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Abstract 
 

A computational model based on non-relativistic approach is proposed for the 

determination of transmission coefficient, resonant tunneling energies, group velocity, 

resonant tunneling lifetime and traversal time in multibarrier systems 

(GaAs/Al Ga As) for the entire energy range y y−1 ε <V , 0 ε = V  and 0 ε >V  ,V0 0 being 

the potential barrier height. The resonant energy states were found to group into 

allowed tunneling bands separated by forbidden gaps.  The tunneling lifetime and the 

traversal time are found to have minimum values at the middle of each allowed band. 

Further, It is observed that the electrons with energies in the higher tunneling  band 

could tunnel out faster than those with energies in the lower band. Moreover, an 

additional resonant peak in resonant energy spectrum indicated the presence of a 

surface state where resonant tunneling occur. 
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1.Introduction 

 

The resonant tunneling of an electron wave through multiple potential barriers 

is one of the basic phenomena in quantum mechanics. In a multibarrier system 

(MBS), the transmission coefficient is the relative probability of an incident 

electron crossing the multiple barriers. Resonant tunneling in the MBS 

corresponds to unit transmission coefficient across the structure. One of the most 

striking features of the multi-barrier systems is the occurrence of quasi-level 

resonant tunneling energy states. Incident electrons on the MBS with energies 

equal to any one of these quasi-level resonant energy states suffer resonant 

tunneling i.e. electrons incident on the MBS with energies equal to resonant state 

energies tunnel out without any significant attenuation in their intensity. Resonant 

tunneling is a consequence of the phase coherence of the electron waves in the 

quantum wells of the MBS. These quasi-level resonant energy states group 

themselves into tunneling energy bands separated by forbidden gaps. Each 

allowed energy band comprises (N-1) number of resonant energy states; N being 

the number of barriers in the MBS.  

 

   Research activities on  multibarrier resonant tunneling has gained momentum on 

both theoretical and experimental front since the pioneering   work  of Tsu and Esaki 

[1] and Chang et al [2]. This motivation may be  attributed to the potential and 

extensive applications of the resonant tunneling phenomenon in high speed electronic 

devices that encompasses lasers, modulators, photodetectors and  signal processing 
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devices [1]. The interest in this field has been catapulted to a new height  with the 

advent of epitaxial growth techniques,  particularly, the technique of  molecular-beam 

epitaxy (MBE) and metalorganic chemical vapour deposition (MOCVD), through 

which fabrication of perfect superlattices and multi-quantum-well structures became a 

reality. Besides, the study of tunneling through MBS provides a  deeper understanding 

of the transport phenomena through semiconductor superlattices  and similar 

structures, such as quantum-dot arrays.  Hence, it is plausible  to devise theoretical 

model for  resonant tunneling of electrons in such multibarrier structures [3-5] that 

might help the experimentalists to fabricate ultrahigh-speed electronic and 

optoelectronic devices. An understanding of the time dependent aspects of tunneling 

is clearly required for the construction of a kinetic theory for such systems. The 

simple question of tunneling time seems to be a natural beginning.   

 Recently, the electronic conductance  in double quantum well systems have been 

reviewed in [5] and  the study of tunneling of a particle or a photonic wave packet 

through an arbitrary number of finite rectangular opaque barriers has also been  

reported [6].  Analysis on tunneling across an arbitrary shape of  potential barrier and 

the calculation of tunneling coefficients based on the analytic transfer-matrix 

technique is provided in a general framework by  Zhang et al [7 ].  A deeper insight of 

the transport phenomena through semiconductor superlattices, resulting from the 

study of tunneling through multibarrier system, is  given in [8].  

 Crystalline semiconductor superlattices are usually constructed by growing two 

compounds, such as GaAs/Al Ga As,  where the lattice constants are almost 

identical.  It has been reported by Esaki [9] that  the model on superlattices  is 

analogous to the Kronig-Penny model with the following conditions; (i) the barrier 

y y−1
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height is the energy mismatch in the conduction band edges of  two  materials with 

different compositions, (ii) The masses in the well and barrier regions are different 

and they correspond  to the effective masses at the conduction band edges 

respectively.  Some studies has been reported on the theory of resonant tunneling in 

superlattices for incident energies less than the height of the potential barrier [10,11]. 

Experimental evidence has also been found for screening effects from surface states in 

GaAs/AlGaAs based nanostructures  [12].  

     The resonant quasi-level lifetime, which is referred here after as resonant 

tunneling lifetime (RTL), is one of the key issues concerning the development of 

the novel electronic devices based on tunneling. Specifically, determination of the 

RTL is vital to estimate the frequency limit of high speed tunneling devices. The 

RTL,τ , in  double barrier system has been studied  [13-16] and, recently,  some 

effort has been directed to investigate the lifetime in multibarrier systems [17,18]. 

