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TRANSMISSION ELECTRON MICROSCOPY OF RADIATION-INDUCED DEFECTS*

Manfred R. Ruhle
Materials Science Division, Argonne National Laboratory
Argonne, Illinois 60439, U.S.A.

Abstract

Radiation-induced defect clusters of sizes larger than about 10 R
can be directly observed by means of transmission electron microscopy.
The shape aé well as the nature of the defects (vacancy or interstitial
type) can be determined by comparing the results of the electron-microscopical
contrast calculations for different possible defect clusters (Frank disloca-
tion loops, perfect dislocation loops, voids, bubbles) with certain contrast
experiments. The main'emphasis in this paper will be put on the description
of the results of contrast calculations for voids and bubblés. The
influence of the focusing mode on the size and sign of the contrast figureg
is calculated. The results of the calculations are compared with séme

experimental observations of voids and bubbles in Het-bonbarded gold films.

*This work was performed under the auspices of the U. S. Atomic Energy
Commission.
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L. INTRODUCTION

In recent years, transmission electron microscopy has beéome an extremely

useful tool for the study of radiation damage in metals and reactor materials.
Silcox and Hirsch! were the first who observed resolvable dislocation loops' in

" neutron-irradiated copper. Later Makin and co-workers? found, in addition, a
ﬁigh density of small unresolvable defects ("black spots"). The density and

size distribution of the radiation-induced defects were determined by counting,

with the assumption that the diameters of the contrast figures correspond to the

. |

actual sizes of the defects. However, besides the density and size distribution
of the defects, the nature and geometrical shape of the defects are of great
interest. Especially, it is important to know whether the defects resulted
from the agglomeration of vacancies or intersiitials.

Considerable progress has been.made in the theory of electron-micfoscopic
contrast formation from defects in crystalline materials (see Hirsch et al.,?

. Amelinckx et ai.”). Aided by the theory, it is possible to calculate the contrast
for any defecf model with a‘gnown geometrical shape and a known strain field. To
determine the nature of the defects'in irradiated materials, first the contrast
of variocus defect model: has.to be calculatéd. The results of the computations.
indicate differences in the contrast betweeq different defect models. By ex-

ploiting these differences, it is possible to devise experiments by which the

shape and the nature of the observable defects may be ascertained.

m .
This work was performed under the auspices of the U, S. Atomic Energy Commissiomn.
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These methods are briefly explained in Sections 2-5 in this paper. Emphasis
is 6n the contrast of voids and bubbles. It will also be shown (Section 3) that
this contrast can be influenced strongly by the focusing conditions of the
objective lens.

In Section 6_some experiment details are summarized. Finally, in Section 7,
experimental coservations concerning the contrast of defects are described.

This papér emphasizes the methqu for the anélysis of radiation—induced
defects. TFor a more detailed exposition of the theory of the contrast formation
- and a more coﬁplete review of the results on irradiated metals and reactor-

materials, the reader is referred to other articles (Rﬁhle,5 Wilkenss’7).

SHORT SUMMARY OF CONTRAST FORMATION IN TRANSMISSION ELECTRON-MICROSCOPY

The contrast of lattice dgfects is formed by a diffraction contrast. As the
electron beam passes through a crystalline solid, the beam . split into the
direct beam and diffracted beams. (The directions_of the difffaction beams
depend on the lattice spacing through fhe Bragg equggion.) If the direct beam
is used for image formation (the diffracted beams are prevented from passing -
through the objective aperture), the so—called "bright field" is produced; if
_only one of thg diffracted beams is used for image form;tion (i.e., the direct
beam and all pther diffracted beams are prevented from passing through the )
objesctive aperture), then a Vdark field" image results. The variation of intemsity
observed on the micrograph depends on the local thickness of the foil, on the crys-
tallographic direction of the incident beam, and on the focusing mode of the
objective lens.

To obtain well-defined contrast conditions, the electron microscopic diffraction

imaging should be performed under "two-beam diffraction conditions." Under these

conditions, the orientation of the incoming electron beam with respect to the
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the‘cristallographic axes is chosen so that the incident electron beam is

reflecied by one set of latfice planes only,Ai.e., besides the incident beam

only one diffracted beam with diffraction- vector g 1s strongly excited. However,
since the Ewald sphere fer electroné with energies of 100 keV or more is very flat,
other reflections are always slightly excited. Especially, the "systematic re-
flections" (Bragg reflections with diffraction vectors ng, where (g = diffraction
vector of the strang excited beam; n = -1, %2, %3,...) can never be avoiﬁed,

i Under dynamical two-beam conditions, a "strong dark-field image" result-s by
using the strong diffracted beam (diffraction vector g) for image formation. If
one images the specimen with the diffraction vector -g or +2g (n = -1, +2), a
"weak beam dark-field image" is produced.®’® 1In the weak beam dark fieli more
details on the defect structure are observable.

A critical length that is important for describing diffraction phLenomena is
the "extinction length" Eg. The value of Eg dépegds on the substance and on
the particular reflecting plane. Small deviations ﬂAé of the direction of the
incident beam from the exact.Bragg conditions (Bragg angle 0) are described by
the normalized excitation error ﬁ = g1 f = Eg']g[' AB. For w # 0, the effective

24

extinction length EZ is given by’s?!? EZ = gg/v 1+wZ2. Micrographs taken under

two-beam dynamical diffraction conditions (with w = 0) are called "dynamic images."
Micrographs taken with a speéific excitation error w are called "gefined kine-
matic" images, those taken under unspecified kinematical diffraction conditions .
are called "“undefined kinematic" images.

For calculations of éhe cont;ast of the disturbed lattice, "the column ap-
proximation" introduced by Hirsch, Howie, and Whelan!! is applied. In this

approximation it is assumed that, because of the smallness of the diffraction

angle 20 of the electrons, the intensity at a given point on the micrograph is
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detgrmihed entirely by the varying diffraction conditions. Tais approximation
has been justified by comparing the results of the .olumn approximation with
those of the exact solution of the problem!? !* for the case where the defects
are imaged with a strong excited beam. However, in the case of weak diffracted
beams, this approximation is applicable only in specific cases.!®

If the 1§ttice planes in the neighborhood of the defects ére bent, the
contrast can be calculated by solving the differential equations 6f dynamical
two-beam approximation ﬁumerically. In such computations, the quantity char~
"acterizing specific defects is the z-derivative of the displacement field of
the defect, where .z denotes the directions of the bisector of the incident
and the reflected electron beams (two-beam case).

There are several physical equivaient formulations of these differential
equations. The scattering by fhe defects may be described in terms of plane
ﬁaves,10 Bloch waves, !®?!? or modified Bloch waves.!® For numerical integrations,
Bloch wave equations are preferable because a scaégéfing between the Bloch waves
takes place only where the z-derivation of the displacement field is essentially
different from zero. Therefore the Bloch wave equations must be solved only in
the regions close to the defect. .

For small dEfect clusters (small compared with the effective extinction length
of the operatiﬁg diffraction.yector)3 the tails of the contrast profile can be
calculated analytically in a first-order Born approximation.’’!'® From these
approximations, general features of the contrast figures (i.e., symmetry relationé
and direction of contrast) éan be obtained. The first—order Born approximation is
especially helful to determine the expected contrasé of perfect disloca;ioﬁ loops

that are under different orientations with respect to the incident electron bean.?
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A very important parameter in all contrast calculations is the parameter
of the anomalous absorption,!? which is assumed to be z 0.1 or slightly below

this value. 9°2°

DIFFRACTION CONTRAST FROM BUBBLES (WITHOUT STRAIN FIELD)

Both atomic defects (vacancies and interstitials) and clusters of these
atomic defects are nucleated in irradiated materials. Only the clusters of
agglomerates that are larger than at least the resulution of the electrom micro-
scope can be observed by means of transmission electron microécopy. The observable
agglomerates will be simply called defecté. fhere are essentially two different
types of defects: defects with or without a strain field in the vicinity of the
defects.

