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Abstract

Radiation-induced defect clusters of sizes larger than about 10 A

can be directly observed by means of transmission electron microscopy.

The shape as well as the nature of the defects (vacancy or interstitial

type) can be determined by comparing the results of the electron-microscopical

contrast calculations for different possible defect clusters (Frank disloca-

tion loops, perfect dislocation loops, voids, bubbles) with certain contrast

experiments. The main emphasis in this paper will be put on the description

of the results of contrast calculeitions for voids and bubbles. The

influence of the focusing mode on the size and sign of the contrast figures

is calculated. The results of the calculations are compared with some

experimental observations of voids and bubbles in He -bombarded gold films -

*This work was performed under the auspices of the U. S. Atomic Energy
Commission.
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L. INTRODUCTION

In recent years, transmission electron microscopy has become an extremely

useful tool for the study of radiation damage in metals and reactor materials.

Silcox and Hirsch1 were the first who observed resolvable dislocation loops" in

neutron-irradiated copper. Later Makin and co-workers2 found, in addition, a

high density of small unresolvable defects ("black spots"). The density and

size distribution of the radiation-induced defects were determined by counting,

with the assumption that the diameters of the contrast figures correspond to the

actual sizes of the defects. However, besides the density and size distribution

of the defects, the nature and geometrical shape of the defects are of great

interest. Especially, it is important to know whether the defects resulted

from the agglomeration of vacancies or intersCitials.

Considerable progress has been made in the theory of electron-microscopic

contrast formation from defects in crystalline materials (see Hirsch et al.,3

Amelinckx et al.1*). Aided by the theory, it is possible to calculate the contrast

for any defect model with a known geometrical shape and a known strain field. To

determine the nature of the defects in irradiated materials, first the contrast

of various defect model:; has to be calculated- The results of the computations

indicate differences in the contrast between different defect models. Ey ex-

ploiting these differences, it is possible to devise experiments by which the

shape and the nature of the observable defects may be ascertained.

This work was performed under the auspices of the U. S. Atomic Energy Commission.
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These methods are briefly explained in Sections 2-5 in this paper. Emphasis

is on the contrast of voids and bubbles. It will also be shown (Section 3) that

this contrast can be influenced strongly by the focusing conditions of the

objective lens.

In Section 6 some experiment details are summarized. Finally, in Section 7,

experimental observations concerning the contrast of defects are described.

This paper emphasizes the methods for the analysis of radiation-induced

defects. For a more detailed exposition of the theory of the contrast formation

and a more complete review of the results on irradiated metals and reactor

materials, the reader is referred to other articles (Ruhle,5 Wilkens6*7).

I. SHORT SUMMARY OF CONTRAST FORMATION IN TRANSMISSION ELECTRON MICROSCOPY

The contrast of lattice defects is formed by a diffraction contrast. As the

electron beam passes through a crystalline solid, the beam split into the

direct beam and diffracted beams. (The directions of the diffraction beams

depend on the lattice spacing through the Bragg equation.) If the direct beam

is used for image formation (the diffracted beams are prevented from passing

through the objective aperture), the so-called "bright field" is produced; if

only one of the diffracted beams is used for image formation (i.e., the direct

beam and all other diffracted beams are prevented from passing through the

objactive aperture), then a ̂ 'dark field" image results. The variation of intensity

observed on the micrograph depends on the local thickness of the foil, on the crys-

tallographic direction of the incident beam, and on the focusing mode of the

objective lens.

To obtain well-defined contrast conditions, the electron microscopic diffraction

imaging should be performed under "two-beam diffraction conditions." Under these

conditions, the orientation of the incoming electron beam with respect to the
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the crystallographic axes is chosen so that the incident electron beam is

reflected by one set of lattice planes only, i.e., besides the incident beam

only one diffracted beam with diffraction-vector g is strongly excited. However,

since the Ewald sphere for electrons with energies of 100 keV or more is very flat,

other reflections are always slightly excited. Especially, the "systematic re-

flections" (Bragg reflections with diffraction vectors ng, where (g = diffraction

vector of the strong excited beam; n = -1, ±2, ±3,...) can never be avoided.

Under dynamical two-beam conditions, a "strong dark-field image" results by

using the strong diffracted beam (diffraction vector g) for image formation. If

one images the specimen with the diffraction vector -g or +2g (n = -1, +2), a

"weak beam dark-field image" is produced.8'9 In the weak beam dark fieli more

details on the defect structure are observable.

A critical length that is important for describing diffraction phenomena is

the "extinction length" £ . The value of £ depends on the substance and on

the particular reflecting plane. Small deviations A8 of the direction of the

incident beam from the exact Bragg conditions (Bragg angle 0) are described by

the normalized excitation error w - s•• £ » £ c|g|* A8. For w ? 0, the effective
£ g

extinction length £ is given by3*10 £ = £ /i/ l+wz. Micrographs taken under

two-beam dynamical diffraction conditions (with w ~ 0) are called "dynamic images."

Micrographs taken with a specific excitation error w are called "defined kine-

matic" images, those taken under unspecified kinematical diffraction conditions

are called "undefined kinematic" images.

For calculations of the contrast of the disturbed lattice, "the column ap-

proximation" introduced by Hirsch, Howie, and Whelan11 is applied. In this

approximation it is assumed that, because of the smallness of the diffraction

angle 20 of the electrons, the intensity at a given point on the micrograph is
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determined entirely by the varying diffraction conditions. This approximation

has been justified by comparing the resu.lts of the column approximation with

those of the exact solution of the problemlz~1.h for the case where the defects

are imaged with a strong excited beam. However, in the case of weak diffracted

beams, this approximation is applicable only in specific cases. 15

If the lattice planes in the neighborhood of the defects are bent, the

contrast can be calculated by solving the differential equations of dynamical

two-beam approximation numerically. In such computations, the quantity char-

acterizing specific defects is the z-derivative of the displacement field of

the defect, where z denotes the directions of the bisector of the incident

and the reflected electron beams (two-beam case).

There are several physical equivalent formulations of these differential

equations. The scattering by the defects may be described in terms of plane

waves,10 Bloch waves,16'17 or. modified Bloch waves.18 For numerical integrations,

Bloch wave equations are preferable because a scattering between the Bloch waves

takes place only where the z-derivation of the displacement field is essentially

different from zero. Therefore the Bloch wave equations must be solved only in

the regions close to the defect.

For small defect clusters (small compared with the effective extinction length

of the operating diffraction -vector), the tails of the contrast profile can be

calculated analytically in a first-order Born approximation.7'18 From these

approximations, general features of the contrast figures (i.e., symmetry relations

and direction of contrast) can be obtained.. The first-order Born approximation is

especially helful to determine the expected contrast of perfect dislocation loops

that are under different orientations with respect £o the incident electron beam.7
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• A very important parameter in all contrast calculations is the parameter

of the anomalous absorption,10 which is assumed to be z 0.1 or slightly below

this

J. DIFFRACTION CONTRAST FROM BUBBLES (WITHOUT STRAIN FIELD)

Both atomic defects (vacancies and interstitials) and clusters of these

atomic defects are nucleated in irradiated materials. Only the clusters of

agglomerates that are larger than at least the resulution of the electron micro-

scope can be observed by means of transmission electron microscopy. The observable

agglomerates will be simply called defects. There are essentially two different

types of defects: defects with or without a strain field in the vicinity of the

defects.