A striking feature of RTL in the multibarrier systems with more than two barriers 

is the occurrence of special minima in the resonant lifetime for quasi-level 

resonant energies in the middle of the allowed tunneling energy bands of the 

MBS.   In [18], the dependences of RTL on the mole fraction of barrier layer(y), 

well width, and barrier width of GaAs/Al Ga As superlattices have been 

explored.  It is  observed that the tunneling phenomenon is not only characterized 

by a tunneling rate(1/

y y−1

τ ) but also by a quantity called  the traversal time (τ R )  

[19]. The group velocity of the electrons corresponding to the resonant energy 

states obtained from the ε-k relation in the resonant tunneling energy bands can be 

used to calculate the traversal time of the electron across the multibarrier structure 
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for the corresponding incident energy. The traversal time defined in the present 

context is the time taken by the maxima of a wave packet to cross the multibarrier 

system. As such to optimize the performance of these quantum tunneling devices, 

an accurate knowledge of their quasi-levels and the corresponding lifetimes and 

traversal times are necessary. The estimation of traversal (or transit) time of 

electrons in a resonant tunneling structure is a stepping stone to model the fast 

switching of the resonant tunneling devices. Several authors [19-21], over a period 

of time, have attempted the computation of the traversal time by employing 

various methods.  

By and large, the study of RTL has been confined to the double barrier 

systems. The reported works in MBS have only discussed the resonant tunneling 

for electrons with incident energies ε in the range 0V〈ε , V0 being the height of the 

potential barrier. A study of resonant tunneling with incident energies 0V≥ε   is 

expected to exhibit  the features of the resonant tunneling energy bands more 

clearly. There is hardly  any such attempt to deal with resonant tunneling with 

incident energies 0V≥ε   and study theoretically relations of resonant energies and 

RTL on these factors. Further, the resonant tunneling energies, RTL, and the 

transition time depend on the parameters such as the height of the potential barrier 

controlled through the mole fraction of barrier material vis-a-vis the well material, 

the thickness of the barrier and well layers and the number of barriers in the 

structure. As far as the authors’ knowledge goes, there is hardly any report on the 

computation of the traversal time in the multibarrier systems. 
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In view of the above, in this paper, we have focussed our research work on the 

study of the resonant tunneling time with incident energies both for 0V〈ε  and 

0Vε ≥  and the study of traversal time for multibarrier systems. Here we employ 

the non-relativistic approach to develop necessary expressions governing the 

transmission coefficient of electrons tunneled through the multibarrier 

heterostructure (GaAs/Al Ga As). However, the results presented in this paper 

correspond to a specific structure with 

y y−1

y =0.3 in the above composition. The 

derivation of the transmission coefficient is based on the transfer matrix approach. 

The effect of number of barriers, number of cells in the well region, and the 

barrier region on the resonant energy states is also investigated. The lifetime, 

group velocity, and the traversal time of electron are computed for the above 

multibarrier system. Computation of resonant tunneling lifetime requires the 

evaluation of the half-width at half-maximum of the resonant peaks around the 

resonance energies mε .   The half maximum value of the mε  is obtained from the 

graph of tunneling coefficient versus incident energy by employing a search 

technique. The group velocity is computed by interpolating the dispersion curve 

(ε  versus k)  followed by computing the derivative at the interpolated points.   

   Section 2 deals with derivation of the transmission coefficient and formulae used for 

the determination of lifetime, group velocity and traversal time.  The parameters used 

in our simulation are presented in Section 3. The effects of the number of barriers, 

number of cells in the well region and barrier region on the resonant energy are 

presented in Section 4.2. Studies on resonant tunneling lifetime, group velocity, and 

traversal time are dealt in Sections 4.3 and 4.4. The concluding remarks are presented 
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in Section 5. The algorithm for the search program for finding the resonant 

tunneling energies,the width of resonant peaks and the resonant life time are 

given in the appendix.  

 
2. Non-relativistic treatment of tunneling through symmetric 
multibarrier semiconductor heterostructure 
 
The tunneling of electrons through multibarrier semiconducting heterostructures can 

be better understood by a model, as shown in Fig. 1(a). In this model, the multibarrier 

structure is obtained by alternately stacking layers of semiconducting materials, 

namely, GaAs and Al Ga As. These two materials have similar band structures but 

different energy gaps. The schematic energy diagram for the stacking layers is shown 

in Fig. 1(b). The small gap material GaAs forms the well while the large gap material 

Al

y y−1

yGa1-yAs forms the barrier of the superlattice. The barrier height is assumed [22] to 

be 88% of the difference between the band gaps of two materials. The MBS with well 

and barrier regions, originated from the band offset is shown in Fig.1(c).  The model 

consists of N barriers of thickness ‘b’, and N-1 wells of thickness ‘a’. Thus, the 

superlattice has a period ‘c’, where c = (a + b). The height of the potential barrier is 

considered as V0.  

