

Open access • Posted Content • DOI:10.1101/2021.08.12.21261991

Transmission dynamics and epidemiological characteristics of Delta variant infections in China — Source link

Min Kang, Hualei Xin, Jun Yuan, Sheikh Taslim Ali ...+9 more authors Institutions: Centers for Disease Control and Prevention, Li Ka Shing Faculty of Medicine, University of Hong Kong Published on: 13 Aug 2021 - medRxiv (Cold Spring Harbor Laboratory Press) Topics: Viral load, Serial interval, Confidence interval and Delta

Related papers:

- · Viral infection and Transmission in a large well-traced outbreak caused by the Delta SARS-CoV-2 variant
- Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant.
- Densely sampled viral trajectories suggest longer duration of acute infection with B.1.1.7 variant relative to non-B.1.1.7 SARS-CoV-2
- Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England.
- Vaccinated and unvaccinated individuals have similar viral loads in communities with a high prevalence of the SARS-CoV-2 delta variant

1	Transmission dynamics and epidemiological characteristics of Delta variant infections
2	in China
3	
4	Min Kang ^{1*} , Hualei Xin ^{2*} , Jun Yuan ³ , Sheikh Taslim Ali ^{2,4} , Zimian Liang ⁵ , Jiayi Zhang ¹ ,
5	Ting Hu ¹ , Eric H. Y. Lau ^{2,4} , Yingtao Zhang ¹ , Meng Zhang ¹ , Benjamin J. Cowling ^{2,4} , Yan Li ^{1‡} ,
6	Peng Wu ^{2,4‡}
7	
8	* These authors contributed equally (joint first authors).
9	‡ These authors contributed equally (joint senior authors).
10	
11	Affiliations:
12	1. Guangdong Provincial Center for Disease Control and Prevention, Guangdong province,
13	China
14	2. WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of
15	Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
16	Special Administrative Region, China.
17	3. Guangzhou Center for Disease Control and Prevention, Guangdong province, China
18	4. Laboratory of Data Discovery for Health Limited, Hong Kong Science Park, New
19	Territories, Hong Kong.
20	5. Foshan Center for Disease Control and Prevention, Guangdong province, China
21	
22	Corresponding authors:
23	Benjamin J. Cowling, School of Public Health, Li Ka Shing Faculty of Medicine, The
24	University of Hong Kong, 7 Sassoon Road, Pokfulam, Hong Kong
25	Tel: +852 3917 6711; Email: <u>bcowling@hku.hk</u>

- 26 and
- 27 Yan Li, Guangdong Provincial Center for Disease Control and Prevention, Guangdong
- 28 province, China;
- 29 Tel: +86 2031051493; Email: <u>sjkzx_liyan@gd.gov.cn</u>
- 30
- 31 Running head: Epidemiology of Delta variant in China
- 32
- 33 Word count (abstract): 248
- 34 Word count (main text): 3,338
- 35

37 ABSTRACT

38	Background: The Delta variant of SARS-CoV-2 has become predominant globally. We
39	evaluated the transmission dynamics and epidemiological characteristics of the Delta variant
40	in an outbreak in southern China.
41	Methods: Data on confirmed cases and their close contacts were retrospectively collected
42	from the outbreak that occurred in Guangdong, China in May-June 2021. Key
43	epidemiological parameters, temporal trend of viral loads and secondary attack rates were
44	estimated and compared between the Delta variant and the wild-type SARS-CoV-2 virus. We
45	also evaluated the association of vaccination with viral load and transmission.
46	Results: We identified 167 patients infected with the Delta variant in the Guangdong
47	outbreak. The mean estimates of the latent period and the incubation period were 4.0 days
48	and 5.8 days, respectively. A relatively higher viral load was observed in Delta cases than in
49	wild-type infections. The secondary attack rate among close contacts of Delta cases was 1.4%,
50	and 73.9% (95% confidence interval: 67.2%, 81.3%) of the transmissions occurred before
51	onset. Index cases without vaccination (OR: 2.84, 95% confidence interval: 1.19, 8.45) or
52	with one dose of vaccination (OR: 6.02, 95% confidence interval: 2.45, 18.16) were more
53	likely to transmit infection to their contacts than those who had received 2 doses of
54	vaccination.
55	Discussion: Patients infected with the Delta variant had more rapid symptom onset. The
56	shorter and time-varying serial interval should be accounted in estimation of reproductive
57	numbers. The higher viral load and higher risk of pre-symptomatic transmission indicated the
58	challenges in control of infections with the Delta variant.