In this Section the contrast of defects without a strain field in the vicinity

of the defects will be discussed, and in Section 4 the contrast of defects with a

strain field will be described.

3.1. "In-focus" Contrast of Defects without Surrounding Strain

For the contrast calculations of defects without surrounding strain, it is

assumed that the vicinity of the void has the structure of the ideal crystal. For

simplicity, a void not surrounded by a strain field will be called a bubble. This

case is important for small gas-filled voids or large partially or empty voids'j

since in the latter case the" expected strain is negligible.

At this point it should be noted that, in the case of a gas-filled bubble in equi-

librium with the surrounding matrix, strain will be left in the matrix. Under the

conditions of thermal equilibrium, the gas pressure is p = 2a/r , where a is the

surface tension of the solid and i is the radius of the bubble. Shuttleworth,21

Herring,22 and Lidiard et al.23 pointed out that the surface energy y an<*
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surface tension O are not necessarily equal for solids. (By surface energy

we mean those terms in the free energy of a solid that are proportional to the

surface area.) These two quantities are related by

a = Y + F ' 7p >

where the differentiation indicates a change of the area F of the bubble

under conditions in which the number of surface atoms remains constant. The

surface tension a can be considerably different from the surface energy in

the case of copper; 0 has a value that ranges between -0.2y 5 cr $ Q.3Y 2>i

The contrast of bubbles was calculated by Ashby and Brown2s and in detail by

Van Landuyt et al.; the results of Van Landuyt et al. were applied by

Ingram27 and Ruedl. 28'29 jhe contrast of the bubbles can best be calculated

by the matrix method developed by Gevers ° and Amelinckx.31

With this method the amplitudes of the transmitted beam T and of the
zi

scattered beam S are calculated at the lower surface of a perfect crystal
zi

(thickness z.) by multiplying the amplitudes of the incoming beams (T , S )

».*ith the "scattering matrix" Af(z^)?0'31 If a perfect crystal (thickness t) contains

a bubble of thickness z^, the amplitudes T and S of the transmitted and
«•

reflected beam at the exit surface are (see Fig. 1):

V (zo; x,y) Af(z1;x,y)| J . (1)

Sb(x,y>

The amplitudes T and S are in general a function of the coordinates (x,y),

since the thickness z_ of the bubble with an arbitrary shape depends on (x,y),

We restrict ourselves mainly to the case where the z2 dimension of the cavity

is constant, see Fig. 1. Clearly, a bubble of arbitrary'shape can always be
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decomposed in a sequence of bubbles with constant thickness. The variation over

the projected area of the bubble can easily be obtained by using the thickness-

intevisity relations that are described here. Contrast of bubbles with a spherical

shape will be discussed later in some detail.

In Eq. (1) the scattering matrix M(z.) can be described as [the dependence

of z 2 on the (x,y)-coordinates is not noted explicitly any more]:

(2)

where the explicit expressions for T. and S. are in good approximation:26'30

T. « cos TT a z. - i s £ sin Traz.

sin 7r a z ,

with

a = — + i -—•===. , w = s C and XR
f Tg /1+w2 8 8

where s is the excitation error, t is the extinction length for the diffraction

vector g, and T Is the corresponding absorption length.
O

V(z) in Eq. (1) is the "vacuum matrix."

(3)

In Eq.(3), the factor e x z- describes the phase difference between a beam

passing through a bubble of thickness Az and a beam passing through the regions

of the perfect crystal.
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This phase shift is caused by the difference of the mean inner potential

V in the gas-filled bubble and the perfect crystal. From the mean inner

potential V (< 0) in a metal, the refraction index e can be calculated to
o o

eV
£ = k

where e is the charge of an electron, E the total energy of the electron, and k

the vacuum wavs vector of the electrons.

The phase factor can be neglected if one images the bubbles "in-focus," i.e.,

if one images (with the objective lens) exactly the exit surface of the foil.

However, if one images the defect "out-of-focus" (i.e., if one images a plane

with a distance from the exit surface), the phase factor is very important, see

Section 3.2.

The column vector (-.1 in Eq. (1) represents the initial values of T and S

at the entrance surface (z = 0), the matrix M, describes transmission through the

first portion of the crystal witTi thickness z., and the matrix V(z?) determines

the scattering by the bubble (thickness z ?). The value of the excitation error s

to be used in V(z_) is that of the preceding perfect column, therefore s is

constant since the crystal is perfect apart from the void. M~ describes the

scattering through the second part of the perfect crystal with thickness z_.

From the amplitudes T and S the intensities can be calculated; hoxtfever,

normal absorption also has to be talcen into account in the present case, i.e., the

intensities have to be multiplied by an absorption factor

where u is the normal absorption coefficient, and absorption by the bubble is

obviously neglected.



Oil the other hand, the amplitudes T and S in the perfect regions of the

crystal can be calculated to

SP
M(t) ^

where t is the thickness of the film. In this case an absorption factor

has to be taken into account for the intensities I. The contrast is defined by

I b - I P

T,S T,S
% S " TP

T,S

(the subscripts T and S indicate the intensity of the transmitted or scattered

beam).

As one can note from Eqs. (1), (2), and (3), the contrast depends on the

thickness t of the film, the thickness z_ of the bubble (which may vary over

the cz'oss section of the void), the normal absorption factor U and the anomalous

absorption factor x , and on the excitation error w.

In our considerations we restrict ourselves on the case s = 0, i.e., the

exact Bragg condition. In the dynamical condition (s = 0), the calculated contrast

of th& bubble is independent of the depth-position z? of the defect, since Eq-. (1)

simplifies to

r-2irie.Az

Since the basic property of the M matrices is that

M(z ) • Miz^ = M2 ' Mi
 =

 M(
z
i+

 z
3 ) ( s e e R e f * 3°)»

the relation in Eq. (6) describes transmission and scattering by a perfect crystal

of thickness (z.. + z ). The intensity of an electron beam passing through the bubble
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can be calculated by

Ib = ij _ (z. + zj ,
T,S l>i> A . J

and the contrast of the bubbles is

ij . (z + z ) .

The thickness-intensity relationships for bright field and dark field are plotted

in Fig. 2 for different factors of normal absorption ]i. For different materials

and different operating reflection vectors, different experimentally determined

values of y have to be applied. The curves for bright field plotted in Fig. 2

include the upper and lower values for different materials imaged with diffraction

vectors of not too high order.

From the curves plotted in Fig. 2, the theoretical predicted contrast of

voids in bright field and dark field can be calculated from Eq. (7). The expected

contrast of small bubbles with constant thickness is plotted against the foil

thickness in Fig. 3. It follows that the bubbles exhibit the strongest contrast

in a very thin region of the crystal; the thickness of the crystal should be

smaller than about three extinction lengths. The contrast depends sensitively on

the exact value of the foil thickness, especially in the case of a very thin

crystal region. The contrast is strongest at thicknesses slightly smaller or

larger than 0.5 extinction lengths, i.e., at the front or the rear of the first

dark thickness fringe in dark-field images or at the front of the second dark

fringe in bright-field images. These results have been verified experimentally

by Ruedl.28'29

The calculated contrast figures of bubbles with different (constant) thick-

nesses z~ are plotted for a constant foil thickness (four extinction distances)
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in Fig. 4. The curves indicate that for small (normal) absorption factors y

the bubbles exhibit predominantly negative contrast in bright field and predomi-

nantly positive contrast in dark field. Figure 4 also indicates that the sign

of the contrast can be different for bubbles with different thicknesses z_.