2.1. Transmission coefficient 

  To deal with the problem one need to consider the one-dimensional time 

independent Schrödinger equation, specifically the BenDaniel-Duke equation 

[23] for the electron in the potential V(x) which appears as: 

)()()(1
2 *

2

xxxV
dx
d

mdx
d εψψ =⎥

⎦

⎤
⎢
⎣

⎡
+−

h                                                                  (1) 
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Where, 

  is the  position dependent effective mass and  have different values for 

the well and the barrier material, 

∗m

⎩
⎨
⎧ +≤≤−

=
otherwise

bncxbncforV
xV

2/2/
0

)( 0                                                (2) 

The wave functions of the time independent Schrodinger equation in the nth well 

region has the form: 

                         ( ) ( ) 1 1
2 1 2 1

w ik x ik x
n n nx A e B eψ −

− −= +            (3)                          

where, ,   , and  is the number of barriers.  2 * 2
1 2 /wk m ε= h Nn L,2,1=

0

0

0

N

The wave function in the barrier region can be obtained as  

( ) ( )
2 2

3 3

2 2

2 2

2 2

k x k x
n n

b
n n n

ik x ik x
n n

A e B e for V
x A B x for V

A e B e for V

ε
ψ ε

ε

−

−

⎧ + 〈
⎪

= + =⎨
⎪ + 〉⎩

                      (4) 

where, 
( )
( )

2 * 2
2 0

2 * 2
3 0

2 /

2 /
b

b

k m V an

k m V

ε

ε

= −

= −

h

h

d
  

 The following effective mass dependent boundary conditions are used  at the 

interfaces of the nth barrier with nth and (n+1)th well region which conserves the 

probability   

 

2
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*
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=

ψψ

ψψ

                                                                      (5) 
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Where,  and  are the effective masses in the barrier and well region 
respectively.  

∗
bm ∗

wm

 
 

The coefficients of the electron wave across the first potential barrier are related 

as:  

3
1

3 1

A A
M

B B
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

                                                                                                  (7) 

Where  is a 1M )22( × matrix, called as transfer matrix.  

With the help of boundary conditions  Eqs.(5)-(6), we  obtain the elements of   

as given below.                                             

1M

( ) ( )

1

1

1

2 2 2
2 1

2 2
1 2

* 1
1 1 011 22

2 2 2
3 1

3 3
3 1

cosh sinh
2

1
2

cos sin
2

ik b

ik b

ik b

k f kk b k b e for V
ik k f

k b

0

0

M M e fo
if

k f kk b k b e for V
ik k f

ε

ε

ε

−

−

−

⎧ ⎛ ⎞−
+ 〈⎪ ⎜ ⎟

⎝ ⎠⎪
⎪ ⎛ ⎞⎪= = − =⎨ ⎜ ⎟
⎝ ⎠⎪

⎪ ⎛ ⎞+⎪ − 〉⎜ ⎟⎪ ⎝ ⎠⎩

r V            (8) 
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⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

>
−

=

<
+

==

03
31

22
3

2
1

0
1

02
21

22
2

2
1

*
211121

sin
2

2

sinh
2

)()(

Vforbk
fkik
fkk

Vfor
if
bk

Vforbk
fkik
fkk

MM

ε

ε

ε

                                  (9) 

 

                                                     * /wf m m= *
b

And det =1.   1M

Now, let us generalize the problem to multiple potential barriers. The   

matrix M

)22( ×

n , which relates the coefficient matrix 2 1

2 1

n

n

A
B

−

−

⎡ ⎤
⎢ ⎥
⎣ ⎦

  of the wave on the left of 

nth barrier to that on the right of the barrier 2 1

2 1

n

n

A
B

+

+

⎡ ⎤
⎢ ⎥
⎣ ⎦

 appears as : 

                                                                                     (10) 1
1

1)( −−∗= nn
n FMFM

where,                            and 
0

0

ikc

ikc

e
F

e−

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

.2,1 Nn L=   

Thus, the transfer matrix   which relates  the coefficient matrix of the 

incoming and outgoing wave in the N barrier system can be expressed as: 

NW

                                                                                         (11) [ ] ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

+

+

1

1

12

12

B
A

W
B
A

N
N

N

 

where,  

                                                                        (12)           121 MMMMW NNN LLL−=

Substituting Mn from Eq. (10) in Eq. (12), the transfer matrix takes the form 
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                                                                                              (13) NN
N GFW )( ∗=

where, the matrix                                                                              (14) FMG 1=

The matrix WN  is Hermitian  and its determinant has unit value. 