60 INTRODUCTION

61	The SARS-CoV-2 Pango lineage B.1.617.2, also known as the Delta variant, is a variant of
62	SARS-CoV-2 first detected in India on 7 September 2020 (1). It was classified by the World
63	Health Organization as a "Variant of Concern" on 11 May 2021, and has been rapidly
64	outcompeting other variants of SARS-CoV-2 and becoming predominant in many locations
65	around the world. As of 3 August 2021, a total of 135 countries have reported cases of the
66	Delta variant, and over 80% of new infections globally were expected to be due to Delta
67	since mid-June (1, 2).
68	
69	Compared to the wild-type virus, the Delta variant has 9-10 characteristic mutations
70	including T19R, G142D, 156del, 157del, R158G, L452R, T478K, D614G, P681R, and
71	D950N which could be responsible for competitive advantages against other variants (3).
72	Residue 452 spike mutation located at the receptor binding domain may increase capability of
73	immune evasion and resistance to antibody neutralization, and P681R in the S1/S2 regions of
74	S gene could influence proteolytic processing (4). All these mutations could result in
75	increased affinity of ACE2 and resistance to antibody neutralization therefore leading to
76	increases in transmissibility (4). The basic reproduction number (R_0) of Delta variant was
77	suggested to be 55%-97% higher than other variants (2).
78	
79	On 21 May 2021 the first local Delta case in mainland China was identified in Guangdong

province. A local outbreak occurred in the following days and weeks, and the gene sequence analysis showed that all cases identified in this outbreak were infected with the Delta variant and could be traced back to the index case (5). Aggressive case finding strategy including multiple comprehensive large-scale nucleic acid tests in high-risk communities, routine PCR testing for close contacts quarantined in designated places and nucleic acid screening among

85	inpatients and outpatients in clinical institutions, had been strictly implemented aiming to
86	identify all infected persons and rapidly control this outbreak. This provides uniquely rich
87	epidemiological data on infections with the Delta variant. In this study, we aimed to explore
88	the transmission dynamics and epidemiological characteristics of the Delta variant outbreak
89	in China. As the coverage of COVID-19 vaccination has increased substantially in China
90	since March 2021, we were able to examine the associations between vaccination and virus
91	shedding and transmission.

92

93 METHODS

94 Data collection

95 We retrospectively collected information on all laboratory-confirmed symptomatic and 96 asymptomatic cases with Delta (B.1.617.2) variant infection from the outbreak in Guangdong 97 province in May and June 2021. To estimate the latent period distribution, we collected 98 individual information on the first and last dates of exposure (exposure window), and the 99 repeated laboratory testing dates of last negative PCR test (lower bound of viral shedding) 100 and first positive PCR test (upper bound of viral shedding) which provide a window during 101 which detectable virus shedding began. We also obtained illness onset dates for incubation 102 period estimation. We reconstructed the transmission pairs from available illness onset dates 103 for both infectors and infectees to estimate the serial interval distribution, the infectiousness 104 profile, and the proportion of transmission occurring prior to symptom onset. Severity status 105 including asymptomatic, mild, moderate, severe and critical were collected for each case, 106 along with other information such as sex, age, pre-existing underlying conditions, vaccination 107 status, and exposure duration. We also collected information on close contacts of the 108 confirmed Delta cases to estimate secondary attack rates and identify predictors of infection. 109

110	Comprehensive large-scale nucleic acid-testing strategies, including community-wide PCR
111	testing, routine test among concentrated quarantine close contacts and daily test for inpatients,
112	were implemented in every local COVID-19 outbreak in China since April 2020 (6). For each
113	case, serial samples were collected and tested for both N-gene and OR-gene from the date of
114	first positive PCR test until discharge from hospital. To understand the temporal dynamics of
115	viral RNA shedding for the Delta variant, we obtained serial cycle threshold (Ct) values for
116	each case for N-gene with throat swabs from the first time of positive test (Ct value <40). To
117	make a comparison of viral loads between the Delta variant and the wild-type variant, we
118	used data of wild-type SARS-CoV-2 infections that were identified in Guangzhou, China in
119	early 2020 from a published paper on individual cases with daily test results (7).
120	
121	Case definitions
122	A patient is confirmed as a COVID-19 case based on a positive result of PCR for SARS-
123	CoV-2 with respiratory specimens. Virus strains in this study were determined by the
124	sequenced genome and were classified based on the "Pango lineages" rule (8). The time
125	interval between infection and becoming infectious is defined as the latent period, that could
126	be compared with the incubation period which describes the time duration between infection
127	and symptom onset. The latent period is typically proxied by the time from infection until an
128	infected person has virus shedding that is detectable by PCR, and can be shorter than the
129	incubation period for some COVID-19 cases when virus shedding becomes detectable prior
130	to symptom onset. The serial interval, defined as the time interval between successive
131	symptom onsets in a transmission chain, is an important parameter for estimating many other
132	key epidemiological parameters, such as R ₀ , the expected number of secondary cases
133	generated from one primary case in a completely susceptible population, and the
134	instantaneous reproduction number (R_t) which describes the expected number of secondary

