−x

c(k,m)!
dx =

Γ(c(k,m)+1+α
2 )

Γ(c(k,m)+1)
, and E

{
1

ρc(k,m)+1

}
=
(

1
k−1

)
. Thus,

1− Pout ≤
E {s}
dαβ

(
1

(πλ)
α
2

Γ
(
c(k,m) + 1 + α

2

)
Γ (c(k,m) + 1)

)(
1

k − 1

)
.

Case 2 (k = 1): To obtain a lower bound on the outage probability for k = 1, we consider

the interference contribution of the two nearest non-canceled interferers Ic(k,m)+1 and Ic(k,m)+2.

Hence

1− Pout = P

(
d−αs

Isum
> β

)
,

≤ P

(
d−αs

Ic(k,m)+1 + Ic(k,m)+2

> β

)
, since Ic(k,m)+1 + Ic(k,m)+2 ≤ Isum.
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Fig. 7. Transmission capacity versus N with no beamforming and using the CMSIR algorithm for interference cancelation for

k = 1, d = 1 m, β = 1, α = 3, ε = 0.1

By definition dc(k,m)+1 ≤ dc(k,m)+2, and hence Ic(k,m)+1 + Ic(k,m)+2 = d−αc(k,m)+1ρc(k,m)+1 +

d−αc(k,m)+2ρc(k,m)+2 ≥ d−αc(k,m)+2(ρc(k,m)+1 + ρc(k,m)+2). Therefore

1− Pout ≤ P

(
d−αs

d−αc(k,m)+2(ρc(k,m)+1 + ρc(k,m)+2)
> β

)
.

Note that ρc(k,m)+1 and ρc(k,m)+2 are i.i.d. with Chi-square distribution with 2 DOF for k = 1,

therefore ρc(k,m)+1 + ρc(k,m)+2 is Chi-square distributed with 4 DOF. Hence, similar to the case
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Fig. 10. Transmission capacity versus N with beamforming and canceling the nearest interferers for k = 1, d = 5 m, β = 1,

α = 4, ε = 0.1

of k > 1,

1− Pout ≤
E {s}
dαβ

(
1

(πλ)
α
2

∫ ∞
0

xc(k,m)+1+α
2 e−x

(c(k,m) + 1)!
dx

) ∫ ∞
0

e−ρdρ,

=
E {s}
dαβ

(
1

(πλ)
α
2

Γ
(
c(k,m) + 2 + α

2

)
Γ (c(k,m) + 2)

)
.

From [21],

Γ
(
c(k,m) + α

2

)
Γ (c(k,m) + 1)

≤
(
c(k,m) +

1

8
+
α

4

)α
2
−1

,

for c(k,m), α
2
> 0. Therefore,

1− Pout ≤


E{s}

(k−1)dαβ(πλ)
α
2

(
c(k,m) + 5

8
+ α

4

)α
2 , k > 1,

E{s}
dαβ(πλ)

α
2

(
c(k,m) + 13

8
+ α

4

)α
2 , k = 1.

APPENDIX B

UPPER BOUND ON OUTAGE PROBABILITY WHILE CANCELING THE NEAREST INTERFERERS

Let s be the power of the signal of interest. For Sections III-A, and III-B, s is Chi-square

distributed with 2(N − k−m+ 1) DOF, while for Section IV, s = γk. We obtain upper bounds
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for the two cases: N > k +m, and N = k +m, separately as follows.

Case 1: N > k +m. By definition

Pout = P

(
Isum
s
≥ 1

dαβ

)
,

≤ dαβ E
{
Isum
s

}
, from the Markov inequality,

= dαβ E {Isum}E
{

1

s

}
, since s and Isum are independent. (14)

Recall that Isum =
∑∞

i=c(k,m)+1 d
−α
i ρi, where ρi is a Chi-square random variable with 2k DOF

∀ i. Hence E{Isum} =
∑∞

i=c(k,m)+1 E
{
d−αi
}
E{ρi} = k

∑∞
i=c(k,m)+1 E

{
d−αi
}

. From [8], πλd2
i

is Chi-square distributed with 2i DOF. Hence E{d−αi } = (πλ)
α
2

Γ(i−α
2

)