G matrix can be diagonalized  to the matrix Gd as 1
dS G S G− =  ; S  being the 

diagonalizing matrix of the matrix G and   1

2

0
0dG
λ

λ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

;  1λ and 2λ ,being the  

eigenvalues of the matrix G, satisfy the following relations.  
 

2

1 , 2

4
2

Tr TrG G
λ

± −
=  

where GTr is the trace of matrix G. 

⎪
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⎧

>⎥
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⎣

⎡ +
−
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⎦
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+
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2
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22
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2
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22
2

21

sinsin
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coscos2

sin
2

cos2

sinhsin
2

coshcos2

Vforbkak
fkk
kfk
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Vforka
f
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ak

Vforbkak
fkk
kfk

bkak

GT

ε

ε

ε

γ  (15) 

       

Here, TrG=+ 21 λλ  and 121 =λλ . So that, 

 

                           (16)

Using these relations, the transfer matrix WN can be written as 

 

 

 

( )

( )

1
1

2

1 2

1
1

2

1 cos / 2 2

1 2
1 cosh / 2 2

i
tr Tr

Tr

tr Tr

e G for

for G

e G for

θ

θ

λ θ
λ

λ λ

λ θ
λ

−

−

= = = 〈

= = =

= = = 〉

G

G

                              ( )* 1N N
N dW F S G S −=  .                                                    (17) 

oefficient TN across aThe Transmission c  N b rriers can be obtained as 
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                                    2
1

2
12

A

A
T N

N
+=                                                     (18) 

As there is no reflected electron beyond the right end of the multibarrier system, 

one can set B2N+1  = 0. Using this fact together with the Eqs.(11) and(18)  TN can 

be obtained as 

                            2
12

2
11 )(1

1
)(

1

NN

N
WW

T
+

==                                                (19) 

 ( )12  can be obtained from Eq. (17) as: NW

                     
12

12
1212

1)(
λλ
λλ

−
−

= −
NN

Ncik
N GeW                                                       (20)   

Substituting Eqs. (14) and(16) on  Eq. (20), ( )12  appears as NW

        

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

>

=

<

=

2
sinh

sinh)(

2)(

2
sin

sin)(

)(
2

2
121

22
121

2
2

121

2
12

Tr

Tr

Tr

N

GforNM

GforNM

GforNM

W

θ
θ

θ
θ

       (21) 

The transmission coefficient TN across the N barrier system for the three different  

situations corresponding to the incident energy  ε < V0 , ε = V0  and ε > V0  can be 

obtained from the Eq.(19) in combination with Eqs.(21) and (9).  

2.2.  Resonant Tunneling Energies 

 The resonant tunneling across the N barrier system corresponds to 

the condition TN = 1. The incident energies of the electron, for which the resonant 

tunneling condition is satisfied, is termed as resonant tunneling energies. Here we 

have found the resonant tunneling energies in the multibarrier system  from the   

TN vs ε curve by a computer program using a search technique. However it would 
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be worthwhile to highlight some of the salient features of the resonant tunneling 

energy states.    

(a) Eq. (16) in combination with Eq. (15)  is akin to  the energy relation for a 

lattice of period (a+b) calculated using effective mass dependent Kronig-

Penny model. The allowed energy  bands are restricted to values of  GTr <2 

which corresponds to the allowed values of cosθ  in Eq.(16). Hence the 

resonant tunneling states group themselves to allowed tunneling energy bands 

separated by forbidden gaps. 

(b) As can be seen from Eq. (19) in combination with Eq. (21), the resonant state 

will correspond to 0SinNθ = where  θ  is given in Eq. (16). Thus, there  

occurs N-1 values of resonant energies in each band for 

/ , 1, 2,..., 1.n N n Nθ π= = − These values of θ correspond to the wave 

vectors nπ/L in a superlattice of length L = Nc. Thus for the N-barrier  

superlattice with (N −1) wells, each allowed mini energy band will contain 

(N−1) number of resonance energy states corresponding to the (N −1) values 

of the wave vector. 

(c)  During the resonance tunneling, the electron energy resonates at the bound 

states of quantum well. Hence, the number of allowed bands in these 

multibarrier systems is found to be equal to the number of bound energy states 

in the single finite quantum well having the same parameters as that of the 

MBS.  It may be worth noting here that the number of bound states, j, for ε<V0  

in a finite well depends on the width, a, and  potential height, V0, of the 

quantum well through the relation : 
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  1)( += βIntj                                                      (22)  

Where,  ( ) 2

*
1

2
2
2

2
1

2 8
h

Vma
kka

VE =+⎟
⎠
⎞

⎜
⎝
⎛= =π

β  

and   Int (β)=Integer value of β 

Hence due to phase coherence the   number of tunneling bands in multibarrier 

systems for ε<V0 will be equal to ‘j’ which depends on the well width and the 

height of the potential barrier and is independent of the barrier width. 