135	cases caused by one typical primary case at time t. The infectiousness profile of COVID-19
136	describes the duration and intensity of infectiousness of infected cases which imply the
137	probability of transmission during the infectious period.
138	
139	We assessed the clinical severity of COVID-19 cases via clinical classification into
140	asymptomatic, mild, moderate, severe and critical following the Guidelines in Diagnosis and
141	Treatment of COVID-19 (8 th version) published by National Health Commission since 15
142	April 2021 (9).
143	
144	Close contacts were defined as individuals who were exposed to symptomatic COVID-19
145	cases within two days before their illness onset, or exposed to asymptomatic cases at close
146	proximity (<1 meter) without wearing proper personal protection equipment within two days
147	before their sampling dates of the first positive samples for SARS-CoV-2. Close contacts
148	were classified as household and extended family, social, community and healthcare contacts
149	based on the definitions previous published by Sun et al (10). Cases were considered having
150	effective 1-dose vaccination if the start date of exposure was 10 days after the first dose of
151	vaccination or later, or having effective 2-dose vaccination if the start date of exposure was
152	14 days after the second dose of vaccination or later (11, 12).
153	
154	Statistical analysis

We used a maximum likelihood-based inferential method to estimate the distributions of
latent period, incubation period and serial interval and the infectiousness profile of confirmed
COVID-19 cases by fitting Gamma distributions. We accounted for the interval censoring of
exposure and viral shedding windows when estimating the latent period and incubation
period distributions. To estimate the infectiousness profile for symptomatic cases, we used a

160	method previously published by <i>He et al.</i> (7) which considered the serial interval as a
161	convolution between the infectiousness profile and the incubation period and allowed for an
162	early occurrence of infectiousness before symptom onset.
163	
164	The time-varying forward serial intervals (13, 14) and daily numbers of cases were used to
165	estimate the daily R_t by applying the statistical methods developed by <i>Cori et al</i> (15). The
166	serial interval distribution and R_0 were obtained by using mean estimates of the serial interval
167	and R_t during the exponential growth phase of the Delta outbreak (14).
168	
169	The overall temporal trend of Ct values for N-gene for Delta cases was analyzed by day of
170	illness onset. To aid visualization, smoothing splines using generalized additive models
171	(GAMs) (including days of illness onset as the only predictor) were fitted to the Ct values to
172	characterize the overall trend for the Delta variant. To make a comparison between Delta and
173	wild-type, we also fitted the temporal trend of Ct values for the Delta variant and wild-type
174	separately by excluding severe and critical and vaccinated Delta cases, because no severe or
175	critical or vaccinated cases were identified in wild-type cases. To evaluate the impact of
176	vaccination on viral loads among Delta cases, we fitted a multivariate GAMs by including
177	variables of vaccination (1: without vaccination, 2: with one or two dose of vaccine), days of
178	illness onset, age and disease severity. Temporal trend of predicted Ct values from the GAMs
179	model was presented and compared using box plots for vaccinated and unvaccinated cases
180	separately.
181	
182	Close contacts of confirmed COVID-19 cases infected with Delta variant with a solely

183 possible source of infection for each close contact were included for analyzing. The overall

184 secondary attack rate was calculated by dividing the number of infections by the total number

185	of close contacts. To assess the effectiveness of vaccination against transmission, a stepwise
186	logistic regression model was fitted by including age, sex, disease severity of the index,
187	COVID-19 vaccination for index cases, COVID-19 vaccination for close contacts, type of
188	contact, presence of exposure on the symptom onsets of index cases and duration of exposure.
189	Non-parametric and parametric bootstrap approach with 1000 resamples was used to assess
190	the uncertainty of each estimated parameter. Analyses were carried out using R version 4.0.3
191	(R Foundation for Statistical Computing, Vienna, Austria).
192	
193	RESULTS
194	As of 18 June 2021, 167 Delta cases were identified in the outbreak in Guangdong. Sixty-
195	nine (41.3%) were male. The median age was 47.0 years (interquartile range [IQR]: 31.0,
196	66.5) with 22 (13.2%) cases aged under 15 years and 44 (26.3%) over 65 years. The number
197	of asymptomatic, mild, normal and severe or critical was 8 (4.8%), 29 (17.4%), 111 (66.5%)
198	and 19 (11.4%), respectively, with no reported deaths. Sixteen (9.6%) cases received 2 doses
199	of the inactivated COVID-19 vaccine and 30 cases (18.0%) received one vaccine dose.
200	
201	We examined data from 101 confirmed Delta cases with sufficient information to estimate
202	the time window for infection and the time window for the start of viral shedding. The mean
203	latent period was estimated to be 4.0 days (95% confidence interval [CI]: 3.5, 4.4). Ninety-
204	five percent of the Delta cases started shedding virus within 8.2 days (95% CI: 7.1, 9.3) after
205	infection (Figure 1A). The mean incubation period estimated from 95 symptomatic Delta
206	cases was 5.8 days (95% CI: 5.2, 6.4). The 95 th percentile of the incubation period for Delta
207	was 11.5 days (95% CI: 10.1, 13.0) (Figure 1B).
208	