So far we calculated the electron-micrcscopical contrast for bubbles with

a constant thickness z«. If the thickness of the bubble varies over the pro-

jected area of the bubble, the sign and magnitude of the contrast will also

vary over the projected area. For dynamical two-beam imaging conditions (w = 0),

the contrast can easily be obtained from Fig. 2 for each bubble thickness.

We calculated the "in-focus" contrast for bubbles with a spherical shape.

For these bubbles the thickness z« (compare with Fig. 1) depends only on the

distance r from the center of the bubble:

z2 = 2 ̂  A - p2 ,

where R is the radius of the bubble and p the reduced distance from the
b

center of the bubble p = -^— (0 _<_ p <̂  1). The dependence of the sign and

Magnitude of the contrast as a function of the distance p can be determined

with Fig. 2 for bubbles with different radii R. in foils of different thick-
ly

nesses t.

The sign of the contrast ("bright" or "dark" compared to the background

intensity) produced by bubbles with diameters smaller than 0.5 extinction

distances E, depends on the thickness of the foil; however, it will always

be the same over the whole range of p» For bubbles with diameters between

0.5£ and 1.0£ the sign of the contrast can change over the projected

range of the bubble (0 <_ p £ 1 ) , if the foil thickness is about (n + 1/4) £
g

(n = 3, 4, 5,...). If the diameter of the spherical bubble is larger than £ ,

the sign of the contrast changes at least once over the range of p.
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Obviously, the magnitude of the contrast depends on the distance p for all

spherical bubbles of different sizes. The contrast profiles for two examples

(R =0.1 ? and R, = 0.4 £ ) are plotted in Fig. 5 as a function of p = r/R, .

The foil thickness is 3.75 £ . In both cases, maximum contrast is obtained

for p = 0. The small bubble (IL = 0.1 £ ) reveals for t = 3.75 £ a negative

contrast; the intensity inside the projected area of the bubble (onto the image

plane) is always smaller than the background intensity. As expected, the sign

of the contrast does not change over the whole range of P; however, the magni-

tude of the contrast decreases with increasing p. This contrast will be barely

visible, especially since the weak contrast changes slowly over the radius of

the small bubble. For the large bubble (R = 0.4 £ ) the calculated contrast

is a bright spot surrounded by a dark ring, i.e., the sign of the contrast

changes in this case. The diameter of the bright part is 0.87 of the diameter

of the bubble, the outer diameter of the dark ring corresponds to the actual

diameter of the bubble.

For other bubble diameters and foil thicknesses, similar or more complicated

contrast figures can be calculated. However, for all in-focus contrast calcu-

lations, the outer diameter of the contrast figures corresponds always best to

the actual size of the bubbles.

For w 4 G, the in-focus contrast of large bubbles (d> 0.3 E, ) may be

; • S

brighter or darker than the background intensity, depending on the depth position

of the bubble and on the magnitude and sign of w (see Ref. 26). The contrast of

small bubbles is so weak that it is not possible to observe the defect for large

w.
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3.2 "Out-of-focus" Contrast of Bubbles

We derived formulas in Section 3.1 that can be used to calculate the

amplitudes of the transmitted and scattered wave field at each point of the

exit surface of the foil. The intensity distribution can be imaged with the

electron microscope by imaging the exit surface of the foil, i.e., the lower

plane, of the foil coincides with the image plane of the objective lens. In

this way an "in-focus" picture is produced.

However, if one images, as sketched in Fig. 6S a plane that has a certain

distance ?. from the lower surface of the foil, one produces an "out-of-focus"

picture. The intensity distribution of an "out-of-focus" picture will be, in

general, different from the "in-focus"picture, since the waves of the wave

field at ? = 0 (exit surface of the foil) interfere with each other before

reaching the image plane at ? ., f 0.

The wave field in the image plane (at. a distance £. from the foil, see

Fig. 6) must be calculated from the wave field at Z, = C. The coordinate system

will be chosen as shown in Fig. 6. We normalize the wave field at £ = 0

outside the bubble so that ty(r, 0) = 1 [r = r(£, r))]. Then we can express the

wave field for r < r as $(r, 0) = 1 + A(£» T\), where A(£, r|) is a complex

quantity.

The two-dimensional Fourier transformation of the wave field at Z, = 0 is

?(P) = / <Kr) exp(-27T i p • r) d2r, (8)
o

with p =

The amplitude of the wave field at the point (£, n) = r at a distance

from the exit surface is then given by (for details see Ref. 32)
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TO.V r „. -1

f V (P) exp 2iri (p • r + t, A Q
2 - p2 ) d2p.

This equation satisfies the necessary conditions that the wave vector of the

electrons is k and Eq. (9) with £ = 0 leads to Eq. (8).

Equation (9) also can be obtained by solving the Kirchoff integral of the dif-

fraction theory. 33»31* It should be noted that the influence of the astigmatism of

the objective lens and the finite aperture on the "out-of-focus" image can be

neglected for defect structures larger than about 8 A.31*

Since p2 « k we develop A 2 - p ^ k ~ T k *
o

and obtain

hw i {*. ' £ ~ f £ "c } J d2p,$ (p) .exphw i {*. ' £ ~ f £ c } J d2p, (11)

where the phase factor exp(2iri k • £,) can from now on be omitted.

We calculate the "out-of-focus" contrast for a bubble, and we restrict

ourselves on cases where the projection of the bubble onto the (£,Ti) plane is

a circle with radius r . Furthermore, we assume that A(£,r|) depends only *"

on the distance from the center of the bubble and not on the azimuth angle ̂  .

With Eq. (3), we obtain from Sq. (11)

T rrt=ro T r 1 o 2 -il , ,
ty(r,O « / / Mr') • exp 2Tfi[ (p, r-rf) - j ^- • £1 d2p d2r. (12)

p=o t L o ^J '

r r -o

The integration over d2p can be solved analytically. If we introduce a polar

coordinate system (r,f), the integration over the azimuth angle f can also be
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performed analytically when tp(r') = 1 +' A(|r|), and we obtain

1

iKr,O = 1 - 2i3 exp [i3p2l J A(p') Jo(|23pp' |)exp [iBp
2

p'=o

ilk r
 2

 ji

with 3 = —§_°- f p s -IF-L an t} j thg Zero-or*der Bessel function. Explici t
C rQ o

calculations of l|>(r,?) require that iKP*) = l-fA(p') is knovn. iKP1') is

essentially different for bubbles of various sizes and shapes, it can be

calculated from Eqs. (1) and (5).

3.2.1 Small Bubbles. If the dimensions of the bubble are very small compared

to the operation extinction length, A(p') will be proportional to the actual

r1 *thickness z_ of the bubble at the distance p = — . In this case is

o

_

This approximation is valid for spherical bubbles with a diameter smaller than

0.25 K , 3 2 ' 3 *

1) - 1 + 5G(p') . (14)

In Eq. (14), 6 describes the change of i/>(Pf) in the center of the bubble. .The

quantity 6 is complex and ̂can be calculated from Eqs. (1) and (5). For small

bubbles, the imaginary portion of 6 is most significant, i.e., the phase shift

of the wave going through the center of the bubble relative to the wave field

in the perfect crystals. From-Eq. (3) the phase factor will be

-2TTi e Az

e ° - 1 z ~
 2<ffi e Az

o

where Az is the thickness of the bubble at p = 0.
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The term G(p) in Eq. (14) is a geometrical factor that describes the thickness

of the bubble as a function of the distance p = — from the center of the bubble.
o

For spheres, G is G = /l - p2 , and for small disks, G is G = 1.