 

2.3.  Resonant Tunneling Lifetime 

 The RTL is computed using the energy uncertainty condition at energy 

corresponding to resonant tunneling and the formulae [10] is given below.  

                                       
mε

τ
∆

=
2
h    (23) 

Where τ  is the RTL, 
π2
h

=h ,  is the Planck’s constant and h mε∆  is the half- 

width of the resonant peak at half-maximum of the resonant peak around the 

resonance energy mε . The halfwidth  mε∆ is obtained from the graph of  tunneling 

coefficient versus incident energy  by computational methods. Specifically, our  

computational method employs a  search technique to determine the values of the 

half-maximum of the resonant peak. 

2.4. Traversal Time 

The traversal time of electrons for energies corresponding to resonant tunneling is 

defined by [19] 
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g

R v
L

=τ                                                 (24) 

Where L  is the total length traversed by the electron and   is the group velocity 

defiened through the relation 

gv

dk
dvg
ε

h

1
= .  is the  wavevector defined as k

L
nπ , 

where  The group velocity is obtained  in two steps: (i) 

First, the points of the 

).1(,2,1 −= Nn LLL gv

ε  versus k curve are interpolated   by Lagrangian 

interpolation technique, (ii) In the second step, the derivative at  the necessary 

points are computed.   

 

3.Numerical Analyses: 

The numerical analyses is basically concerned with the computation of (i) the 

transmission coefficient across multibarrier systems for incident energies   ε < V0 , 

ε = V0  and ε > V0  ,(ii) resonant tunneling energies for which the transmission 

coefficient is unity,(iii)the resonant tunneling lifetime and (iv) the group velocity 

and traversal time across the barrier. The procedure for computing the 

transmission coefficient in the non-relativistic treatment is based on numerical 

computation of  Eq.(19) in combination with Eqs.(21) and (9). Thereafter these 

data points are  sorted to obtain the resonant tunneling energies for which 

transmission coefficient is unity. The half-width at half maximum, ∆εm , around 

each resonant tunneling energies are obtained by first finding the energies for 

which TN is  minimum on both the left and the right side of the resonant tunneling 

peak using a search program and then finding the energies 
1/ 2Lε   and 

1/ 2Rε    on both 

the sides of the peak where TN = (Tmax+Tmin )/2; Tmax being the transmission 
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coefficient at the resonant peak and Tmin correspond to the minimum transmission 

coefficient on the corresponding side of the resonant peak. The algorithm of the 

search program used is given in the  appendix. The half width ∆εm around each 

peak is obtained from the relation
1/ 2 1/ 2m R Lε ε ε∆ = −   The resonant  tunneling life 

time for each resonant energy is then calculated from Eq.(23) The traversal time is 

calculated for each energy state by finding out the group velocity  associated with 

the resonant states  in each resonant tunneling band by using Lagrangian  

interpolation technique and then we  use the principle that traversal time 

corresponding to a resonant state  is equal to the ratio of the  length of the 

multibarrier system and the group velocity associated with the corresponding 

resonant state.  In order to bring forth the variation of the tunneling and traversal 

times in the multibarrier systems , the problem is studied for various values of 

barrier width, well width and the  number of barriers in the MBS. For the 

numerical evaluation of TN, εm, τ  and τR, we have chosen the GaAs/AlyGa1-yAs  (y 

=0.3) superlattice  with the values of various parameters  as follows:    

            a = the well width = ncw x aw, where ncw  is the number of  cells in the  

well material in each well slab  and aw  is the lattice constant of the well material 

GaAs. 

            aw = 5.6533 Ǻ 

            b= the barrier width = ncb x ab,  where ncb    is the number of unit cells of 

the  barrier material in each barrier slab  and  ab  is   the lattice constant of the 

barrier material Al0.3Ga.0.7As .  
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65564.5=ba Ǻ. 

∗
wm and  = the effective masses of the well (GaAs )and the barrier 

(Al

∗
bm

0.3Ga0.7As)    region materials of the superlattice 

 = 0.065 m0 and (0.067 + 0.083x 0.3 ) m0 ; m0 is the free electron 

mass. 

Eg1 and Eg2  =  energy band gap in the well and barrier materials 

= 1.428 eV and (1.424 + 1.247x 0.3) eV. 