In this Section the contrast of defects without a strain field in the vicinity

of the defects will be discussed, and in Section 4 the contrast of defects with 2

strain field will be described.

3.1. "In-focus" Contrast of Defects without Sufrou;ding Strain

For the contrast calculations of defects without surrounding sFrain, it is
assumed‘that the vicinity of the void has the structure of the ideal crystal. For
simplicity, a void not surrounded bty a strain,field will be called a bubble. This
case is important for small gas-filled voids or large partially or empty voids),

. . . *
since in the latter case the  expected strain is negligible.

*At this point it should be noted that, In the case of a gas—-filled bubble in equi-
librium with the surrounding matrix, <train will be left in the matrix. Under the
conditions of thermal equilibrium, the pas pressure is p = 2G/ro, where g 1is the
surface tension of the solid ard z, is the radius of the bubble. Shuttleworth,?!

Herring,??  and Lidiard et al.?? pointed out that the surface emergy y and the



surface tension ¢ are not necessarily equal for solids. (By surface energy
we mean those terms in the free energy of a solid that are proortional to the
surface area.) These two quantities are related by

0 =y+ F° g% »

where the differentiation indicates a change of the area F of the bubble
under conditions in which the number of surface atoms remains constaunt. The
surface tension O can be considerably different from the surface energy in

the case of copper; O has a value that ranges between -0.2y £ 0 5 0.3Y 24

5

The contrast of bubbles was calculated by Ashby and BrownZ® and in detail by

6

Van Landuyt et al.;2 the results of Van Landuyt et al. were applied by

Ingram27 and Ruedt. 28°%2° The contrast of the bubbles can best be calculated
by the matrix method developed by Gevers?? and Amelinckx.??

With this method the amplitudes of the transmitted beanm Tz and of the
- i
scattered beam Sz. are calculated at the lower surface of a perfect crystal
i .

(thickness zi) by multiplying the amplitudes of the incoming beams (To’ So)
with the "scattering matrix" M(?i)?°’31 If a perfect crystal (thickness t) contains

a bubble of thickness Zys the amplitudes Tb and Sb of the transmitted and

reflected beam at the exit surface are (see Fig. 1):

~ s
i

7 (x,7) 1 |
= M(zy3%.7) V (2,5 %,5)  M(z;35%,Y) . (1)

Sb'("ﬁ)') 0

The amplitudes Tb and Sb are in general a funcfion of the coordinates (x,¥),
since the thickness z, of the bubble with an arbitrary shape depends on (x,y).
We restrict ourselves mainly to the case where the z, dimension of the cavity

is constant, see Fig. 1. Clearly, a bubble of arbitrary shape can always be
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decomposed in a sequence of bubbles with constant thickness. The variation over
the projected area of the bubble can easily be oétained by using the thickness-
intensity relations that are described here. Contrast of bubbles with a spherical
shape will be discussed later in some detail.

In Eq. (1) the scattering matrix AKzi) can be described as [the dependence

of z, on the (x,y)-coordinates is not noted explicitly any wmorel:

: Ti8;
M(zi) =M = ) . 2)
Si Ti
where the explicit expressions for T, and S, are in good approximation: 26230
. s w .
Ti c_os'lTOin :|.s§g sln'lraz‘i
Si =3 sin o z5s
VItw?
with
: .- €
o = Ay L we ana - B
&g g V142 g & /wz

where s is the excitation error, tg is the extinction length for the diffraction
vector g, and <% is the corresponding absorption length.

V(z) in Eq. (1) is the "vacuum matrix."

-~

S L
V(22)= e : 0 e 21rislz2 (3)

In Eq.(3), the factor. eﬁzﬂl € Bz describes the phase difference between a beam

passing through a bubble of thickness Az and a beam passing through the regions

of the perfect crystal.



-8 -

This phase shift is caused by the difference of the mean inner potential
Vo in the gas—filled bubble and the perfect crystal. From the mean inner
potential V° (< 0) in a metal, the refraction index €0 can be czlculated to

eV

e .
eo - 2E ko ) (4)

where e 1is the charge of an electron, E the total energy of the electron, and kO
the vacuum wavz vector of the electrons.

The phase factor can be neglected if one images the bubiles "in-focus," i.e.,
if one images (with the objective lens) exactly the exit surface of the foil.
However, if one images the defect “out-of-focus" (i.e., if one images a plane
with a distance from the exit surface), the phase factor is very important, see

Section 3.2.

The column vector (é) in Eq. (1) represents the initial values of T and S

il

at the entrance surface (z 0), the matrix M& describes transmission through the

first portion of the crystal wit': thickness 2y and the matrix V(zz) determines
the scattering by the bubble (thickness zé}. The vaiue of the excitation error s
to be used in V(ZZ) is that of the preceding perfect column, therefore s is

constant since the crystal is perfect apart from the wvoid. A% describes the

scaivtering through the second part of the perfect crystal with thickness Zq-

From the -amplitudes Tb and Sb the intensities can be éalculated; however,

N i
normal absorption also has to be taken into account in the present case, i.e., the

intensities have to be multiplied by an absorption factor
e-]-l(z1 + 22) ,

where y is the normal absorption coefficient, and absorption by the bubble is

obviously neglected.
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Ou the other hand, the amplitudes T and Sp in the perfect regions of the

crystal can be calculzted to

. .
:p - M(t)(},) . (5)

where t 1is the thickness of the film. 1In this case an absorption factor

e—Ut

has to be taken into account for the intensities I. The contrast is defined by

b p
- IT,S In s
T,S p

IT,S

{the subscripts T and 8§ indicate the intensity of the transmitted or scattered

beam}.

As one cah note from Egs. (1), (2), and (3), the contrast depends on the

thickness t of the film, the thickness 2z, of the bubble (which may vary over

2
the cross section of the void), the normal absorption factor U and the anomalous

absorption factox Tg’ and on the excitation error w.

In our concsiderations we restrict ourselves on the case s =0, i.e., Fhe
erxact Bragg condition. In the dynamical condition (s = 0), the calculated contrast
.of the bubble is independent of the depth-position z, of the defect, since Eq. (1)
simplifies tol < |

b
T . 1
__-—2wie Az . _
hb - e (s} ' 1‘43 Ml 0 . (6)

Since the basic property‘of the M matrices is that

M(Zl) . M(Zl) = M3t My = Mz + z3) (see Ref. 30),
the relation in Eq. (6) describes transmission and scattering by a perfect crystal

of thickness (zl + z3). The intensity of an electron beam passing thrbugh the bubble
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can be calculated by

b P :
I =1 (z, +z.),
I,s *r,s 1‘ 3

and the contrast of the bubbles is

P
I (z, + z.) .
C = LS 1 3 (7N

T,S
b
IT’S (t)

The thickness—intensity relationships fér bright field and dark field are plotted
in Fig. 2 for different factors of normal absorption u. For different materials
and different operating reflection vectors, different experimentally determined

values of u have to be appliean The curves for bright field plotted in Fig. 2'

include the upper and lower values for different materials imaged with diffraction

vectors of not too high order.