For these two simple geometrical shapes, the intensity distribution was

calculated with a computer from Eq. (13). For the integration it was assumed

that the mean inner potential is -10 V.3

Some results of the calculations are represented in Figs. 7(a) and 7(b).

The reduced intensity I/I (1 = background intensity) of the "out-of-focus"
o o

contrast is plotted as a function of the distance p = — from tlie bubble center

at r = 0.

As pointed out in Section 3.1, the contrast of small bubbles (radius r < 0.1£ )

is weak for "in-focus" conditions and large foil thicknesses. The small bubbles

are nearly invisible. Figures 7(a) and 7(b) indicate that the small defects

reveal a stronger contrast if they are imaged under "out-of-focus" conditions.

It should be noted that for the contrast calculations the mean inner potential

of -10 V was assumed. Actually, this value is too low for almost all metals; a

value of -20 V should be closer to the real value of V . Preliminary calcu-
o

lations have shown that for V = - 20 V the absolute values of the contrast ar.e
o

increased, but the shape of the contrast profiles are unchanged. Especially, the

p-value, for which i/l «= 1 (no contrast) remains within 2% even when V ±s

changed from -10. V to -20 V.

The calculated contrast is, for negative values of £, a bright, circular

center surrounded by a sequence of dark and bright Fresnel fringes. However,

only the contrast of the first dark Fresnel fring is stroig enough to be visible.
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The size of the white center represents, within 10%, the real diameter of

the bubble for £ ~ ~ 1. However, the diameter of the white center exceeds the

actual bubble size for £ > 1. This is .true for small spherical bubbles and

for small disks.

The calculated ratios of the inner and outer diameters of the first dark

Fresnel fringe to the actual bubble diameters are plotted in Fig. 8 as a
o

function of the actual bubble diameter for ? = - 8000 A. Figure 8 indicates

that, only for bubbles smaller than 20 A, the diameter of the inner bright area

(equivalent to the inner diameter of the first dark Freshel fringe) deviates

more than 10% from the actual bubble diameter.

However, the results represented in Fig. 8 clearly show that the outer

diameter of the first dark Fresnel fringe is much larger than the actual size

of the bubble. Therefore, this quantity should never be used to determine the

size of small bubbles.

If one calculates the out-of-focus intensities for £ > 0, the contrast is

reversedj a dark spot is surrounded by a series of bright and dark rings.

3.2.2. Large Bubbles. For large bubbles (diameter larger than 0.25 extinction

length) the wave field at £ - 0 must be calculated according to Eqs. (1) and

(5). With the numerically obtained wave field, Eq. (13) has to be integrated.

The integration was performed only for a few bubble sizes, and one result is

plotted in Fig. 9. The "out-of-focus" contrast was calculated for a bubble

with a radius of 0.45 » and the thickness of the film was 3.75£ » The "in-focus"

contrast calculations (compare Fig. 5 and the heavy solid line in Fig. 9) predict

a bright circular center surrounded by a dark ring.
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For a defocusing distance ? = - 6000 A, the contrast is modified when

compared with the "in-focus" contrast. However, the general feature of the

contrast remains the same since the small intensity oscillations for p < 0.8

o

cannot be observed experimentally. For ? = - 6000 A, the outer diameter of

the first dark ring corresponds to the actual diameter of the bubble. This

o

result is not correct for X> " + 6000 A because in this case, the outer diameter

of the first intensive dark ring is at p = 1.15. The results of Fig. 9 can be

understood in terms of the Fresnel diffraction theory.32

Some preliminary calculations for additional bubble diameters show that

the results from Fig. 9 cannot be generalized for all sizes of bubbles and foil

thicknesses. Detailed results of contrast calculations will be published else-

where.32

i. CONTRAST OF SMALL DEFECTS WITH SURROUNDING STRAIN FIELD

The lattice planes are bent in the vicinity of a defect if the defect possesses

a strain field. Therefore, a scattering between the wave fields existing in the

lattice occurs, which changes the amplitudes at points close to the defect.

If the defects are smaller than the extinction lengths, their structure and

shape are not directly resolvable on micrographs. However, as shown in different

papers (for a summary see Re£s. 4-6,), information on the type and shape of the

defects can be obtained by imaging the defects under well-defined dynamic and

kinematic diffraction conditions. The results of the observations have to be

compared with the results of contrast calculations, which will be described shortly.

Defects produced by condensation of vacancies and interstitials are distin-

guished by the sign of the elastic displacement in the vicinity of the defects}
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defects produced by interstitials have a positive sign (positive misfit parameter5);

defects produced by condensation of vacancies have a negative sign (negative

misfit parameter).

For dynamic and defined kinematic diffraction conditions, tha results of

the contrast calculations are available for several defect models, such as Frank

dislocation loops, perfect dislocation loops, and strain centers _ch a spherically

symmetrical displacement field.s'6'36 39 The important features of the contrast

are summarized in Section 4.1, additional details on the contrast for voids are

represented in Section 4.2, and in Section 4.3, the required experiments for the

analysis of the defects are described.

4.1. Results of Contrast Calculations for Small Defect Clusters

A. Under two-beam dynamic diffraction conditions, a small defect within

a surface layer of about one extinction distance £ thickness shov7s a

black-white (BW) contrast (see Figs. 10, and 11). A BW contrast is

described by a vector I pointing from the center of the black portion

to the center of the white portion.

The magnitudes of the black and white portions of the contrast (BW

contrast) strongly depend on the exact value of the foil thickness, if

the foil is thinner than four extinction distances. Highest contrast

is expected from a defect in bright field in foils with a thickness of

t- = <2n + 1) £W/2 (n = 0, 1, 2,...) and in dark field in foils with

W

a thickness t _ = n £ ( n = l , 2, 3, . . . ) . The defects are nearly

invisible in bright field in foils with a thickness of t2 and in dark

field in foils with a thickness of t..
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The magnitude of the BW contrast is independent of the exact

value of the foil thickness t, if t is larger than ^ 5 extinction

1 p

lengths. In this case the thick foil approximation is applicable.

B. The BW contrast of small defects shows the follo\7ing characteristic

features for different shapes of defects:

(1) For small dislocation loops, the direction £ of the BW contrast

is determined by the main component of d(g»R)/dz where g is

the diffraction vector, R(x,y,z) is the displacement field of

the defect, and z is the coordinate parallel to the reflecting

lattice planes. For defects with an isotropic displacement field

(voids, see Section 4.2), H is always parrallel to +g or -g,

independent of the direction of the fraction vector.

For Frank dislocation loops (the Burgers vector b of the loop

is perpendicular on the loop plane), % is parallel or antiparallel

to b independent of the diffraction vector with which the defects

are imaged. Kovzever, the angle between b and the diffraction

vector must be smaller than ̂ 60°.