209	We used data from 94 transmission pairs of Delta cases with a reported onset date to estimate
210	the infectiousness profile by allowing for transmission before symptom onset. We estimated
211	that 2.7% (95% CI: 1.0%, 5.0%) of transmission occurred prior to 7 days before illness onset,
212	22.5% (95% CI: 16.0%, 30.0%) started to become infectious 4 days before illness onset, and
213	the infectiousness peaked at 2.1 days (95% CI: 1.5, 2.7) before onset and then dropped
214	gradually, with 73.9% (95% CI: 67.2%, 81.3%) of transmission occurred before illness onset
215	and 97.1% (95% CI: 94.4%, 99.0%) of transmission occurred within 4 days after illness onset
216	(Figure 1C).
217	

The estimated forward serial intervals decreased from 6.1 days (95% CI: 5.2, 7.1) on 25 May

219 2021 to 4.0 days (95% CI: 3.1, 5.0) on 18 June 2021 in the Delta outbreak (Figure 2B). By

220 using the time varying forward serial intervals and case incidence data, we estimated that the

221 Rt dropped rapidly from 9.3 (95% CI: 7.7, 11.6) on 25 May 2021 to 0.48 (95% CI: 0.42, 0.57)

on 18 June 2021, and had been below 1 since 9 June 2021 (Figure 2C). During the same time

223 period, the estimated infectiousness peak shifted from 0.23 days (95% CI: 0.20, 0.26) after

224 illness onset to 2.14 days (95% CI: 1.52, 2.70) before illness onset based on the time varying

- serial interval (Figure 2D). By using the daily estimates of forward serial interval and R_t
- during the exponential growth phase before 27 May 2021, the initial forward serial interval

227 was estimated to be 5.8 days (95% CI: 5.2, 6.1) (Figure 2B), and the R_0 was 6.4 (95% CI: 3.7,

228 9.3) (Figure 2C).

229

230 In total, 1314 throat swabs collected between 4 days before and 34 days after illness onset

were tested for 159 Delta cases. High viral loads were maintained between 4 days before

onset and 7 days after onset, then decreased gradually to a low but detectable level until about

233 Day 20 (Figure 3A). To compare viral loads between Delta and wild-type, we identified 94

234	cases with the median age of 46 years (IQR: 33, 61) infected with the wild-type virus in
235	Guangzhou city, Guangdong province in China between 21 January 2020 and 14 February
236	2020. Among those, 47 (50.0%) were male, the number of asymptomatic, mild and normal
237	were 2 (2.1%), 30 (31.9%) and 61 (64.9%), respectively, and no severe or critical cases were
238	identified. None of these cases received COVID-19 vaccination. In total 406 throat swab
239	samples were collected and tested on the illness onset day and 31 days after onset for the 94
240	wild-type cases. After excluding severe and critical cases and vaccinated cases, we found
241	during the period with a high viral load (0 to 7 days after onset), the median Ct values were
242	23.0 (IQR: 19.3-28.6) for N gene of the Delta variant, significantly lower than the values of
243	the wild-type N gene (median: 36.5, IQR: 33.0-40.0) (Figures 3B). Results of the GAMs
244	revealed that the Ct values of Delta cases who had one dose or two doses of vaccination were
245	on average 0.97 (95% CI: 0.19, 1.76) higher than unvaccinated cases after adjusting for days
246	of illness onset, age and disease severity (Figures 3C).
247	
248	To evaluate individual infection risk and the effectiveness of vaccination on transmission for
249	the Delta variant, we analyzed infections among 5153 individuals who were close contacts of
250	73 COVID-19 cases. The overall secondary attack rate was 1.4% (95% CI: 1.1%, 1.8%) in
251	the contacts. The stepwise regression model showed that a high infection risk was among
252	those in older age (OR: 1.02, 95% CI: 1.01, 1.03), exposed to an index case without

- 253 vaccination (OR: 2.84, 95% CI: 1.19, 8.45) or with 1 dose of vaccination (OR: 6.02, 95% CI:
- 254 2.45, 18.16), and being household and extended family contacts (OR: 40, 95% CI: 24, 66)

255 (Table 1).