From the curves plotted in Fig. 2, the theoretical predicted contrast of
voids in bright'fielﬁ and dark field can be calculated from Eq. (7). The expected
contrast of small bubbles with eonstant thickness is plotted against the foil
thickness in Fig. 3. It follows that the bﬁbbles exhibit the strongeést contrast
in a very thin region of the crysgal; the thickness of the_crysfal should be
smaller than about three extinction lengths. The contrast depends sensitivelx on

v

the exact value of the foil thickness, especially in the case of a very thin

~

N ]

crystal region. The contrast is strongest at thicknesses slightly smaller or
larger than 0.5 extinction lengths, i.e., at the front or the rear of the first
dark thickness fringe in dark-field images or at the front of the second dark

fringe in bright-field images. These results have been verified éxperimentally

" by Ruedl.2822°

The calculated contrast figures of bubbles with different (constant) thick-

nesses z, are plotted for a constant foil thickness (four extinction distances)
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in Fig. 4. The curves indicate that for small (normal) abscrption factors
the bubbles exhibit predominantly negative contrast in bright field and predomi-
nantly positive contrast in dark field. Figure 4 also indicates that the sign

of the contrast can be different for bubbles with different thicknesses 2ye

So far we calculated the electron-micrescopical contrast for bubbles with
a constant thickness 2, If the thickness of the bubble varies over the pro-
'jected‘area c¢f the bubble, the sign and magnitude of the contrast will also
vary over the projected area. For dynamical two-beam imaging conditions (w = 0),

the contrast can easily be obtained from Fig. 2 for each bubble thickness.

We calculated the "in-focus" contrast for bubbles with a spherical shape.
For these bubbles the thickness z, (compare with Fig. 1) depends only on the

distance r from the centcer of the bubble:

= N = 2
z, 2 Rb v/l - p? ,
where R is the radius of the bubble and p the reduced distance from the

center of the bubble p = —£-(0 < p <1). The dependence of the sign and

R

magnitude of the contrast as a function of the distance p can be determined

with Fig. 2 for bubbles with different radii Rb in feils of different thick-

nesses t.

The sign of the contraéz ("bright" or "dark" compared to the background
intensity) produced by bubbles with diameters smaller than 0.5 extinction
distances §: depends on the thickness of the foil; however, it will always
be the same over the whole range of p. For bubbles with.diameters between
O.Sgg and 1.qgg the sign of the contrast can change over the projected
range of the bubb%e (0 < p <1), if the foil thickness i; about (n + 1/4)gg
(n =3, 4,5...) If the diameter of the spherical bubble'is>1arger than gg,

the sign of the contrast changes at least once over the range of p.
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Obviously, the magnitude of the contrast depends on the distance p for all
spherical bubbles of different sizes. The contrast profiles for two examples
(Rb = 0.1 Eg and R = 0.4 Eg).are plotfed in Fig. 5 as a function of p =.r/Rb.
The foil thickness is 3.75 gg. In both éases, maximum contrast is obtained
for p = 0. The small bubble (Rb = 0.1 Eg) reveéls for t = 3.75 Eg a negative
contrast; the intensity inside the projected area of the bubble (onto the image
plane) is al&ays smaller than the background intensify. As expected, the sign
of the contrast does not change over the whole range of p; however, the magni-
tude of the contrast decreases with increasing pP. This contrast will be barely
visible, especially since the weak contrast changes slowly over the radius of
the ‘small bubble, For the large bubble (Rb = 0.4 gg) the calculated contrast
is a bright spot surrounded by a dark ring, i.e., the sign of the contrast
changes in this case. The diameter of the bright part is 0.87 of the diameter
of the bubble, the outer diameter of the dark ring corresponds to the ac£ual

diameter of the bubble.

For other bubble diameters and foil thicknesses,similaf or more complicated
contrast figures can be calculated. Hovever, for all in-focus contrast calcﬁ—
lations, the outer diame?er of the Eontrast figures corresponds always best to
the actual size of the bubbles.

For w # ¢, the in-focus contrast of large bubbles (&3 0.3 gZ) nay be
brighter or darker than the ;éckgroﬁnd intensity, depending on the depth position
of the bubble and on the magnitude and éign'of w (see Ref. 26). The contrast of -

small bubbles is so weak that it is not possible to observe the defect for large

W
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3.2 "Out-of-focus" Contrast of Bubbles

We derived formulas in Section 3.1 tﬁat can be used to calculate the
amplitudes of the transmitted and scattered wave field at each point of the
exit surface of the foil. The intensity distribution can be imaged with the
electron microscope by imaging the exit surface of the foil, i.e., the lower
plane of the foil coincides with the image plane of the objective lens. 1In

this way an "in~focus" picture is produced.

However, if one images, as sketched in Fig. 6, a plane that has a certain
distance Ci from the lower surface of the foil, one produces an "out—-of-focus”
picture. The intensity distribution of an "out-of-focus" picture will be, in
general, different from the "in-focus'picture, since the waves of the wave
field at T = 0 (exit surface of the foil) interfere with each other before
reaching the image plane at.Ci‘¢ 0.

The wave field in the image plane (at a distﬁnce s from the foil, see
Fig. 6) must be calculated from the wave field at- é = C. The coordinate system
will be chosen as shown in Fig. 6. We normalize the wave field at £ =0
outside the bubble so that UY(r, 0) = 1‘[r = r(€£, n)). Then we can express the
wave field for r <Ib as Y(r, 0) =1 + A(§, n), where A(E, n) is a complex

quantity.
The two-dimensional Fdurier transformation of the wave field at £ = 0 is
wv : .
¥ = [ () exp(-2miper) dor, (8
(¢}
ith = .
w1_ P P(pg, Py

The amplitude of the wave field at the point (£, n) = r at a distance ¢

from the exit surface is then given by (for details see Ref. 32)
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V@D = [V @) ex [m (e -+t k- p )] a%p. (9)
5 |

This equation satisfies the necessary conditions that the wave vector of the

. %
electrons is ko and Eq. (9) with £ = 0 1leads to Eq. (8).

. .

Equation (9) also can be obtained by solving the Kirchoff jntegral of the dif-
fraction theory.33'3"'1t should be noted that the influence of the astigmétism of
the objective lens and the finite aperture on the "out-of-focus" image can be

°
neglected for defect structures larger than about § A.3%

N

—— e 2
Since p? << k ~we develop /koz—pzz k - %- s ' (10)
o .

and obtain

-] 2"
W(z,L) = exp(2wi-k * T) f $ () exp[Zﬂ i {p_ *r -%ﬁ z ]] d?p, (11)
: (o] - (o]

where the phase factor exp(27i ko' ¢) can from now on be omitted.

We calculate the "out-of-focus" contrast for a bubble, and we restrict
ourselves on cases where the projection of the bubble onto the (§,n) plane is
a circle with radius . Furthermore, we assume that A(§,n) depends only

on the distance from the center of the bubble and not on the azimuth angle Y .

With Eq. (38), we obtain from Eq. (11)

y r'=ro 1 p? '
P(xr,z) = f f S oP(xe') - exp[Z‘ni[ (13, r-xr') - -fl%_ . §]]d2p d2r. (12)
’ L P o 4

The integration over d?p can be solved analytically. If we introduce a polar

coordinate system (r,?), the integration over the azimuth angle f can also Le



performed analytically when y(x') = 1 +‘A(lr|), and we obtain
1 .
- - . 2 ) " . :2 ' 1
¥(r,z) = 1 - 2iB exp [180] A(p") J_(]|2Bpp'|)exp [160 ] p'dp’, (13)

p'=o

Wk r ?
c 0

4

calculations of Y(r,7) require that ¢P(p') = 14+A(p") is known. v(p") is

with B = s P = Jfl- and Jo the zero-order Bessel function. Explicit

o

essentially different for bubbles of various sizes and shapes, it can be

calculated from Eqs. (1) and (5).