For perfect loops (Burgers vector is not perpendicular on the loop

plane), the direction of the BW contrast % is, in general, no

longer parallel or antipa'rallel to Burgers vector h't the angle

between & and b depends on the loop orientation relative to

the diffraction vector g?6 3 8 For certain orientations, complex

contrast figures are calculated.36*37'39

(2) The sign of (g * &) depends on the sign of the defect (vacancy or

interstitial) as well as on the distance of the defect to the

nearest foil surface. Thus for a defect with a given sign of the



- 21 -

misfit parameter, the sign of (g • &) oscillates, as shown

in Fig. 11, vdth the depth position of the defect inside

the foil (depth oscillations). If a defect lies close to

a boundary of the layers (transition regions), complex

contrast figures are calculated for.all shapes of defects.36

Cc Contrast calculations show that the defects appear as black dots under

bot'n unspecified (many-beam) and defined kinematic diffraction conditions.'
rs

As shown by Maher et al.,39 the contrast width under defined kinematic

conditions also depends on the diffraction vector g. Preliminary many-

beam calculations when compared with experimental observations,ti0 have

showsi that the diameter of the contrast figures (at 10% deviation from

the background intensity) corresponds best to the actual size of the

defect if the foil orientation relative to the electron beam is close

to a <100> or a <110> orientation.

The largest diameter of the black dots (which, in general, do

not hive a circular shape) on positive prints corresponds to the

diameter of the defect.

4.2. Results of Contrast Calculations for Voids

The contrast of voids with a surrounding strain field has been ••

calculated for different void sizes, different amounts of strain in

the vicinity of a void, different diffraction conditions, and different

foil thicknesses. lit this calculation, both contrast effects, i.e.,

diffraction contrast by the empty space inside the foil (see Section 3)

/;nd by the strain, were considered. So far, only "in-focus" contrast

has be-2n calculated for voids with a strain field.

The contrast due to the strain in the vicinity of the void is

strongest under exact two-beam diffraction conditions. The strain is

described by means of the (dimensionless) "normalized" misfit parameter
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P = AV •

where AV represents the volume, misfit of the defect, with

AV = e • — R for a spherical void (R = radius of the inclusion);
m 3 s 8

£ is the relative volume misfit, which- is for a partially gas-filled

void1*2

em " 4y Rr s

where p is the pressure inside the void, y is the surface

energy (see Section 3.1) and ]X is the shear modulus. Figure 12 shows

the results of the calculations concerning the visibility and type of

contrast.1*3 The diagram is divided into three areas. In area A (small

defects, large misfit parameter) BW contrasts with depth oscillations

(Fig. 11) are expected. In area B, the BW contrasts are calculated;

hov?ever, the depth oscillations of the BW contrasts are suppressed,

since the boundary conditions at the foil surfaces are changed. The

direction % for all BW contrasts of defects belonging to area B is

the same as for small defects lying in the first layer L. as described

in Fig. 10 ("Ashby-Brown case"'1''). Defects in area C (large voids) ,.

reveal no BW-contrast, with or without depth oscillations. The contrast

of the large voids is determined mainly by the thickness contrast

described in Section 3.

For small voids (area A) the absolute value of the strain can be

estimated by comparing the results of the calculations with quantitatively

evaluated micrographs. It should be possible to determine at least the

order of magnitude of strain around the small voids by imaging the defects

with different diffraction vectors g. The value of the normalized
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misfit parameter P is changed by these experiments.

A comparison of the experimental observations with the contrast calculations

will give the value of e . However, the quantitative value of the contrasts

depends on the exact value of the foil thickness t, if t is smaller than

4 extinction distances. It must be noted that if the diffraction vector g

is changed the reduced foil thickness (in extinction distances) is changed.

Therefore, the quantitative evaluation is possible only for thick foils.

4.3, Required Experiments for the Analysis of Small Defects

A. The Burgers vector and the shape of small defects can be determined by

imaging the defects under different two-beam diffraction conditions, i.e.,

with different g vectors. The defects reveal BW contrasts. From the

directionality of the BW contrasts, the most simple geometrical shape

can be determined.

B. The type of small defects (vacancy or interstitial) can be determined

by measuring the distance between the depth position and the nearest foil

surface with the stereo technique'*5'lt6and by comparing the results of the

measurement with the calculated depth-oscillations (Fig. 11).

C. The volume density and size distribution of the defects can be evaluated

from microgrpahs taken under kinematic diffraction conditions. The

thickness of the film has to be determined by stereo measurements.s*6

5. CONTRAST FROM LARGE DISLOCATION LOOPS

If the diameter of a dislocation loop is larger than about ore extinction

distance, the geometrical shape of the loop is resolvable with the electron

microscope. The contrast of the large loop can be explained by the contrast

of a single dislocation line.
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5.1. Contrast of a Perfect Dislocation Loop

A perfect dislocation loop consists of a closed dislocation line;

no stacking fault is present inside the loop. The Burgers vector of the

dislocation line can be determined with the rule (g • b) = 0 for (nearly)

vanishing contrast.

From contrast calculations by Howie and Whelan*°for a single dislocation,

it is known that in the defined kinematic case (w > 1) the actual position

of the dislocation does not coincide with the black line (minimum of the

contrast profile). The black line will always be on the side of the dis-

location where the lattice bending (caused by the dislocation) locally reduces

the excitation error w; the magnitude of the shift depends on the magni-

tude of w. With this property of the dislocation contrast, one can determine

*
For w - 0 the minimum of the contrast profile coincides with the position

of the dislocation line.

the type of the loop."- 5 0

The analysis can only be applied for loops that have a Burgers vector 'b

perpendicular on the loop, plane. The loop plane has to be inclined to the image

plane (the image plane is the plane perpendicular to the incident electron beam).

For cases where the loop planes are parallel or perpendicular to the image

plane, the observable shapes of the loops vary insensitively with the tilting

of the specimen. If the loop is inclined, the portions of the loop most

strongly inclined to the image plane give rise to a weaker contrast with the
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other portions of the loop.

The line through the two weak parts is parallel to the trace of the image

plane and the habit plane.

The loop normal n may be defined so that the angle between n and the

direction of the incident electron beam k is always acute. Then we may

differentiate between two-loop plane orientations (i) (g • n)> 0 and

(ii) (g • n)< 0. A tilting experiment (tilt axis perpendicular to g) with

high tilting angles and by observing the change of the projected loop width

will determine which of the two orientations occurs for a specific loop.

From the. above-mentioned fundamental property of the dislocation

contrast, it follows for w ^ 0 that the contrast lies either outside

[case (a)] or inside [case (b)] the projected loop position. A decision

between the two possibilities may be reached either by changing the sign of

w1*7 near the same diffraction vector g, or by changing from g to -g

with the fixed sign of w. The latter experiment is normally preferred since,

Effectively one has to change the sign of (g , b)s.

especially in thick films, the transmissivity is low for negative values of w.

If all experiments were performed with w >0, one determines the nature

of the loop by combining the results of large-angle tilting experiments (case i

and case ii) with the results of the +g/-g experiments.
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The following rules are valid for differentiation between vacancy

and interstitial loops:

(i) + (a) or (ii) + (b) •+ _ vacancy loop

(i) + (b) or (ii) + (a) +interstitial loop.