     V =  height of the potential barrier = 0.88 (Eg2 − Eg1)  

The energy band gap of AlyGa1−yAs becomes indirect when the value of mole 

fraction (y) exceeds 0.45, and hence does not conform to the band diagram (shown 

in Fig. 1(b)). Therefore, for the present calculations we have considered y=0.3. 

4. Results and Discussion 
 
4.1 Transmission coefficient: 
 
The transmission coefficient for GaAs/ Al0.3Ga.0.7As  multibarrier systems is calculated 

on the basis of Eq.(19) in combination with Eqs.(21)and (9). Fig(2) depicts the 

transmission coefficient versus incident energy. The graphs  2(a) and 2(b) show the 

variation of TN versus ε   for systems with  ncw=5, ncb=5 having 3 barriers and 9 

barriers respectively. The TN versus ε    curve  for 9 barrier systems with  ncw=5, 

ncb=4 is presented in  graph  2(c) and that for ncw=8 and ncb=5 in graph 2(d). The 

graphs clearly show that the transmission coefficient varies rapidly and attains the 

value of unity for certain incident energies. These energies are referred as resonant 

energies both for 0V<ε and 0V>ε .  These resonant energies group themselves into 
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allowed tunneling bands separated by forbidden gaps. In the forbidden region the 

transmission coefficient remains zero.  In each allowed  tunneling band there are N-1 

number  of resonant states; N being the number of barriers in the system. In the first 

band the variation of TN seems to be rapid and becomes zero in the neighbourhood of 

the maxima. However, the variation of TN is not that rapid for resonant energies in the 

higher bands.  The TN in the higher bands remains near the maximum value of unity 

and the peaks are less sharp.  

 
 4.2 Resonance Energies 
 
The resonant energies corresponds to the condition TN =1 and are  obtained from the  

TN versus ε  graphs by using the search technique.  Fig. 3 display the resonant 

energies for systems with varied   ncw, ncb and N. As has been mentioned these 

resonant states are for allowed tunneling bands separated by forbidden bands both for 

0V<ε and 0V>ε  with each allowed band containing N-1 resonant states.  However, 

there is one extra energy state observed in each system where TN become one. We feel 

this might be  a surface state. To find the origin of this extra resonant energy state, 

we checked the transmission coefficient for the N-1 values of energies 

corresponding to / , 1, 2,..., 1.n N n Nθ π= = −  in each band directly from 

Eq(19)-(21) using a different method. It is worth pointing here that these values 

of θ correspond to the allowed k values of a band as explained in (b) of 

subsection2.2. It is found that the resonant energies obtained through search 

technique tallies with those obtained through the second method for the band 

states. It is thus confirmed that the extra resonant state is certainly not a band 

state and can be accounted only as a surface state arising due to the finiteness of 

 18



the system[24-25] and termination of the periodic potential. The surface states 

are indicated in the figures by an arrow mark.  

 Fig. 3(a) presents the resonant  energy states for ncw=5 and  ncb=5 but for the 

number of barriers N  to be 5, 7, 9.  We have considered  incident energies up to 

1.5eV. In  all these three cases we have obtained three allowed tunneling  bands with 

each allowed band containing N-1 resonant states. For low values of N, mε  lies in the 

center of the band, as N increases mε  spreads out from the central regions of the 

bands towards the edges. From this figure it can be clearly seen that the position of 

the surface state remains independent of the number of barriers.  Fig. 3(b) depicts the 

resonant energy state for 9 barrier system with constant barrier width with ncb=5 and 

varying well width with ncw=2 ,5,8 respectively. The number of allowed  tunneling 

bands  increases form 2 to 4 when we move from ncw=2 to ncw=8. This observation 

is in conformity with the number of allowed bands given in Eq.(22). Further, with 

increase in ncw, the width of the allowed bands and the forbidden gaps  becomes 

narrower. The  energies of the bound state of the quantum wells move to lower energy 

values as the width of the well increases.    It is worth pointing that in an infinite 

quantum well the energies of the bound states are inversely proportional to the square 

of the well width and   any increase in well width will cause the bound states to shift 

to the lower values.  Here, the surface states have the same values for all the three 

cases of well width suggesting that the energy of the surface state is independent of 

the well width only when the barrier width remains constant.  Fg. 3(c) represents the 

resonant tunneling energies for the 9 barrier system for constant well width i.e.  

ncw=5 and varying barrier width ncb=4,5,6. An increase in barrier width causes a 
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decrease in the overlap interactions between the states of adjacent wells resulting in a 

decrease in the bandwidth which is evident in the graph Fig. 3(c) as we go from 

ncb=4 to ncb=6. Moreover, the surface state moves towards the lower energy state 

with an increase in ncb.   In Fig. 3(d), resonant  energies are presented for a system 

for 9 barrier system having  total number of cells constant  while varying ncw and ncb 

simultaneously. With various combination of ncw and ncb, it is observed that the 

surface state gradually moves towards the higher energy state.  