3.2.1 $5mall Bubbles. If the dimensions of the bubble are very small compared

to the operation extinction length, A(p') will be proportional to the actual

' %
thickness 2, of the bubble at the distance p = ‘5 . In this case is
o]

%
This approximation is valid for spherical bubbles with a diameter smaller than

0.25 g 32230
gg

W(o') = 1 + 86(p") . (14)

In Eq. (14),- 8 describes the change of Y(p') in the center of the bubble. .- The
quantity 6 'is complex and,gan be Falculated from Egs. (1) and (5). For small
bubbles, the imaginary portion of 6 is most significant, i.e., the phase shift
of the wave going through the center of the bubble relative to the wave field

in the perfect crystals. TFrom Eq. (3) the phase factor will be

-27i € Az
e e -1~ =27ni eoAz

where Az 1is the thickness of the bubble at p = 0.



The term G(p) in Eq. (14) is a geo&etrical factor that describes the thickness
of the bubble as a function of the distance ¢ = f- from the center of the bubble.

—_— o]
For spheres, G is G = /1 - p2 , and for small disks, G is G = 1.

‘For these two simple geometrical shapes, the intensity distribution was
calculated with a computer from Eq. (13). For the integration it was assumed

that the mean inner potential is -10 y 3

Some results of the calculations are represented in Figs. 7(a) and 7(b).
The reduced intensity I/Io (I° = background intensity) of the "out-of-focus"

contrast is plotted as a function of the distance p = from the bubble center

aRL

o
at r = 0.

As pointed out in Section 3.1, the cbntrast of small bubbles (radius r < 0.1£g)
is weak for "in-focus" conditions and large foil thicknesses. The small bubbles
are nearly invisible. Figures 7(a) and 7(b) indicate that the small defects

reveal a stronger contrast if they are imaged under "out-of-focus" conditionms.

*It should be noted that for the.contrast calculations the mean inner potential

of -10 V was assumed. Actually, this value is too low for almost all'metals; a
value of -20 V should be closer tohthe real value of Vo. Preliminary calcu-
lations have shown that for Vo = - 20 V the absoclute values of the contrast arxe

increased, but the shape of the contrast profiles are unchanged. Especially, the

.
-~

p-value, for which I/I° = 1 (no contrast) remains within 2% even when Va is

changed from -1Q V to -20 V.

The calculated contrast is, for negative values of [, a bright, circular
center surrounded by a sequence of dark and bright Fresnel f£ringes. However,

only the contrast of the first dark Fresnel fring is stromg enough to be visible.



-17 -

The size of the white center represents, within 10%, the real diameter of

A

the bubble for 7 = ~ 1. However,-the diameter o the white center exceeds the
actual bubble size for ¥ > 1. This is true for small spherical bubbles ard

for small disks.

The calculated ratios of the immer and outer diameters of the first dark
¥resnel fringe to the actual bubble diameters are plotted in Fig. 8 as a
function of the actual bubble diameter for & = - 8000 K. Figure 8 indicates
that, only for bubbles smallér than 20 K, the diameter of the inner bright area
(equivalent to the inmner diameter of the first dark Freshel fringe) deviates

more than 107 from the actual bubble diame;er.

However, the results represented in Fig. 8 clearly show that the outer
diameter of thc first dark Fresnel fringe is much larger than the actual size

of the bubble. Therefore, this quantity should never be used to determine the

size of small bubbles.

1f one calculates the out-of-focus intensities for z > 0, the contrast is

reversed; a dark spot is surrounded by a series of bright and dark rings.

3.2.2. Large Bubbles. For large bubbles (diameter larger than 0.25 extinction

v

length) the wave field at ¢ = 0 must be calculated according to Egqs. (1) and

(5). With the numerically ogzained wave field, Eq. (13) has to be integrated.

The integration was performed only for a few bubble sizes, and one result is
plotted in Fig. 9. The "out-of-focus" contrast was calculated for a bubble

with a radius of 0.458, and the thickness of the film was 3.75€g. The "in-focus"
contrast calculations (compare Fig. 5 and the heavy solid line in Fig. 9) predict

a bright circular center surrounded by a dark ring.
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For a defocusing distance ¢ = - 6000 Z, the contrast is modified when
compared with the "in-focus" contrast. However, the general feature of the
contrast remains the same since the small iﬁtensity oscillations for p < 0.8
cannot be observed experimentally. For.c = ~ 6000 Z, the outer diameter of
the first dark ring corresponds to the actual diameter of the bubble. This
result is not correct for T = + 6000 K because in this case, the outer diameter
of the first intensive dark ring is at p = 1.15. The results of Fig. ¢ can be

understood in terms of the Fresnel diffraction theory.*2

Some preliminary calculations for additicnal bubble diameters show that '
the results from Fig. 9 cannot be generalized for all sizes of bubbles and foil
thicknesses. Detailed results of contrast calculations will be published else-

where.32

CUONTRAST OF SMALL DEFECTS WITH SURROUNDING STRAIN FIELD
The lattice planes are bent in the vicinity of a defect if the defect possesses
a strain field. Therefore, a scattering between the wave fields existing in the

lattice occurs, which changes the amplitudes at points close to the defect.

If the defects are smaller than the extinction lengths, their structure and
shape are not directly resolvable on micrographs. However, as shown in differént
papers (for a summary see Refs. 4~6,), information on the type and shape of the
defects can dbe obtained by imaging the defects under well-defined dynamic and
kinematic diffraction conditions. The results of the observations have to be

compared with the results of contrast calculations, which will be described shortly.

Defects produced by condensation of vacancies and interstitials are distin-

guished by the sign of the elastic displacement in the vicinity of the defects:
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defects produced by interstitials have a positive sign (positive misfit paramete%s);
defects produced by condensation of vacancies have a negative sign (negative

misfit parameter).

For dynamic and defined kinematic diffraction conditions, the results of
the contrast calculations are available for several defect models, such as Frank
dislocation loops, perfect dislocation loops, and strain centers _ch a spherically
symmetrical displacement field.s’s’aﬁ_ag_ The important features of the contrast
are summarized in Section 4.1, additional details on the contrast for voids are
represented in Section 4.2, and in Section 4.3, the required experiments for the

analysis of the defects are described.

4.1. Results of Contrast Calculations for Small Defect Clusters

A. Under two-beam dynamic diffraction conditions, a small defect within
a surface layer of about one extinction distance éz thickness shows a
black-white (BW) contrast {see Figs. 10, and ll).> A BW ;ontrast is
described by a vector £ pointing from the center of the black portion
to the center of the white portion.
The magnitudes of the bléck and vhite portions of the contrast (BW
contrast) strongly depend on the exact value of the foil thickmess, if

the foil is thinmer than four extinction distances. Highest contrast

-
~

is expected from a defect in Sright field in foils with a thickness of

t; = (2n + 1) g‘g’/z (n=0,1, 2,...) and in dark field in foils with

W

a thickness t, = n§ g

invisible in bright field in foils with a thickness of t2 and in dark

( n = 1, 2, 3, ...). The defects are nearly

field in foils with a thickness of tl.
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The magnitude of the BW contrast is independent of the exact

value of the foil thickness t, if t is larger than n 5 extinction

lengths. 1In this case the thick foil approximation is applicable.1

8

The BW contrast of small defects shows the following characteristic

features for different shapes of defects:

(1)

(2)

For small dislocation loops, the direction & of the BYW contrast

is determined by the main component of d(g-R)/dz where g is

the diffraction vector, R(x,y¥,z) is the displacement field of

the defect, and 2z is the coordinate parallel to the reflecting
lattice plares. For defects with an isotropic displacement field
(veids, see Section 4.2), % is always parrallel to¢ +g or -g,
independent of the direction of the fraction vector.