This rule works correctly only if Burgers vector b is perpendicular to the

loop habit plane. The above rules are no longer valid if b contains a

shear component b , and if b changes the sign of (g• b) relative to
s s

the corresponding sign of (g * b ). This occurs for certain orientations

b is the component of the Burgers vector that ?.s perpendicular to the

loop plane.

of b relative to g and for certain magnitudes of b . To determine
s s

the nature of tl»e loops, the direction of Burgers vector is also needed,

and this direction can be evaluated by a sequence of different tilting

experiments (Maher and Eyre ' )•

5.2 Contrast of a Dislocation Loop with Stacking Fault (Partial Dislocation)

If a dislocation loop contains a stacking fault, the surrounding dis-

location is, in general, a partial dislocation. In this case (g • b) will
v

not be an integer. Extended contrast calculations by Silcock and Tunstall53

2
have shown that the contrast of the dislocation is much weaker for (g» b) - - r-

2than for (g • b£ = + -r- (in both cases w s 1). Based on this result and on

a similar method described in Section 5.1, It is possible to determine the

nature of the loops. The fault displacement vector R can be determined

with the rule g • R = 0, i.e., the stacking fault is invisible if R is

perpendicular to g.
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6.' SOME EXPERIMENTAL DETAILS

6.1 Determination of the Excitation Errors

The sign and magnitude of the excitation error w may be determined

from the Kikuchi line pattern (see Hirsch et al. 3 ) . These lines usually

can be observed in fairly thick crystals; however, the number of defects

inside the crystal should not be too great. Kikuchi lines are due to Bragg

reflections of inelastically scattered electrons, which are "incident"

under all possible angles. The geometric locus of the Bragg reflected

beams is a wide cone with an opening angle of 90° -8 (8 s Bragg angle).

This cone intersects the photographic plate along parts of a hyperbola,

which becomes very nearly a straight line because of the large opening

angle and the large distance between the specimen and the plate. Two

parallel Kikuchi lines always belong to one set of lattice planes, the

distance f between the lines corresponds to an angle difference 20, which

is also the distance of the corresponding diffraction spots of the operating

diffraction vector.

Under dynamic two-beam conditions, the Kikuchi line-pair passes through

the spots of the incident and diffracted beams. If the foil is now rotated

over a small angle Ad, the positions of the diffraction spots are (nearly)

unchanged, whereas the beam producing the Kikuchi lines rotates over the same

angle. Therefore, the Kikuchi lines are displaced with respect to the diffraction

spots over the distance

' Af = f/20 • A9

From this w = £ • s = £ • g* A8 can be determined. The sign of w is

defined such that w is negative if the displacement of the Kikuchi lines on

the diffraction pattern is toward the spot of the direct beam and is positive

if the displacement is away from the spot of the direct beam.
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6.2. Determination of Foil Orientation and Tilting Angle in Stereo Measurements

For certain experiments, the exact orientation of the foil relative to

fhw. incident electron beam must be known. As shown by Thomas5S and co-workers,

the orientation can be determined simply from Kikuchi patterns. The orienta-

tion can either be determined by indexing three independent pairs of Kikuchi

lines or. by comparing the observed Kikuchi pattern with an indexed Kikuchi

line map. The foil orientation can be determined within an accuracy of ±0.1%.

To determine the tilting angle in stereo experiments, the displacement

of Kikuchi lines may also be used. If the specimen is tilted by an angle

normal to the incident beam, the whole Kikuchi pattern shifts by a vector

perpendicular to the tilting axis. From the shifting, the tilting angle

may be determined within an accuracy of ±0.2°.

6.3. Evaluation of Stereo Micrographs

Stereo pairs are obtained by producing two micrographs with different

orientations of the specimen relative to the electron beam. If the distance

of two points oii the micrographs changes by the parallax p from one micro-

graph to another, the relative difference in height h of the two points

inside the specimen is calculated from the simple parallax equation

•h = 2 M sin 8 '

where M is the overall magnification of the micrographs, and 20 is the

total tilting angle.

This equation is, as shown by Nankivell,1^ only correct under certain

conditions, which often cannot be attained experimentally. Therefore,

corrections must be added to the simple parallax equation. The most important

is the correction of the tilt error. If the optical axis and the tilt axis
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do not intersect (see Fig. 13), the correction term, which has to be added to

Eq. (15), is

As(s + 2s+ As) cos 6
3t = 3—_ .

o

The distance between the first principal plane of the ojective lens and the plane

that is normal to the optical axis and contains the tilt axis is I ; this

distance is approximately the focal length of the objective lens of the

microscope.

This error can be kept small if As is small. However, for certain

As is the distance of the projection of the two points, for which the

height difference has to be determined, onto the image plane.

experiments, As has a large value, and i*» this case the correction described

through Eq. (16) is significant and must be taken into account.

The length s in Eq.(16) can be determined from

s = Ah • ctg 6,
a s

where Ah is the change in the distance between the specimen and the first
s

principal plane of the objective lens during the tilting experiment. This

change is actually the change in the focal distance of the objective lens

for the two micrographs of the stereo pairs. A calibration of the focal

length £' (Fig. 3) versus the "strength" of the objective lens yields Ah .
s

The "strength" is represented best ty the electrical current through the

coils of the objective lens.
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1. EXPERIMENTAL RESULTS

7.1 Experimental Results on Small Defect Clusters

The experimental results of the study on small defects in neutron-, ion-,

and electron-bombarded materials have been summarized.5'6 Since these papers

were published, it has been well established that reliable experimental

results for both defect size distribution,56 and the type of small defect

clusters observed in neutron-irradiated face-centered-cubic57i58 materials

can be obtained.

In body-centered-cubic materials, the type and size distribution of the

defects depend sensitively on the impurity content of the material. This

was demonstrated for molybdenum in the extended studies by Eyre et al. 5 9 6 2

For niobium, Loomis63 showed that the defect structure depends strongly on

the amount of oxygen that is in solution in the material.

The fine structure of the small defect clusters can be studied by the

"weak-beam" method. In this technique one images the defects with a weakly

excited beam, i.e., a dark-field beam with a high excitation error w. On

weak-beam micrographs, the defects appear as bright spots on a dark background.

In this imaging technique, the resolution of details of the defects essentially

improved compared with the -.regular bright- and dark-field images since the

effective extinction length is much smaller in the weak-beam micrograph.8'9

in Fig. 14, the advantage of the weak-beam micrograph is demonstarted.

Figures 14(a) and (b) represent a bright-field and a dark-field micrograph,

19 2
respectively, of a foil of high-purity niobium irradiated with 4 x 10 n/cm

(E > 0.1 MeV).63
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The observable large defects (diameters smaller than 400 A) show a jerky

structure in the regular bright-field and dark-field micrographs. If one

images under weak-beam dark-field conditions (Fig. 14d) , one finds that each

defect is composed of very small clusters. The diameters of the very small

clusters is just above the resolution limit of the electron microscope. How-

ever, contrast experiments by Cockayne8 and by Hausserman6k indicate that in

the case of heavy-ion bombarded copper foils one small defect cluster can

yield more than one white spot under weak-beam conditions. The number of

observable spots in Figure 14(d) is not necessarily identical with the number

of defects. Further theoretical and experimental work is necessary for a

full evaluation of the weak-beam micrographs.

7.2. Experimental Results on the Contrast of Small Bubbles

The dependence of the contrast behavior of the small bubbles on the

focusing and imaging conditions was studied and the results of the observations

were compared with the results of the "out-of-focus" contrast calculations.

For this purpose, epitaxially grown gold single crystals (o^OO A to 1000 A thick)

were irradiated with He ions at energies between 25 and 150 keV and at

temperatures between room temperature and 400°C. After an irradiation with .-

v6 x 10 ' He particles/era ât temperature above 100°C, gas-filled bubbles were formed.

Details on the results of the irradiation experiments and the dependence of the

observable defect structure (black spots or bubbles) on the irradiation

conditions are described elsewhere.65

The irradiated foils were investigated v?ith a Siemens electron microscope operated

at 100 kV.
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The small bubbles (diameter smaller than ̂ 50 A) were only observable if one

images the foil out of focus (see Fig. 15). The sign, size, and magnitude

of the contrast depend strongly on the defocusing conditions, i.e., on the

sign and distance ? between the lower surface of the foil and the focal

plane of the objective lens (compare with Fig. 6).