4.3 Resonant Tunneling Lifetime 

Tunneling lifetime values are calculated using Eq. (23). Fig. 4 shows the variation of 

RTL )(τ , for the system with ncw=5, ncb=5 while the number  of barriers varied from 

5 to 9. The following significant features can be noticed. 

(a) The profile of τ , for the smallest/largest value of mε  in all allowed energy bands, 

show similar  characteristic irrespective of the number of barriers. 

(b) The τ  values for the resonant states decrease as we move towards higher 

tunneling bands.  This is  due to the fact that the electrons in resonant states in the 

higher bands can tunnel faster than those in lower bands owing to their higher 

energy.  

(c) The lifetime for the resonant state at the near  middle of the band show a 

minimum. This observation corroborates the phenomenon observed by  Arif et al 

[17] in GaAs/Al Ga As superlattices. This minimum value of the lifetime 

implies that the electron in the middle of the band tunnel out faster than those 

with other values of 

y y−1

mε  in the same band. Moreover, an increase in N in a system 

accompanies an increase in  τ  for the same values of mε .  
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(d) The intraband variation  of τ  with mε  decreases as we go towards the higher 

bands. Apparently, τ  seems to decrease in the second band with the increase in 

energy of the resonant state.  

(e) In the third band, there is slight variation in the τ   values observed for a 

particular N. Hence, we can say that there is little variation in the tunneling rate.  

 

4.4. Group velocity and traversal time 

The dispersion curves are plotted for multibarrier systems having  ncw =5, ncb=5 and 

N=5,7 and 9 respectively. Using Langragian interpolation  data points are 

interpolated. Thereafter, the group velocity of the electrons is computed. The group 

velocity ‘ ’ obtained after Langragian interpolation for various N values are shown 

in Fig. 8.  In this figure the  for only the first two allowed bands are shown. In the 

first allowed  band  is found to be highest in the middle of the band. The  values 

gradually increase with the increase in 

gv

gv

gv gv

mε  values in the second allowed band.  

Moreover, the  values slightly increase when N is increased from 5 to 9.  gv

   The traversal time computation is performed by using Eq. (24). The total length 

traversed by electron is calculated using the relation, 

.  The  traversal time ‘( 1)wL ncw a N ncb a N= × × − + × ×b Rτ ’ corresponding to 

resonant energies are plotted in Fig. 6,   only for first two allowed bands. The profiles 

of Rτ  show the same trend as it is observed in the plots for lifetime and have values of 

the same order as τ . The occurrence  of minimum  of  Rτ  at values of mε around 

the middle of an allowed band can be explained using the fact that the group 
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velocity of an electron is the highest at the middle of an allowed band. 

Consequently, an electron with mε  in the middle of any allowed band will tunnel 

out faster than those with other values of mε  in the same band.  

5. Conclusions 

In this work, a model for computation of transmission coefficient for multibarrier 

semiconductor heterostructure is proposed. The resonant energy values are found to 

be dependent on the number of barriers, number of cells in the well region and 

number of cells in the barrier region.  The resonant energy states group themselves 

into allowed tunneling bands separated by forbidden gaps for energies ε < V0 , as well 

as  ε > V0 ,  each tunneling band containing (N-1) number of states in a N barrier 

system. The results indicate the presence of a new surface state in the resonant energy 

spectrum. The order of RTL values are found to be in good agreement with the 

previously reported values for the same type of superlattices. The lifetime and the 

traversal time for the resonant states at the near middle of each band show a 

minimum. The resonant tunneling life time and the traversal time are found to have 

almost similar values. It is worth pointing that the  traversal time defined by 

Eq(24)  at the resonant energies for which  
L

nk π
=  will reduce to a form similar 

to that of the resonant life time given through Eq.(23). The resonant tunneling 

lifetime, group velocity, and the traversal time presented in this work will be useful in  

understanding  the physical mechanisms of the resonant tunneling phenomena in the 

multibarrier systems and help in developing appropriate resonant tunneling devices. 

We also expect the work to initiate a more rigorous study of the surface state in the 

tunneling energy band in the multibarrier systems.  
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APPENDIX 

Algorithm of the search program to locate the maxima, minima, and the half-

widths of the resonant transmission peaks and to compute resonant lifetime. 

Step 1: The transmission coefficient (TN) for the multibarrier system is computed 

for incident energies, ε ,in the range 0-1.5eV with a step length of 0.00001eV, on 

the basis of Eqs. (19)-(21), after setting the values for the parameters N, nw. nb, 

aw, ab and V.  The results are stored in a data file as n, E(n) [ =0.00001*n eV ] 

and T(n). 