For Frank dislocation loops (the Burgers vector b of the loop

is perpendicular on the loop plane), £ is parallei or antiparallel
to b dindependent of the diffraction vector with which the defects
are imaged. However, the angle between b and the diffraction
vector must be smaller than ¢60°.

For perfect loops (Burgers vector is not perpendicular on the loop
plane), the diiection oif the BW contrast £ is, in general, no
longer parallel o;\antipérallel to Burgers vector b; the angle
between 2 and b depends on the loop orientation relative to

the diffraction vector 336“33 For certain orieutations, complex
contrast figures are calculated.“””’_a9

The sign of (g=* %) depends on the sign of the defect (vacancy or

Interstitial) as well as on the distance of the defect to the

nearest foll surface. Thus for a defect with a given sign of the
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misfit parameter, the sign of (g * ) oscillates, as shown

in Fig. 11, with the depth position of the defect inside

the foil (depth oscillations). If a defect lies close to

a boundary of the layers (transition regions), complex

contrast figures are calculated for,all shapes of defects, 3¢
Contrast calculations show that the defects appear as black deots under

oty unspecified (many-beam) and defined kinematic diffraction conditions?

-
e

4s shown by Maher et al.,3% the contrast width under defined kigﬁmatic

e
e

conditions also depends on the diffraction vector g. Pfgliﬁinary many-
beam calculations when compared with'experimental oﬁgg;vations,4° havé
shovm that the diameter of the contrast figures (at 10% deviation from
ghe background intensity) corresponds best to the actual size of the
defect if the foil orientation relative to the electron beam is cluse
to a <100> or a <110> orientation.
The lacgest diameter cof the black dots (which, in general, do

not hive a eircular shape) on positive prints corresponds to the
diameiter of the defect. .
Results of Contrast Calculations for Voids

The contrast of voids with a surrounding strain_field has been
calenlated for dif{erent void sizes, different amounts of strain in
the vicinity of a void, different diffraction conditions, and different
foil thicknesses. 1Ir this calculaiion, both contrast effects, i.e.,
diffrzction contrast by the empty space inside the foil (see Section 3)
rznd by the strain, were considered. So far, only "in-focus" contrast
has bezn calculated for voids with a strain fieid.

The contrast due to the strain in the vicinity of the void is

strongest under exact two-beam diffraction conditions. The strain is

described by mcans of the (dimensionless) "normalized” misfit parameter

s



P=ay . —E—

W
™
Eg
where AV represents the volume misfit of the defect, with
Av = e '%E-RSB for a spherical void (R_ = radius of the inclusiom);
t=4

Em is the relative volume misfit, which-is for a partially gas-filled

void"2
o moeR
3
m 4y Rs

whera p is the pressure inside the void, Y is the surface

energy (see Section 3.1) and U is the shear modulus. Figure 12 shows
the results of the calculations concerning the visibility and type of
contrast."® The diagram is dividéd into three areas. In area A (small
defects, large misfit pargmeter) BW contrasts with depth oscillations
(Fig. 11) are expected. In area B, the BW contrasts are calculated;
however, the depth oscillations of the BW contrasts are suppressed,
since the boundary conditions af the foil surfaces are changed. The
direction £ for all BW contrasts of defects belonging to area B is

the same as for small defects lying in the first layer L1 as described
in Fig. 10 (“"Ashby-Brown case"*"). Defects in area C_(large voids) .
reveal no BW-contraFt, with or without depth oscillations. The contrast
of the large voids is dete;mined mainly by the thickness contrast
described in Section 3.

For small voids (area A) the absolute value of the strain can be
estimated by comparing the results of the calculations with quantitatively
evaluated micrographs. It should be possible to determine at least the
order of magnitude of strain around the small voids by imaging the defects.

with different diffraction vectors g. The value of the normalize&
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misfit parameter P 1is chaﬁged by these experiments.

A comparison of the experimental observations with the contrast calculations

will give the value of € ' However, the quantitative value of the contrasts
depends on the exact value of the foil thickness ¢, if t i3 smaller than
4 extinction distances. It must be noted that if the diffraction vector g
is changed the reduced foil thickness (in extinction distances) is changed.

Therefore, the quantitative evaluation is possible only for thick foils.

Required Experiments for the Analysis of Small Defects

The Burgers vector and the shape of small defects can be determined by

imaging the defects under different two-beam diffraction conditions, i.e.,

with different g vectors. The defects reveal BW contrasts. From the

directionality of the BW contrasts, the most simple geometrical shape

can be determined.
The type of small defects (vacancy or interstitial) can be determined

by measuring the distance between the depth position and the nearest foil

45548

surface with the stereo technique and by comparing the results of the

measurement with the calculated depth-oscillations (Fig. 11).

-

The volumg density and size distribution of the defects can be evaluated
from microgrpahs taken uhder kinematic diffraction conditions. The
thickness of tﬁe film has to be determined by stereo measurements,>’®
CONTRAST FROM LARGE DISLOCATION LOOPS

If the diameter of a dislocation loop is larger than about oreextinction
distance, the geometrical shape of the loop is resolvable with the electron
microscope. The contrast of the large loop can be explzined by the contrast

of a single dislocation line.
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5.1. Contrast of a Perfect Dislocation Loop

A perfect dislocation loop consists of a clesed dislocation line;
no stacking fault is present inside tie loop. The Burgers vector of the
dislocation line can be determined with the rule (g * b) = 0 for (nearly)

vanishing contrast.

From contrast calculations by Howie and Whelan}ofor a single dislocation,
it is known that in the defined kinematic case (w 2 1) the actual positibn
of the dislocation does not coincide with the black line (minimum of the
contrast profile). The black line will always be on the side of the dis-
location where the lattice bending (caused by the dislocation) locally reduces
the excitation error w; the magnitude of the shift depends on the magni-

tude of w.  With this property of the dislocation contrast, one can determine

*
For w = 0 the minimum of the contrast profile coincides with the position

of the dislocation line.

the type of the loop."”-5°

The énalysis can only be applied for loops that havea Burgers vector 'b
perpendicular on the loop. plane. The loop plane has to be inclined to the image
plane (the image plane is the plane perpendicular to the incident electron beam).
For cases where the locp planes are parallel or perpendicular to the image
plane, the observable shapes of the loops vary insensitively with the tilting
of the specimen. If the lcop is inclined, the portions of the loop most

strongly inclined to the image plane give rise to a weaker contrast with the
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other portions of the loop.x

*
The line through the two weak parts is parallel to the trace of the image

plane and the habit plane.

The loop normal n may be defined so that the angle between n and the
direction of the incident electron beam ko is always acute. Then we may
differentiate between two-loop plane orientations (i) (g * n)> 0 and
(ii) (g ° n)< 0. A tilting experiment (tilt axis perpendicular to g) witb
high tilting angles and by observing the change of the projected loop width

will determine which of the two orientations occurs for a specific loop.

From the above-mentioned fundamental property of the dislocation
contrast, it follows for w # 0 that the contrast lies either outside
[case (a)] or inside [case (b)] the projected locop positibn. A decision
bet%een the two possibilities may be reached either by changing the sign of
w"? near the same diffraction vector g, or by changing from g to -g

. k% :
with the fixed sign of w. The latter experiment is normally preferred since,

ek
) Effectively one has to change the sign of (g . b)s.

~
e 3

especially in thick films, the transmissivity is low for negative values of w.

If all experiments were performed with w >0, one determines the nature
of the loop by combining the results of largé-angle tilting experiments (case i

and case ii) with the results of the +g/-g experiments.
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The following rules are valid for differentiation between vacancy
and interstitial loops:
(i) + (a) or (ii) + (b) - vacancy loop

(i) + (b) or (ii) <+ (a) »interstitial loop.