For a quantitative comparison of the theoretically predicted "out-of-focus"

contrast (see Section 3) and the experiments, the distance £ between the

exit surface of the film and the focal plane must be known.

We determined X, by measuring a part of the current I , through the

objective lens in the different focusing conditions. The change of I , was

calibrated versus the change in the distance of the focal plane, and it was

found that a change of Al = 1 pA corresponds to a change of tx, = 0.0105 Jim.

The relation between Al and A£ was linear in the distance range of interest.

The bubbles were imaged under different focusing conditions; one example

of the "through the focus" series are shown in Fig. 15. If ? is negative,

the bubbles show, as predicted by the theory (Section 3.2) a contrast that

has a white inner part surrounded by a weak dark ring. For positive C. the

contrast has a black dot surrounded by a weak white ring. Figure .15 also

indicates that the bubbles~-are invisible under "in-focus" conditions (£ - 0 ) .

The size of the black (£ > 0) and white (£ < 0) central portion of the

contrast of the small bubbles is almost independent of the exact imaging condi-

tions and of the exact value of £, for distances of £ that are not too large.

However, the outer diameter of the first Fresnel fringe depends strongly on £.
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Th-.? actual t-ibble size can be determined from the diameter of the central

&: rl the contrast. Normallyt the diacictcr of the outer diameter is at

least 51>A larger than the ncUutl bubble size. The experimental results are

in S.OOG agreement with the contrast calculations described in Section 3.2.

*J..re T,i.-aii\ist especially the dependence of the contrast on the itnnsing

condit^iwi, will be published elsewhere.

fh.t *>.. c-of -f ocus centrast of bubbles with different geometrical shapes

;«.. i- *:£?*•<! complicated. Figure 6 shows the thiough-the-focus series of

voids produced in stairile;;? steel after irradiation with Hi ions at high

temperature.£c The contrast is ?sore coiaplicated for r, < 0. The white center

containing a black spot J'«: surrounded by a bind: ring. For £ > 0 the opposite

is tru£. I'rwHw Jnr.rv cvnt raRt calculi:tions show that the actual si/i; ox these

voids coincides v.-Hii tin tnean diaseter of the bvight portion for ^ < 0.

8. eo:;cuisio-:s

'J'iie c3ccLro!t isicror.copv contrast of defects observable in irradiated

material was di5icuf.jicd, end emphasis v?as placed on the contrast of voids and

bubbles. It was shown that voids and bubbles product a phase shift of the

electron v:ave inside- the crystal. The phase difference relative to the perfect

crvstsl can only be made: visible (especially for swal1 voids) by working out of

focus.

The following important contrast features were calculated and also

determined experiment;* v:

A. Small voids and bubbles are only observable if the defects are

imaged out of focus.



B. The sign of the contrast depends on the sign of the

defocusing conditions. To distinguish between voids and

defects of other shapes, a "through-the-focus" series is

required.

C. The diameter of the inner contrast ring corresponds to the

actual diameter of the bubbles in the size range between

O o
20 A and 80 A.

D. For larger bubbles, the width and intensity of the out-of-

focus contrast depends on the actual size of the bubble

and the thickness of the film.
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FIGIRE CAPTIONS

Fig. 1. Schematic representation illustrating the notation used. The

case of a "penny-shaped" bubble is considered. A bubble with

arbitrary shape must be decomposed in a sequence of bubbles

as shown in this figure. The foil thickness is t, subdivided

in the thickness of the bubble z2 and in the thicknesses z.

and z, of the parts above and below the bubble (perfect

crystal). The wave vector of the incoming and reflected beams are

k and k , respectively.
o g

Fig. 2. Intensity thickness relationship for w = 0 (bright field I

and dark field I ). Normal and anormal absorption arc taken
o

into account. The value of the anomalous absorption coefficient

was K = 0.1; the values of the normal absorption coefficients

are noted in the diagram.

Fig. 3. Dependence of contrast for bright field (C ) and dark field (C )

from the foil thickness. The thickness of the "penny-shaped"

bubble is 0.1£ , the normal absorption factor y is y •= — ; w = 0.8
 H

Fig. it. Variation of bright field (C ) and dark field (C_) contrast with increasing

bubble thickness} zJK - R /C • 1'hc thickness of the foil is
Z g o g;

4 £ . The different normal absorption factors \i are. noted; w - 0.
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Fig. 5. Contrast of spherical bubbles of two different sizes. Bright

field images. The change in the normalized intensity I/I

(I = background intensity) is plotted over the reduced bubble

radius p = r/B, ; R. = bubble radius; contrast C.n = I/I - 1; w = 0.
D D X O

Fig. 6. Schematic representation illustrating the notation used for

"out-of-focus" calculations. The center of the bubble lies

at x = y = C=T= 0. £. describes the distance between the lower

foil surface and the image plane.

Fig. 7. Results of "out-of-focus" calculations (mean inner potential

V = -10V)j I/I (I = background intensity) is plotted over

the reduced radius of the defect p = r/r (r = radius of the
o o

defect) for different values of 0 = f k r 2/C . Note that
o o

the "out-of-focus"contrast extends over the actual size of the

defect, k = wave vector of the electrons, t, = defocusing

distance, a) spheres; b) cylindrical disks. The thickness of

the disks is equal to r . (w = 0)

Fig. 3. Contrast width of the inner (d, /d. ) and outer (d J
in o out

reduced diameter of the first dark Fresnel fringe as a function
e

of the actual bubble diameter (defocusing distance ? «* ~ 8000 A).

d. = diameter of the spherical bubble.
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Fig. 9. "Out-of-focus" contrast calculations for large bubbles (IL = 0.4 £ ,

« " o

£ = 250 A). The foil thickness is 3.75£ for £= + 6000 A and
o

£ = - 6000 A. The reduced intensity i/l (I = background intensity)
o o

is plotted versus p - r/I^. The "in-focus" contrast (w = 0) is

also represented.

Fig. 10. Black-white contrasts (BW contrasts) in a He -bombarded gold

film- The diffraction vector g = (220) is noted, foil

orientation [001],dark-field picture.

Fig. 11. Schematic plot of the depth oscillations of the BW-contrast from

small defects (Frank dislocation loops, small voids) of vacancy

type. The calculated contrast figures are drawn at that depth

position at which the loop centers were assumed, d.f. = dark

field, b. f. = bright field, g = diffraction vector, b = Burgers

vector (in the case of Frank loops only). For defects of inter-

stitial type, the black and white contrast portions must be

interchanged. In the intermediate (transition) regions I,_ ...

complicated contrast figures are calculated.

H

Fig. 12. Type of contrasts of spherical voids (inclusions) as a function of

the reduced radius R /£ (R = radius of the void, £ = extinction

length) and of the normalized misfit parameter P.

Region A: Black-white contrasts with depth oscillations; Region B:

black-white contrasts without depth oscillations; Region C: no

black-white contrasts calculated, pure thickness contrast.
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•Fig. 13. Positions of the specimen for stereo pairs, s - distance between

tilt axis and optical axis, Ah: height difference of two points

inside the foil. Tilt angle 28 = 9+ +8_.