257 **DISCUSSION**

272

258	Our study provided a comprehensive assessment of the epidemiological characteristics of the
259	Delta variant. Higher transmissibility was demonstrated for the Delta variant, as indicated by
260	a higher reproduction number, shorter latent and incubation periods, and shorter serial
261	intervals compared to the wild-type SARS-CoV-2 (5, 13, 16-18). We observed higher viral
262	loads in cases infected with the Delta variant which might contribute to more rapid and
263	intense transmission. In addition, we found the inactivated vaccines could effectively reduce
264	viral loads in cases infected with the Delta variant and further lead to lower transmissibility.
265	
266	We estimated the time varying forward serial intervals which considered the temporal
267	dynamics of the disease transmission in an outbreak (13, 14). The R_0 estimated for the Delta
268	variant was 6.4 which was substantially higher than the R_0 of the wild-type virus at the start
269	of the pandemic (16, 19). Estimation of the reproduction number could be underestimated
270	due to unobserved infections and neglecting the changes in the forward serial interval

271 distribution during the period of epidemic (14). In the Delta outbreak in China, active and

able to identify most infected persons including asymptomatic cases. With the shorter latent

aggressive case-finding strategies using multiple PCR tests were implemented, which was

and incubation period, and higher secondary attack rate among household and extended

family contacts, we believe multiple and more stringent interventions are needed to control

276 epidemics of the Delta variant. During the Delta outbreak in China, the local government had

277 implemented individual-based interventions such as case isolation, contact tracing and

278 quarantine, as well as population-level physical distancing measures such as lockdowns and

279 confinement (10, 13). More importantly, various community-wide PCR testing and routine

testing programmes among quarantined close contacts were aligned with the measures of

281 contact tracing and lockdown, aiming to identify and isolate the cases as early as possible and

interrupt transmission chains. The rapid drop in R_t within a week (Figure 2C) indicated the
 effectiveness of these interventions.

284

285	We estimated that the 73.9% of transmissions occurred pre-symptomatically for the Delta
286	variant, which was higher than other variants (7, 20, 21), suggesting a higher transmission
287	potential of Delta cases before detection which was further supported by the high viral loads
288	at least 4 days before illness onset shown in our study. The high risk of transmission
289	particularly before onset indicated the need to expand contact tracing to a wider group of
290	contacts and perhaps to a longer time scale in order to control the epidemic caused by the
291	Delta variant (7, 22). However, for areas with a high prevalence of COVID-19, complete
292	contact tracing and quarantine outside the home may be infeasible as the number of contacts
293	is always several folds the number of infections (10). Physical distancing such as self-
294	isolation and home quarantine is more suitable in these areas. However, society-wide
295	physical distancing measures might increase transmission risk at household settings (10, 20).
296	Our study showed that the secondary attack rate (22.0%) among household close contacts of
297	Delta cases was higher than the rate obtained in 2020 (12.4%) in the same location with wild-
298	type infections (23).
299	

We found that the viral load was higher in cases of the Delta variant than cases of the wildtype virus, indicating a potentially higher infection rate per contact for the Delta (24). In addition, patients infected with the Delta variant maintained a high viral load from 4 days before illness onset. Besides, compared to the wild type, patients infected with Delta had a slower decline in viral load towards the detection threshold of the PCR test (Figure 3B), likely leading to a longer infectious period (24). Escape of the Delta variant from immunity induced by wild-type variants (25) suggests that the herd immunity threshold needed to

307	suppress transmission of the wild-type virus may not be sufficient to control spread of the
308	Delta variant (24). Higher burden of SARS-CoV-2 is expected in the future given the
309	increasing predominance of the Delta variant all over the world. Additional booster doses of
310	vaccination might be able to increase protection against the Delta variant.
311	
312	The effectiveness of the current vaccines from Pfizer-BioNTech and Oxford-AstraZeneca
313	appeared to diminish against infections with the Delta variant (25, 26). However, the efficacy
314	of the vaccines against transmission, which is another important indicator of their impact (27),
315	has rarely been reported. In this study, we observed that the Ct values among Delta cases
316	with one or two doses of vaccination were on average 0.97 higher than the unvaccinated
317	cases, indicating approximately 3-fold decrease in the quantity of viral RNA copies (28). The
318	vaccinated Delta cases in our study with a decreased viral load might have a reduced
319	transmission potential given that viral RNA load of SAS-CoV-2 was independently
320	associated with the shedding of transmissible viruses (29). The effectiveness of inactivated
321	vaccines against transmission of the Delta variant demonstrated the importance of increasing
322	vaccination coverage in mitigating COVID-19 (30).
323	
324	Our study had several limitations. Self-reported symptom onset might bias estimates of the
325	parameters, e.g., leading to an overestimation of the incubation period if patients tended to
326	remember the later days with symptoms. Second, the Ct values used in our study were
327	obtained from different diagnostic kits which shared the same detection threshold but perhaps
328	with different sensitivity and/or specificity. Finally, in estimation of the serial interval,
329	transmission pairs with asymptomatic cases would be excluded due to absence of symptom
330	onset dates, which however might have biased the estimates of the reproduction number by
331	neglecting the impact of asymptomatic transmission.