This rule works correctly only if Burgers vector b 1is perpendicular to the
loop habit plane. The above rules are no longe:i valid if b contains a
shear component bs, and 1if bS changes the sign of (ge¢ b) relative to

*
the corresponding sign of (g -* be). This occurs for rertain orientations

*
be is the component of the Burgers vector that is perpendicular to the

loop plane.

of bs relative to g and for certain magnitudes of bs' To determine
the nature of the loops, the direction of Burgers vecter is also needed,
and this direction can be evaluated by a sequence of different tilting

51,52
experiments (Maher and Eyre 1:52y,

5.2 Contrast of a Dislocation Loop with Stacking Fault (Partial Dislccation)

If a dislocation loop contains a stacking fault, the surrounding dis-

location is, in general, a partial dislocation. In this case (g ° b) will

~
hS

not be an integer. Extended contrast calculations by Silcock and Tunstall®5?®

have shown that the contrast of the dislocation is much weaker for (ge b) = —'g
than for (g * b) = + %— (in both cases w = 1). Based on this result and on

a similar method described in Section 5.1, it is possible to.determine the
nature of the loops. The fault displacement vector R can be determined

with the rule g » R= 0, i.e., the stacking fault is invisible if R is

perpendicular to g



SOME EXPERIMENTAL DETAILS
6.1 Determination of the Excitation Errors

The sign and magnitude of the excitation error w may be determined
from the Kikuchi line pattern (see Hirsch et al.®). These lines usually
can be observed in fairly thick crystals; however, the number of defects
inside the crystal should not be too great. Kikuchi lines are due to Bragg
reflections of inelastically scattered electrons, which are "incident"
under all possible angles. The geometric locus of the Bragg reflected
beams is a wide cone with an opening angle of 90° -6 (9 = Bragg angle).
This cone intersects the photographic plate along parts of a hyperbola,
which becomes very nearly a straight line because of the large opening
angle and the large distance between the specimen and the plate. Two
parallel Kikuchi lines always belong to one set of lattice planes, the
distance f Dbetween the lines corresponds to an angle difference 24, which
is also the distance of the corresponding diffréttion spots of the operating

diffraction vector. .

Under dynamic two-beanm conditions, the Kikuchi line-pair passes through
the spots of the incident and diffracted beams. If the foil is now rotated
over a small angle A9, the positions of the diffraction spots are (nearly)"
unchanged, whereas the beam producing the Kikuchi lines rotates over the same
angle. Therefdre, the Kikuchi lines are displaced with respect to the diffraction

spots over the distance

"Af = £/20 ¢+ A®

From this w = Eg' s = Eg. g* AB can be determined. The sign of w is
defined such that w 1is negative 1f the displacement of the Kikuchi lines on
the diffraction pattern is toward the spot of the direct beam and is positive

if t%e displacement is away from the spot of the direct beam.
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6.2. Determination of Foil Orientation and Tilting Angle in Stereo Measurements

For certain exp.ciments, the exact orientation of the foil relative to

5 and co-workers,

++_ 1ncident electron beam must be known. As shown by Thomas ®

the orientation can be determined simply from Kikuchi patterns. The orienta-
tion can either be determined by indexing three independent pairs of Kikuchi

lines or by comparing the observed Kikuchi pattern with an indexed Kikuchi

line map. The foil orlentation can be determined within an accuracy of #0.1%.

To determine the tilting angle in stereo experiments, the displacement
of Kikuchi lines may alsc be used. If the specimen is tilted by an angle
normal to the incident beam, the whole Kikuchi pattern shifts by a vector

perpendicular to the tilting axis. From the shifting, the tilting angle

may be determined within an accuracy of £0.2°,

6.3. Evaluation of Sterec Micrographs

Stereo pairs are obtained by producing two micrographs with different
crientations of the specimen relative to the electron beam. If the distance
of two points on the micrographs changes by the parallax p from‘one micro-
graph to another, the relative difference in height h of the two points

inside the specimen is calculated from the simple parallax equation "

. h=.__.E_____
‘ 2 M sin 6 ?

where M is the overall magnification of the micrographs, and 29 is the
total tilting angle.

This equation is, as shown by Nankivell,%€¢ only correct under certain
conditions, which often cannot be attained experimentally. Therefore,
corrections must be added to the simple parallax equation., The most important

is the correction of the tilt error. If the optical axis and the tilt ‘axis
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do not intersect (see Fig. 13), the correction term, which has to be added to

Eq. (15), is

As(sa 4+ 2s+ As) cos ©
(Ah)t = .Zo . {16)

The distance between the first principal plane of the ojective lens and the plane
that is normal to the cptical axis and contains the tilt axis is Zo; this
distance is appruximately the focal length of the objective lens of the

microscope.,

%
This error can be kept small if As is small. However, for certain

%
Ds is the distance of the projection of the two points, for which the

height difference has to be determined, onto the image plane.

_experiments, As has a large value, and i.. this case the ccrrection described

through Eq. {16) is significant and must be taken into account.

The length sa in Eq.(16) can be determiﬂed from

s, % Ahs°'ctg e,
where Ahs is the change in the distance between the specimen and the first
Principal plane of the objective lens during the tilting experiment. Thié'
ciange is zctually the change in the focal distance of the objective lems
for the two micrographs of the stereo pairs. A calibration of the focal
length. &' (Fig. 3) versus the "strength" of the objective lens yields ﬁxhs.
The "strength" is representéd best Lty the electrical current through the

coils of the objective lens.
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7. EXPERIMENTAL RESULTS

7.1 Experimertal Results on Small Defect Clusters

The experimental results of the stﬁdy on small defects in neutron-~, ion~,
and electron-bombarded materials have been summarized.5’® Since these papers
were published, it has been well established that reliable experimental
results for both defect size distribution,®® and the type of small defect
clusters observed in neutron-irradiated face-centered-cubic®7*58 paterials

can be obtained.

In body-centered-cubic materials, the type and size distribution of the
defects depend sensitively on the impurity content of the material. This
was demonstrated for molybdenum in the extended studies by Eyre et al.5% 62
For niobium, Loomis®?® showed that the defect structure depends strongly on

the amount of oxygen that is in solution in the material.

The fine structure of the small defect clus£éfé can be studied by the
"weak-beam" method. 1In this technique one iﬁages the defects with a weakly
excited beam, i.e., a dark-field beam with a high excitation error w. On
weak-beam micrographs, the defects appear as bright spots on a dark background.
In this imaging technique, the resolution of details of the defects essentially
improved coﬁpared with the .regular bright- and dark-field images since the

effective extinction length is much smaller in the weak-beam micrograph.?®’?

ir Fig. 14, the advantage of the weak-beam micrograph is demonstarted.

Figures 14(2) and (b) represent a bright-field and a dark-field micrograph,

19

respectively, of a foil of high-purity niobium irradiated with 4 x 10 n/cm2

(> 0.1 MeV).%?
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The observable large defécts (diameters sﬁaller than 400 ﬁ) show a jerky
structure in the regular bright-field and dark-field micrographs. If one
images under weak-beam dark-field conditions (Fig. 14d), one finds that each
defect is composed of wery small clusters. The diameters of the very small
clusters is just above the resolution limit of the electron microscope. How--
ever, contrast experiments by Cockayne® and by Hiusserman®" indicate that in
the case of heavy-ion bombarded copper foils one small defact cluster can
yield more than one white spot under weak-beam conditions. The number of
observable spots in Figure 14(d) is not necessarily identical with the number
of defects. Further theoretical and experimental work is necessary for a

full evaluation of the weak-beam micrographs.