Fig. 14. Defects in neutron-irradiated niobium (oxygen content < 0.02 wt. %,

19 2
neutron dose 4.10 n/cm , E > 0.1 MeV),foil orientation near [110],

The diffraction vector g = (112) is noted, a) bright-field image;

b) dark-field image (w slightly positive); c) wA/0.5; d) weak-beam

picture. In the weak beam dark field a high density of small defects

are resolved.

Fig. 15. Au-film irradiated with 6 x 10 He+/cm at 100°C. Through-the-

focus series. The differences in C=Af are noted. The contrast

of the center changes from dark (with white Fresnel ring) to

bright (with dark Fresnel ring). Foil orientation (001), g close to

(200).

Fig. 16. Voids in stainless steel irradiated with 3 MeV Ni ions.66 Through-the-

focus series. The change in ? from micrograph to micrograph (left,

to right) is V3000 A. The contrast reverses from underfocused to

overfocused; the voids are invisible under "in-focus" conditions.
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Fig. 1. Schematic representation illustrating the notation used. The

case of a "penny-shaped" bubble is considered. A bubble, with

arbitrary si tape must be decomposed in a sequence of bubbles

as shown in this figure. The foil thickness is t, subdivided

in the thickness of the bubble ss2 and in the thicknesses z.

and E« of the parts above and below the bubble (perfect;

crystal). The v/ave vector of the incoming and reflected beams are

k and k , respectively.
o 8
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FOIL THICKNESS t/£g

Fig. 2. Intensity thickness relationship Xov w " 0 (birSghJ. fie3<!

ami dark field I ) . Kormnl aiul ^jwrmal al>soyj»tion «uv: ta'scŝ
S

into account. The value: of the; ano^slous absoyj»r.jon coefficient

was K ° 0.1; £li« values of the normal absoipcioa coefficientr.

arc noted in the <sifl£r«"*!3.



THICKNESS OF VOID O.I

Fig. 3. Dependence of contrast for bright field (C ) and dark field (Cg)

fxorc the foil thickness. The thickness of the "permy-shr.ped"

bubble is 0.3 £ ^ the nornal absorption factor is p = — j w » 0.



FILM THICKNESS
,L 4 EXTINCTION

LENGTHS £_

t
L cs

DIAMETER OF THE VOIDS R0/£g

Fig. t\. Variation of bright field (C ) and dark field (C ) contrast v/ith increasing!

bubble thickness zo/£ = R /£ . The thickness of the foil is 1
2. g o g I

The different normal absorption factors y are noted; w = 0.
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Fig. 5. Contrast of spherical bubbles of two different sizes. Bright

field images. The change in the normalized intensity i/l

(I = background intensity) is plotted over the reduced bubble

radius p = r/\'»- \ ~ bubble radius; contrast C = I/I - 1; \
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LOWER FOIL SURFACE / ^

IMAGE PLANE

JJ L .

Fig. 6. ScLematic representation illustrating the notation used for

"out-of-focus" calculations. The center of the bubble lies

at x = y = C=n~ 0. ^. describes the distance between the lower

foil surface and the image plane.
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TABLE FOR VALUES OF£(infl. rn)

ro=5A

ro=iOA

r0 = 2OA

-0.5

0.42

1.7

6.0

-1.0

0.21

0.85

3.4

-1.5

0.14

0 5 6

2£6

0.9

Fig. 7. Results of "out-of--focus" calculations (mean inner potential

V = --10V); l/l (I = background intensity) is plotted over

the'reduced radius of the defect p = r/r (r = radius of the
o o

defect) for different values of 3 = TT k r 2/? . Note that

the "out-of-focus"contrast extends over the actual size of the

defect, k = wave vector of the electrons, £ = defocusing

distance, a) spheres; b) cylindrical disks. The thickness of
the disks is equal to r . Cw - 0)
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TABLE FOR VALUES or £(in it m)

\

Fig. 7. Results of "out~of-focus" calculations (mean inner potential

Vt> ~ " 1 0 v)j I/3-o .(I-o " background intensity) if. plotted over

the reduced radius of the defect f> «= r/r (r •= radius: of the
o o

defect) for different Vcilues of 3 " T, k t
 2 / t . Note that

o o

th<a"out-o.C-focus"contrast extencte over the actual sine of the

defect, k «= wave vector of the electrons, C «* defocusing

distance, a) spheres; b) cylindricol <?isks. The tliichoesR of

the disks is equal to r . (w » 0)
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Fig. 8. Contrast width of tlsft inner /dfe) w.t\ outer

reduced dinracter of the t'irsc dnt'l: Kres»el fringe! «s a function

of the actual bubble, diameter (defocusins di»t»ncc 5 "° - 8000 A).

d. « diassisttsr of .tin* sphcric.nl bubble.
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• -6000

0.5-

"Out-ol-foeus" contrast calculations tot lergc bubhlej. <R. «» 0.4£ ,

L •' 250 A). The foil thickness is 3.75£, for $*° + 6000 A and

r • - 6000 A. The reduced intensity 1/2 (I " baefcf,round intensity)
o ©

is plotted versus P

also

The "ln-focuoM contrast (w » 0) is
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Fig. 10. Black-white contrasts (EV7 contrasts) in a He -bombarded gold

film. The diffraction vector g" " (220) is noted, foil

orientation [001],dark-field picture.
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Fig. 11. Schematic plot^of the depth oscillations of the BW--contrast from

small defects (Frank dislocation'loops, small voids) of vacancy

type. The calculated contrast figures are drawn at that depth

position at v/hich the loop centers were assumed, d.f. = dark

field, b. f. = bright field, g = diffraction vector, b = Burgers

vector (in the case of Frank loops only). For defects of inter-

stitial type, the black and white contrast portions must be

interchanged. In the intermediate (transition) regions I

• complicated contrast figures are calculated.
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Fig. 12. Type of contrasts of spherical voids (inclusions) as a function of

the reduced radius R /r (It = radius of the void, r = extinction

length) and ox the normalized misfit parameter P,

Region A: Black-white contrasts with depth oscillations; Region B:

black-white contrasts without depth oscillations; Region C: no

black-white contrasts calculated, pure thickness contrast.
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Fig. 1,4.
(t) (a)

Defects in neutron-irradiated niobium (oxygen content< 0.02 wt. %, neutron dose
19 2

4.10" n/cm , E n > 0.1 MeV), foil orientation near [110]. The diffraction vector

g = (112) is noted, a) bright-field image; b) dark-field image (w slightly positive);
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• <a> (b) (t) (a)
Fig. 1A. Defects in neutron-irradiated niobium (oxygen content< 0.02 wt. %s neutron dose

19 / 2
4.10 n/cm , E n > 0.1 MeV), foil orientation near [110]. The diffraction vector

g = (112) is- noted, a) bright-field image; b) dark-field image (w slightly positive);

c) w ̂  0.5; d) weak-beam picture. In the weak beam dark field a high density of

small defects are resolved.
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Fig. 15. Au-film irradiated with 6 x 10 He+/cm2 at 100°C Through-the-

focus series. The differences in £=Af are noted. The contrast

of the center changes from dark (with white Fresnel ring) to .

bright (with dark Fresnel ring). Foil orientation (001), g close to (200).
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Fig. 16. Voids in stainless steel irradiated vrith 3 K&V Ni ions.66 Through-the-

focus series. The change in £ from micrograph to micrograph (left'

to right) is 3̂0,00 A. , The contrast reverses from underfocused to

overfocused; the voids,are invisible under "in-focus" conditions.