333	In conclusion.	the Delta	variant demo	onstrated a l	higher	transmissibility	v compared	to the	wild

- type of SARS-CoV-2. An extension of contact tracing period to perhaps four days prior to
- 335 symptom onset may be needed considering the high proportion of pre-symptomatic
- transmission and the high viral load before onset in infections with the Delta variant.
- 337 Inactivated vaccines appeared to be effective in reducing transmission of Delta infections and
- a high vaccination coverage should be pursued to reduce the burden of COVID-19 pandemic.
- 339
- 340
- 341

342 ACKNOWLEDGMENTS

- 343 The authors thank Julie Au for technical support.
- 344

345 FUNDING

- 346 This project was supported by the National Natural Science Foundation of China (No.
- 347 82041030); Key-Area Research and Development Program of Guangdong Province (No.
- 348 2019B111103001); Theme-based Research Scheme (Project No. T11-712/19-N) of the
- 349 Research Grants Council of the Hong Kong SAR Government; and a commissioned grant
- 350 from the Health and Medical Research Fund, Food and Health Bureau, Hong Kong SAR
- 351 Government.
- 352

353 POTENTIAL CONFLICTS OF INTEREST

- 354 BJC reports honoraria from AstraZeneca, GlaxoSmithKline, Moderna, Roche and Sanofi
- 355 Pasteur. The authors report no other potential conflicts of interest.

357 **References**

- 358 1. B.1.617.2 Lineage Report. Alaa Abdel Latif, Julia L. Mullen, Manar Alkuzweny,
- 359 Ginger Tsueng, Marco Cano, Emily Haag, Jerry Zhou, Mark Zeller, Emory Hufbauer, Nate
- 360 Matteson, Chunlei Wu, Kristian G. Andersen, Andrew I. Su, Karthik Gangavarapu, Laura D.
- 361 Hughes, and the Center for Viral Systems Biology. outbreak.info, (available at
- 362 <u>https://outbreak.info/situation-reports?pango=B.1.617.2</u>). Accessed 10 July 2021.
- 363 2. World Health Organization .Weekly epidemiological update on COVID-19 3
- August 2021. Coronavirus disease (COVID-19) Weekly Epidemiological Update and Weekly
- 365 Operational Update, (available at <u>https://www.who.int/publications/m/item/weekly-</u>
- 366 epidemiological-update-on-covid-19---3-august-2021). Accessed 5 August 2021.
- 367 3. Zhencui L, Kai N, Kuibiao L, Yao H, Yang S, Min K, et al. Genome Characterization
- 368 of the First Outbreak of COVID-19 Delta Variant B.1.617.2 Guangzhou City, Guangdong
- 369 Province, China, May 2021. China CDC Weekly. 2021;3(27):587-9.
- 4. Tada T, Zhou H, Dcosta BM, Samanovic MI, Mulligan MJ, Landau NR. The Spike
- 371 Proteins of SARS-CoV-2 B.1.617 and B.1.618 Variants Identified in India Provide Partial
- 372 Resistance to Vaccine-elicited and Therapeutic Monoclonal Antibodies. bioRxiv.
- 373 2021:2021.05.14.444076.
- 5. Li B, Deng A, Li K, Hu Y, Li Z, Xiong Q, et al. Viral infection and Transmission in a

375 large well-traced outbreak caused by the Delta SARS-CoV-2 variant. medRxiv.

- 376 2021:2021.07.07.21260122.
- 6. Li Z, Liu F, Cui J, Peng Z, Chang Z, Lai S, et al. Comprehensive large-scale nucleic
- acid-testing strategies support China's sustained containment of COVID-19. Nat Med.

379 2021;27(5):740-2.

380 7. He X, Lau EHY, Wu P, Deng X, Wang J, Hao X, et al. Temporal dynamics in viral
381 shedding and transmissibility of COVID-19. Nat Med. 2020;26(5):672-5.