7.2. Experimental Results on the Contrast of Small Bubbles

The dependence of the contrast behavior of the small bubbles on the
focusing and imaging conditions was studied and the results cf the observations
were compared with the results of the “out-of-focus" contrasi calculations.
For this purpose, epitaxially grown gold single crystals 4600 R to‘1000 2 thick)
ware ifradiated with He+ jons at energies between 25 and 150 keV and at
temperatures between room temperature and 400°C. After an irradiation with

”
Ve x 101' He+ particles/cmz_at temperature above 100°C, gas-fZ1led bubbles were formed.

X
Details on the results of the irradiation experiments and the dependence of the

observable defect structure (b;ack spots or bubbles) on the irradiation

conditions are described elsewhere,®®

The irradiated foils were investigated with a Siemens electron microscope operated

at 100 kv.



The small bubbles (diameter smaller thar1¢80.z) vere only observable if omne
images the foil out of focus (see Fig. 15). The sign, size, and magnitude
of the contrast depend strongly on the defocusing conditions, i.e., on the
sign and distance U between the lower surface of the foil and the focal

plane of the objective lens {compare with Fig. 6).

For a quantitative comparison of the theoretically predicted "out-of-focus”

contrast (see Section 3) and the experiments, the distance g between the

exit surface of the film and the focal plane must be known.

We determined T by measuring a part of the current Iob through the
ovbjective lens in the different focusing conditions. The change of Iob was
calibrated versus the change in the distance of the focal plane, and it vas
found that a change of AIob = 1 #A corresponds te a change of.lﬁg = 0.0105 pm.

The relation between AIob and AZ was linear in the distance range of interest.

The bubbles were imaged under different focusing conditions; one example
of the "through the focus" series are shown in Fig. 15. If ¢ is negative,
the bubbles show, as pradicted by the theory (Section 3.2) a contrast that
.has a white inner part surrounded by a weak dark ring. For positive ¢, the
contrast has a black dot surrounded by a weak white ring. Figure 15 also
indicates that the bubbles“are invisible under "in-focus" conditions (Z = 0).°

Tue size of the black (£ >0) and white (f <0) central portion of the
contrast of the small bubbles is almost independent of the exact imaging condi-
tions and of the exact value of f, for distances of gz that are not too large.

However, the outer diameter of the first Fresnel fringe depends strongly on .
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The zctwal bobble size cen be determined fromthe diameter of the central
partfes »f the contrast. Normally, the diameter of the outer diameter is at
ixast 534Z larger than the actual bubdble size. The experimental results are
in gond zgzrecnment with the contrast caiculations described in Scction 3.2.

fhre rezulss, espeeially the dependence of the contyast on the imoging

condit sz, wil} be published elszcvwhere.

Ty ent-of~focus contrast of bubbles with different geomctrical shapes
Jai e azve complicated. Figure 6 shows the thiough-the-focus scries of
voids producced in stainless steel after irradiation with Ni+ ions at high
tenperature. ¢ The contrast is more cemplicated for ¢ < 0. The vhite center
containing & black spot is surrounded by a black ving. For ¢ > 0 the opposite

s true. Prefisinnry contrast caleulstions show that the actual size of thesc

L1

veids coincides with the sean diometer of the bright portion for z < €.

COLCLUSTONS

The cleciron wicroscopy contrast of defects observable in irradiated
waterial vas discussed, cad emphasis was vlaced on the contrast of voids and
bubbles. It was shown that voids and bubbles praduce a phase shift of the
electron wave inside the crystzl. The phase difference relative to the perfﬁct
crvstal can only be made visible (especially for small voids) by working out of

h Y

focus.

The following important contrast features were calceulated and also
deternined experiments v

A. Small voids and bubbles are only observable if the defects are

imaged out of focus.
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B. The sign of the contrast depénds on the sign of the
defocusing conditions. To distinguish between voids and
defects of other shapes, a "through-the-focus" series is
required.

€. The diameter of the inner contrast ring corresponds to the
actual diameter of the bubbles in the size range between
20 A and 80 A.

D. For larger bubbles, the width and intensity of the out-of-
focus contrast depends on the actual size of the bubble

and the thickness of the film.
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FIGLRE CAPTIONS

Schematic representation illustrating the notation used. The
case of a "penny-shaped” bubble is considered. A bubble vwith
arbitrary shape must be decomposed in a sequence of bubbles

as shown in this figure. The foil thickness is t, subdivided
in the thickness of the bubble z, aand in the thicknesses 2q
and 24 of the parts above and below the bubble (perfect

crystal). The wave vector of the incoming and reflected beams are

ko and kg, respectively.

Intensity thickness relationship for w = 0 (bright field IT
and dark field IS). Normal and anormal absorption are taken
into account. The value of the anomalous absorption cocfficicnt

was K = 0.1; the values of the normal absorption coefficicnts

are noted in the dizgram,

Dependence of contrast for bright field (CT) and dark field (Cs)
from the foil thickness. The thickness of the "penny-shaped"
bubble is 0.158,\the normal absorption factor p is p-= %?; w = 0.
B
Variation of bright field (CT) and dark field (CS) contrast with increasing
bubble thickness 22/€g = Hblig. %the thickness of the foil is

4 Eg’ The different normal absorption factors y are noted; w = Q0.



Fig. 5.

Fig. 6.

Fig. 7.

Fig. 3.

Contrast of spherical bubbles of two different sizes. Bright

field images. The change in the normalized intensity I/Io
(I_ = background intensity) is plotted over the reduced bubble

radius p = r/Rb; Rb = bubble radius; contrast CT = I/Io— 1; w=0.

Schematic representation illustrating the notation used for

Yout-of-focus" calculations. The center of the bubble lies
at x=y =§&=n= 0. Ei describes the distance between the .lower

foil surface and the image planre.

Results of "out-of-focus" calculations (mean inner potential

Vo = ~10V); I/Io (Io = background intensity) is plotted over

i

the reduced radius of the defect p f/r° (r° = radius of the

mkr ?2/r . Note that
()

defect) for different values of B
the "out-—-of-focus" contrast extends over the actual size of the
defect., lco = wave vector of the electrons, I = defocusing

distance. a) spheres; b) cylindrical disks. The thickness of

the disks is equal to T, {(w=0)

Coutrast width of the inner (din /db) and outer (dout/db)
reduced diameter of the first dark Fresnel fringe as a function

of the actual bubble diameter (defocusing distance & = - 8000 A). .

db = diameter of the spherical bubble.

et

Sl e a4 es o



Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12.

"Out-of-focus" contrast calculations for large bubbles (Rb

0.4
° : ; g
Eg = 250 A). The foil thickness is 3.75f e for =+ 6000 A and

-]
L= - 6000 A. The reduced -intensity I/I0 (I°= background intensity)
is plotted versus P = r/R . The "in-focus" contrast (w = 0) is

also represented.

Black-white contrasts (BW contrasts) in a He -bombarded gold
film. The diffraction vector g = (220) is =noted, foil

orientation [001],dark~field picture.

Schematic plot of the depth oscillations of the BW-contrast from
small defects (Frank dislocation loops, small voids) of vacancy
type. The calculated contrast figures are drawn at that depth

position at which the loop centers were assumed. d.f. = dark

Burgers

field, b. . = bright fiield. g = diffraction vector, b
vector (in the case of Frank loops only). For defects of inter-
stitial type, the black and white contrast portions must be

interchanged. In the intermediate (tramsition) regions I, K1
oy

complicated contrast figures are calculated.