Γ(i)
, which is finite only if

i > α
2

. This is the restriction because of which we needed the condition that the number of

interferers canceled c(k,m) or c(k) is greater than α
2
− 1. Therefore, as derived in [8],

E


∞∑

i=c(k,m)+dα2 e+1

d−αi

 ≤ (πλ)
α
2

(α
2
− 1
)−1

(c(k,m))1−α
2 . (15)

Hence,

E{Isum} ≤ (πλ)
α
2 k
(α

2
− 1
)−1

(c(k,m) + 1)1−α
2 , (16)

and from (14),

P

(
Isum ≥

d−αs

β

)
≤ (πλ)

α
2 kβdα

((α
2
− 1
)−1

(c(k,m) + 1)1−α
2

)
E
{

1

s

}
.

For Sections III-A, and III-B, s is Chi-square distributed with 2(N−k−m+1) DOF, and hence

E
{

1
s

}
= 1

N−k−m , while for Section IV signal power s = γk. Clearly, for N = k+m, this upper

bound in meaningless for Sections III-A, and III-B, and we obtain an upper bound for the case

N = k +m separately as follows.

Case 2: N = k+m. Recall that the signal power s is Chi-square distributed with 2(N − k−

m+ 1) DOF. Thus, with N = k+m, s is exponentially distributed with parameter 1. Note that

this extra step is not required for Section IV, where signal power s = γk. Therefore

Pout = P (s ≤ dαβIsum) ,

= E
{

1− e−(dαβIsum)
}
, since s is exponentially distributed,

≤ 1− e−(dαβE{Isum}), using Jensen’s Inequality, since e(−x) is convex.
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Hence we get the following upper bound on the outage probability

Pout ≤

 1− e−(dαβE{Isum}), for k +m = N,

dαβE{Isum}
N−m−k , otherwise,

where E {Isum} is given by (16).

APPENDIX C

LOWER BOUND ON THE OUTAGE PROBABILITY WITH THE CMSIR ALGORITHM

With the CMSIR algorithm, the SIR is

SIRCMSIR := max
S⊂Φ\{T0}, |S|=c(k,m)

d−αs∑
n:Tn∈Φ\{T0,S} d

−α
n ρn

,

where s is Chi-square distributed with 2(N −m− k+ 1) DOF, and ρn is Chi-square distributed

with 2k DOF ∀n ∈ Φ\{T0,S}. The resulting outage probability is

P CMSIR
out = P

(
SIRCMSIR < β

)
.

Let the optimal set of interferers to be canceled be S?. Note that the CMSIR algorithm

cancels only c(k,m) interferers, therefore at least one out of the c(k,m) + 1 nearest inter-

ferers is not canceled. Assume that the rth, r = 1, 2, . . . , c(k,m) + 1 nearest interferer is

not canceled, i.e. Tr ∈ Φ\{T0,S?}. Then the interference
∑

n: Tn∈Φ\{T0,S?} d
−α
n ρn ≥ Ir. Since

d−αn is a decreasing function in dn, d−αr ≥ d−αc(k,m)+1, r = 1, 2, . . . , c(k,m) + 1, and Ir =

d−αr ρr ≥ d−αc(k,m)+1ρr, r = 1, 2, . . . , c(k,m) + 1. Moreover, since all the ρn’s, n ∈ {Φ\S?}’s are

identically distributed as Chi-square with 2 DOF, and ρn and d−αn are independent, d−αc(k,m)+1ρr

and Ic(k,m)+1 = d−αc(k,m)+1ρc(k,m)+1 have the same distribution, where Ic(k,m)+1 is the interference

received from the c(k,m) + 1th nearest interferer. Hence

P CMSIR
out ≥ P

(
d−αs

Ir
< β

)
,

≥ P

(
d−αs

d−αc(k,m)+1ρr
< β

)
,

= P

(
d−αs

Ic(k,m)+1

< β

)
,

since similar to d−αc(k,m)+1ρr, Ic(k,m)+1is also independent of s. Hence we have shown that the

outage probability with the CMSIR algorithm is lower bounded by the outage probability while

considering only the interference contribution from the c(k,m) + 1th nearest interferer. Recall
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that we have already derived a lower bound on the the outage probability while considering only

the interference contribution from the c(k,m) + 1th interferer in Appendix A, from which we

get the required lower bound for the CMSIR algorithm.
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