- 382 8. Rambaut A, Holmes EC, O'Toole Á, Hill V, McCrone JT, Ruis C, et al. A dynamic
- 383 nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat
- 384 Microbiol. 2020;5(11):1403-7.
- 385 9. National Health Commission of the People's Republic of China. Guidelines in
- 386 Diagnosis and Treatment of COVID-19 (eighth version). (available at
- 387 https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---6-
- 388 july-2021). Accessed 10 July 2021.
- 389 10. Sun K, Wang W, Gao L, Wang Y, Luo K, Ren L, et al. Transmission heterogeneities,
- kinetics, and controllability of SARS-CoV-2. Science. 2021;371(6526).
- 391 11. World Health Organization .The Sinopharm COVID-19 vaccine: What you need to
- 392 know. WHO Strategic Advisory Group of Experts, (available at https://www.who.int/news-
- 393 <u>room/feature-stories/detail/the-sinopharm-covid-19-vaccine-what-you-need-to-know</u>).
- 394 Accessed 10 July 2021.
- 395 12. World Health Organization .The Sinovac COVID-19 vaccine: What you need to
- 396 know. WHO Strategic Advisory Group of Experts, (available at https://www.who.int/news-
- 397 room/feature-stories/detail/the-sinovac-covid-19-vaccine-what-you-need-to-know). Accessed
- 398 10 July 2021.
- 399 13. Ali ST, Wang L, Lau EHY, Xu XK, Du Z, Wu Y, et al. Serial interval of SARS-CoV-
- 400 2 was shortened over time by nonpharmaceutical interventions. Science.
- 401 2020;369(6507):1106-9.
- 402 14. Park SW, Sun K, Champredon D, Li M, Bolker BM, Earn DJD, et al. Forward-
- 403 looking serial intervals correctly link epidemic growth to reproduction numbers. Proc Natl
- 404 Acad Sci U S A. 2021;118(2).

405 1	l5. C	Cori A. I	Ferguson I	NM.	Fraser C.	Cauchemez S	. An	new framework	and softw	are to
-------	-------	-----------	------------	-----	-----------	-------------	------	---------------	-----------	--------

- 406 estimate time-varying reproduction numbers during epidemics. Am J Epidemiol.
- 407 2013;178(9):1505-12.
- 408 16. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early Transmission Dynamics
- 409 in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med.
- 410 2020;382(13):1199-207.
- 411 17. Xin H, Wong JY, Murphy C, Yeung A, Ali ST, Wu P, et al. The incubation period
- 412 distribution of coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis.
- 413 Clin Infect Dis. 2021.
- 414 18. Ali ST, Yeung A, Shan S, Wang L, Gao H, Du Z, et al. Serial intervals and case
- 415 isolation delays for COVID-19: a systematic review and meta-analysis. Clin Infect Dis. 2021.
- 416 19. Du Z, Xu X, Wu Y, Wang L, Cowling BJ, Meyers LA. Serial Interval of COVID-19
- 417 among Publicly Reported Confirmed Cases. Emerg Infect Dis. 2020;26(6):1341-3.
- 418 20. Wu P, Liu F, Chang Z, Lin Y, Ren M, Zheng C, et al. Assessing asymptomatic, pre-
- 419 symptomatic and symptomatic transmission risk of SARS-CoV-2. Clin Infect Dis. 2021.
- 420 21. Ren X, Li Y, Yang X, Li Z, Cui J, Zhu A, et al. Evidence for pre-symptomatic
- 421 transmission of coronavirus disease 2019 (COVID-19) in China. Influenza Other Respir
- 422 Viruses. 2021;15(1):19-26.
- 423 22. Hellewell J, Abbott S, Gimma A, Bosse NI, Jarvis CI, Russell TW, et al. Feasibility
- 424 of controlling COVID-19 outbreaks by isolation of cases and contacts. Lancet Glob Health.
 425 2020;8(4):e488-e96.
- 426 23. Jing QL, Liu MJ, Zhang ZB, Fang LQ, Yuan J, Zhang AR, et al. Household
- 427 secondary attack rate of COVID-19 and associated determinants in Guangzhou, China: a
- 428 retrospective cohort study. Lancet Infect Dis. 2020;20(10):1141-50.

- 429 24. Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday JD, et al.
- 430 Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science.

431 2021;372(6538).

- 432 25. Liu C, Ginn HM, Dejnirattisai W, Supasa P, Wang B, Tuekprakhon A, et al. Reduced
- 433 neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum. Cell. 2021.
- 434 26. Sheikh A, McMenamin J, Taylor B, Robertson C. SARS-CoV-2 Delta VOC in
- 435 Scotland: demographics, risk of hospital admission, and vaccine effectiveness. Lancet
- 436 (London, England). 2021;397(10293):2461-2.
- 437 27. World Health Organization .WHO Target Product Profiles for COVID-19 Vaccines.
- 438 World Health Organization, (available at https://cdn.who.int/media/docs/default-source/blue-
- 439 print/who-target-product-profiles-for-covid-19-
- 440 <u>vaccines.pdf?sfvrsn=1d5da7ca_5&download=true</u>). Accessed 10 July 2021.
- 441 28. A guide for health protection teams. Understanding cycle threshold (Ct) in SARS-
- 442 CoV-2 RT-PCR: a guide for health protection teams. Public Health England, (available at
- 443 https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data
- 444 /file/926410/Understanding_Cycle_Threshold_Ct_in_SARS-CoV-2_RT-PCR_.pdf).
- 445 Accessed 10 July 2021.
- 446 29. van Kampen JJA, van de Vijver D, Fraaij PLA, Haagmans BL, Lamers MM, Okba N,
- 447 et al. Duration and key determinants of infectious virus shedding in hospitalized patients with
- 448 coronavirus disease-2019 (COVID-19). Nat Commun. 2021;12(1):267.
- 449 30. Hodgson SH, Mansatta K, Mallett G, Harris V, Emary KRW, Pollard AJ. What
- 450 defines an efficacious COVID-19 vaccine? A review of the challenges assessing the clinical
- 451 efficacy of vaccines against SARS-CoV-2. Lancet Infect Dis. 2021;21(2):e26-e35.