-
N ]

Type of comtrasts of'sphericél voids (inclusions) as a function of
the reduced radius vagg (R,V = radius of the void, Eg = extinction
length) and of the normalized misfit parameter P,

Region A: Black-white contrasts with depth oscillations; Region B:
black~white contrasts without depth oscillations; Region C: no

black-white contrasts calculated, pure thickness contrast.

- R



‘Fig. 13.

Fig. 14.

Fig. 15.

Fig. 16.

Positions of the specimen for stereo pairs. sa = distance between
tilt axis and optical axis, Ah: height difference of two points

inside the foil. Tilt angle 20 = Q+ +8_. -

Defects in neutron-irradiated niobium (oxygen content < 0.02 wt. %,

neutron dose 4.1019 n/cm2

s E> 0.1 MeV), foil orientation near [110],
The diffraction vector g = (112) is noted. a) bright-field image;
b) dark-field image (w slightly positive); ¢) wﬁ:O.S; d) weak-beam
picture. In the weak beam dark field a high density of small defects

are resolved.

Au-film irradiated with 6 x 1016 He+/cm2 at 100°C. Through-the-
focus series. The differences in £=Af are noted. The contrast

of the center changes from dark (with white Fresnel ring) to

bright (with dark Fresnel ring). Foil orieﬁtation (001), g close to
(200).

Voids in stainless ;teel irrédiated with 3 MeV Ni+ ions 5® Through-the-
focus seriés. The change in & from micrograph to micrograph (left
to right) is &3900 R. The contrast reverses from underfocused to

overfocused; the voids are invisible under "in-focus" conditions.



Fig. 1.

/J

»x o
b

e N
o

/\

//

Schematic reprcfcntatlon illustrating the notation used. The

case of a "penuy-shaped" bubble is considercd. A bLubble with

~

~ . .
arbitrary shape must be decomposed in a sequence of bubbles

as shown in this figure. The foil thickness is t, subdivided
in the thiane ss of the bubble 2, and in the thicknesses zi
and z4 of the parts above and ﬁelow the bubile (perfect

crystal). The vave vector of the incoming and reficcted beams are

ko and kg’ respectively.
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Fig. 2. Intensity thickness rcolationship fov w = 0 {bright ficld IT
and dark fiecld IS). Rorzmal and gsorael absoypiion ave taleoa
into accouvat. The value of the anenzlous absorplion cocfficient

was ¥ = 0.); the values of the normal absorprtion cocificionts

arce noted in the diagrom.
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Fig. 3. Dependence of contrast for bright field (C’i‘) and dark field (Cs)
from the foil thickness. %he thickness of the "penmy-shaped"

bubble is 0.1f ,." the normal absorptien factor p  is y = -JE; w = 0.
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Variation of bright field (CT) and dark field (CS) contrast with increasing
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"~ DIAMETER OF THE VOIDS Rof€gq

bubble thickness - zzlﬁg = Rolég. fhe thickness of the foil is

4 Ege

The different normal absorption factors

u are noted;
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Fig. 5. Contrast of spherical bubbles of two diffcrent sizes. Bright

field images. The change in the normalized intensity I/Io
(Io = backgrohnd intensity) is plotted over the reduced bubble

radius D = r/Rb Rb bubb‘e radius; contrast CT = I/Ia— 1; Q = 0.
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Fig. 6. Sclematic representation illustrating the notation used for
"out-of-focus" calculations. The center of the bubble lies
at x =y =§&=n= 0. Ei describes the distance between the lower

foil surface and the image plane.



Fig. 7.

Fig. 7a
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B=-15 SPHERES -
TABLE FOR VALUES OF {(iny m)

.05 |-10 |-1s
ro=5A | 0.42 | 021 | ou4

1.2

ro=10R} 1.7 | 085 | 056

ro=208] 68 | 34 | 226

Ll B- 7 Kolol -

1.0

.
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Results of "out-of-focus" calculations (mean inner potential

v, = -10V) ; I/Io (Io = background intensity) is plotted over

i

the reduced radius of the defect p i'/ro (ro = radius of the

\ .
T koro /t . Note that

defect) for different valuas of f§
'the'but—of-focus"contraét extends over the actﬁal size of the
defect. k”o = wave vector of the elcctgqns, ¢z = defocusing

distance. a) SPﬁeres; b) cylindrical diéks. The thickness‘of

the disks is equal to r_. {w = 0)



Fig. 7b

DISCS
TABLE FOR VALUES OF L(in g m)

3=
05 |10 [15 |
=5k | 042 | 021 | o4

=10a117 | 085! 056
r.=200] 68 | 34 | 226
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Fig. 7. Results of "out-of-focus" calculations (mean funer potential
V6 = «10V) I/J.o (Io = background intensity) is plotted over
the'réduced radius of the defect p = z"/ro (ro = radius of the
defect) for different values of § = & kotoz/t, . Note that
the "out-of-focus" contrast extends over the ect;al size of the
, defect. kﬂo = wave vector of the electrons, ¥ = defocusing

distance. a) spheres; b) cylindrical disks. The thickness of

the disks is equal to Y (we=0)
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of the actual bubble diameter (defocusing distance § = - £000 A).
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Fig. 9. “"Out-of-focus" contrast calculations for large bubbles (Rb -. 0.4 g’
Ek « 250 ;\.) The foil thickness is 3.75{3 for g = + 6000 ;a and
t= - 6000 R. Tie reduced intensity II‘F.o (Io" background incensfty)
is plotted versus p = rle- The "in~focus" contrast (w = ) is

also represcntbed. .
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Fig. 10. Black-vhite cqatrasts (EV contrasts) in & He+~bombarded gold

£ilm.  The diffraction vector g'n (220) is noted, foil

orientation [001],dark-field picture.
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Fig. 11. 'Schematic plot_of the depth oscillations of the BW-contrast from
hY } ’
small defects {(Frank dislocationvloops, small voids) of vacancy

type. The calculated contrast figures are drawn at that depth

position at which the loop ceaters were assumed. d.f. = dark

i

field, b. f. = bright field. g = diffraction vector, b = Burgers
vector (in the case of Frank loops only). For defects of inter—

stitial type, the black and white contrast portions must be

interchanged. In the intermediate (transition) reglons Ik K+l
3

» complicated contrast figures are calculated.
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Fig. 12, Type of contra;ts of bphericél voids (inclusions) as a fuuction of
i S i 1 = exti - 3
the reduced radius Rv/gg (R, = radius of the void, gg = extinction
length) and o: the nnrmalizad misfit parameter P.
Region A: Black-vhite contrasts with depth oscillations; Region B:
black-white contrasts without depth oscillations; Region C: no

black-vhite contrasts caleculated, pure thicknesg contrast.
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Fig. 14. Defects in neutron-irradiated niobium (oxygen content< 0.02 wt. %, neutron dose

19 2
4.107° n/em®, Ep > 0.1 MeV), foil orientation near [110]}. The diffraction vector

—

g = (112) is noted. a) bright-field image; b) dark-field image (w slightly positive);
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Fig. 14. Defects in neutron-irradiated niobium (oxygen content< 0.02 wt. %, neutron dose

1 2
4.10 ? n/cm”, En > 0.1 MeV), foil orientation near [110]. The diffraction vector
g = (112) is noted. a) bright-field image; b) dark-field image (w slightly positive);

c) wn0.5; d) weak-beam picture. In the weak beam dark field a high density of

S small defects are resolved.
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Fig. 16. Voids in stainless steel irradiated with 3 MeV Ni+ ions &8 Through—~the-

focus series. The change in T from micrograph to micrograph (left’

) o .
to right) is 73000 A. . The contrast reverses from underfocused tc

overfocused; the voids are invisible under "in-focus™ conditions.