Step2: T(1)= 0 and is taken as the minimum  to the left of the first transmission  

maxima. Hence we set nminl=1, Eminl=E(1) and Tminl=T(1)  respectively. 

Step3: The maxima is searched by an iterative process starting from n=nminl 

onwards and satisfy the condition 9...2,1)()()( =+≥≤− mformnTnTmnT  and 

 The corresponding values are stored as  nmax = n, 

Emax = E(n), and Tmax = T(n)  respectively. 

)10()()10( +><− nTnTnT

Step4:  The left half maximum of the peak is defined as Tmidl=(Tminl+Tmax)/2. 

The corresponding value of energy at halfmaximum is found by an iteration 

starting from n=nminl to nmax and for which ABS(Tmidl –T(n))is the smallest. 

The corresponding values are stored as  nmidl = n, Emidl = E(n), and 

Tmidl=T(n)  respectively. 

Step5: The  minima of the peak on the rightside of maxima is found by an 

iterative process starting from n=nmax onwards and satisfy the condition 

9...2,1)()()( =+≤≥− mformnTnTmnT and )10()()10( +<>− nTnTnT  The 
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corresponding values are stored as  nminrl = n, Eminr = E(n), and Tminr=T(n)  

respectively. 

Step6: The right half maximum of the peak is defined as 

Tmidr=(Tmax+Tminr)/2. The corresponding value of energy at half maximum is 

found by an iteration starting from n=nmax to nminr and for which ABS(Tmidr 

–T(n))is the smallest. The corresponding values are stored as  nmidr = n, Emidr 

= E(n), and Tmidr=T(n)  respectively. 

Step7: The width at half maximum of the resonant peak is equal to the difference 

(Emidr-Emidl)   and the resonant lifetime for the corresponding resomant 

energy  Emax is is computed on the basis of Eq.(23). 

Step8: The right minima of the previous peak is the left minima for the 

succeeding peak. Hence we reset nminl=nminr, Eminl=Eminr, and Tminl=Tminr 

and Step3 to Step8 are repeated until all the data points are exhausted.  

The algorithm does not have any limitations in regard to the  parameters like the 

number of barriers N ,or others as listed in Step1. The only limitations to the 

search technique will depend on the data handling capability of the software 

used. 
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Figure Captions
 

 
Fig. 1: (a) Schematic diagram of a binary superlattice obtained by alternately stacking  

layers of semiconducting materials ( GaAs and Al0.3Ga0.7As). (b) Energy Band 

diagram of stacking layers. (c) The multibarrier heterostructure with well and barrier 

regions originating from the band offset.  

Fig. 2. Transmission coefficient versus electron energy for GaAs/Al0.3Ga0.7As 

superlattice by varying  number of barriers ‘N’, number of cells in the well region 

‘ncw’, number of cells in the barrier region ‘ncb’. The arrow indicates the position of 

the surface state. The star symbol indicates the transmission coefficient for E=V0. 

(a) N=3, ncw=5, ncb=5, (b) N=9, ncw=5, ncb=5, (c) N=9,ncw=5, ncb=4, (d) N=9, 

ncw=8, ncb=5. 

Fig. 3.  Resonant energy (Em) values for GaAs/Al0.3Ga0.7As superlattice. The arrow 

indicates the position of the surface state. (a) the number of barriers ‘N’ is varied 

from 5 to 9, and the number cells in the well region ncw=5,  the number cells in the 

barrier ncb=5. (b) N=9, ncw=2,5,8 , and ncb is fixed at 5. (c) N=9, ncw is fixed at 5, 

and ncb=4,5,6. (d) N=9, both ncw and ncb are varied simultanesously keeping the 

total no of cells constant.  

Fig. 4. Variation of resonant tunneling lifetime (τ ) with resonance energies ( mε ) for 

GaAs/Al0.3Ga0.7As superlattice with different values of number of barriers (N).  The 

number of cells in the well region, ncw=5 and number of cells in the barrier region, 

ncb=5. The star symbol indicates the surface state.  

Fig. 5. Variation of group velocity (vg) with resonant energies ( mε )  for 

GaAs/Al0.3Ga0.7As superlattice with different values of number of barriers (N).  The 
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number of cells in the well region, ncw=5 and number of cells in the barrier region, 

ncb=5. Two allowed energy bands are shown.  

Fig. 6. Traversal time (τ R )   versus resonant energies ( mε )  for GaAs/Al0.3Ga0.7As 

superlattice with different values of number of barriers (N).  The number of cells in 

the well region, ncw=5 and number of cells in the barrier region, ncb=5. Two allowed 

energy bands are shown. 
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Figure 2(a) 
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Figure 2(c) 
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