Characteristics	No. of close contacts	No. of infections (%)	Adjusted OR (95% CI)					
Overall	5153	73 (1.4)						
Sex								
Male	2553	29 (1.1)						
Female	2600	44 (1.7)						
Age, years, median (IQR ^a)	47.0 (31, 66.5)		1.02 (1.01-1.03)					
0-	424	12 (2.8)						
15-	2683	18 (0.7)						
45-	1521	27 (1.8)						
65-	525	16 (3.0)						
Type of index cases								
Asymptomatic and mild	1809	12 (0.7)						
Normal, Severe or critical	3344	61 (1.8)						
COVID-19 Vaccine dose of index cas	ses							
0	2892	37 (1.3)	2.84 (1.19-8.45)					
1 ^b	1110	31 (2.8)	6.02 (2.45-18.16)					
2^{c}	1151	5 (0.4)	Referent					
COVID-19 Vaccine dose of contacts								
0	2844	48 (1.7)						
1 ^b	1459	17 (1.2)						
2^{c}	850	8 (0.9)						
Type of contact								
Household and extended family	173	38 (22.0)	40 (24-66)					
Others	4980	35 (0.7)	Referent					
Exposure to an index case at onset ^d								
Yes	2106	49 (2.3)						
No	3047	24 (0.8)						
Duration of exposure, days,	7.8 (3.8)							
mean (sd)								
1-	1092	7 (0.6)						
6-	4061	66 (1.6)						

Table 1. Secondary attack rate for close contacts of the Delta infectors, and the risk factors associated with the occurrence of infection based on backward logistic regression.

^a IQR: interquartile range

^b first COVID-19 vaccine dose 10 days before the first day of possible exposure to an infector

^c second COVID-19 vaccine dose was given 14 days before the first day of possible exposure to an infector

^d close contacts were exposed to an index at the time of the onset day of the index

FIGURE LEGENDS

Figure 1. The key epidemiologic time-delay distributions of Delta variant (red lines). (A) The latent period distribution. (B) The incubation period distribution. (C) The infectiousness distribution. Vertical dotted lines show the mean estimates for latent period distribution and incubation period distribution, and the peak estimate for infectiousness profile. The triangles in A and B indicate the 95th percentiles for respective parameters.

Figure 2. The daily estimates of forward serial interval, instantaneous reproduction number (\mathbf{R}_{t}) and infectiousness peak. (A) The epidemic curve based on symptom onset dates of all cases in the Delta outbreak in Guangdong province. (B) The forward estimates of the serial interval over time. The dots represent the daily mean estimates of serial interval, and the vertical line segments represent the 95% CIs. The dashed line represents the initial (from transmission pairs with illness onsets of infectors before May 27, 2021) forward serial interval (5.8 days) (C) Mean estimates of \mathbf{R}_t (line) and the 95% CIs (shaded area) based on the daily forward estimates of serial interval. The dashed line represents the basic reproduction number \mathbf{R}_0 (6.4). The dotted line indicates \mathbf{R}_t =1. (D) Estimates of the daily infectiousness peak after illness onset, based on daily estimates of the serial interval. The dots represent the daily mean estimates of infectiousness peak, and the vertical line segments represent the 95% CIs.

Figure 3. Temporal patterns of viral shedding for the Delta variant and the wild-type SARS-CoV-2 virus. (A) Boxplot of threshold cycle (Ct) for N gene for all cases infected with the Delta variant. Light red curve and light pink shaded area indicate the fitted Ct values and the 95% CIs estimated from the generalized additive models (GAMs). (B) Boxplot of Ct values for N gene of Delta (red) and wide-type (blue) against time of sample collection

relative to the date of illness onset. The data for the Delta variant excluded severe, critical and vaccinated cases. (C) Boxplot of the predicted *Ct* values from the multivariate GAMs for unvaccinated (red) and vaccinated (blue, with one or two doses) cases.

