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Transmission Expansion Planning with Re-design

Luciano S. Moulin ∗ Michael Poss † Claudia Sagastizábal ‡

December 9, 2019

Abstract

Expanding an electrical transmission network requires heavy investments that need to be

carefully planned, often at a regional or national level. We study relevant theoretical and

practical aspects of transmission expansion planning, set as a bilinear programming problem

with mixed 0-1 variables. We show that the problem is NP-hard and that, unlike the so-called

Network Design Problem, a transmission network may become more efficient after cutting-off

some of its circuits. For this reason, we introduce a new model that, rather than just adding

capacity to the existing network, also allows for the network to be re-designed when it is

expanded. We then turn into different reformulations of the problem, that replace the bilinear

constraints by using a “big-M” approach. We show that computing the minimal values for

the “big-M” coefficients involves finding the shortest and longest paths between two buses.

We assess our theoretical results by making a thorough computational study on real electrical

networks. The comparison of various models and reformulations shows that our new model,

allowing for re-design, can lead to sensible cost reductions.

Keywords: transmission network, network design, “big-M” formulation.

1 Introduction

Long term transmission expansion planning determines, over an horizon of 10 or more years,
optimal investments on new transmission lines that make up an economic and reliable electrical
network. In its general form, transmission expansion planning is set as a mixed-integer nonlinear
stochastic programming problem that minimizes discounted expected costs of investment, subject
to constraints depending on uncertain data, such as future growth of electricity demand and of
generation.

Historically, transmission expansion planning stems from centralized systems, with both gener-
ation and transmission assets belonging to the government. In this setting, transmission planning
should ideally be performed jointly with the generation expansion. However, since the resulting
optimization problem would be too complex to handle, electrical transmission and energy genera-
tion expansion plans are often determined separately, at least for large power systems. Once both
expansion plans are available, they can be used as input for some integrated model of generation
and transmission, with simplified features. Alternatively, the output of a simplified integrated
model can be used as input of the separate expansion planning problems.

The interest of transmission expansion planning also extends to competitive frameworks. The
current deregulation trend often results in a mix of market competition in the generation and
distribution sectors, with a centralized regulation for transmission. In this context, the regulating
entity is in charge, not only of operating the grid while maximizing energy trade opportunities,
but also of defining an expansion plan for the transmission network to remain operational in the
future. Whether the power system is centralized or liberalized, transmission expansion planning
is a valuable tool for helping the decision-maker in adopting the most appropriate strategies for
determining the time, the location, and the type of transmission lines to be built.

∗CEPEL, Electric Energy Research Center, Eletrobrás Group. moulin@cepel.br
†Department of Computer Science, Université Libre de Bruxelles, Brussels, Belgium. mposs@ulb.ac.be
‡CEPEL, Electric Energy Research Center, Eletrobrás Group. On leave from INRIA Rocquencourt, France.
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The transmission expansion planning problem is set over an electrical network, designed in the
past by taking into account some critical factors, specific to the power system under consideration.
The amount of hydropower is crucial in hydro-dominated power systems like Brazil’s, because
generation sites are usually far away from the consumption centers. Long transmission lines and,
hence, important investments, are needed. Also, due to the pluvial regime, the network needs to
accommodate various power flows arising in different hydrological conditions. Another important
factor is the demand growth rate along the years, especially for countries with significant growth
rates, which need large investments and a large portfolio with reinforcement candidates.

The transmission expansion planning optimization problem includes both physical and budget
constraints. Operational and investment constraints are often linear, and vary dynamically along
the planning horizon. By contrast, expansion transmission constraints are static and nonconvex,
generally bilinear. Due to the high complexity and difficulty of the corresponding optimization
problem, several simplified models and approximation techniques have been considered; see the
review [23]. For example, in [32], the transmission expansion planning problem with security con-
straints, preventing transmission equipment failure, is set as two-stage stochastic mixed-integer
linear program, decomposed by Benders technique and solved by a (multicut) cutting-planes al-
gorithm, [8]. If transmission losses are a concern, they can be treated by a linearization, as in
[15, 16].

Due to the restructuration of the electrical sector that affected many countries in the recent
years, uncertainty has lately arisen as an important consideration. This impacts the modelling
and significantly increases the size and complexity of the optimization problem. Reported results
are mostly for small power systems (6 to 30 buses) [38, 12, 26]; see also [36, 10, 11, 17, 46, 9, 24,
25, 37, 15]. When considering larger power systems, the problem size is reduced by some heuristic
method, relying on human experts’ judgment, as in [40, 29, 31, 10].

In general, the transmission expansion planning problem is considered in two variants, con-
sidering or not generation redispatch; see [4, 14, 16]. The case without redispatch requires the
planned transmission network to operate correctly for a given set of generation values, computed
apriori for each generation plant. The variant with redispatch considers generation as a variable
in the optimization problem: an economic dispatch and the optimal transmission expansion plan
are computed together.

In this work, we consider a transmission expansion planning model that, rather than just adding
capacity to the existing network, also allows for the network to be re-designed when it is expanded.
Our new modelling introduces more flexibility and is general, in the sense that it can be used for
different frameworks, with and without redispatch, and independently of the level of simplification
or sophistication of the formulation, including with respect to uncertainty treatement.

The new model with re-design relies on the observation that an existing transmission network,
designed in the past, may no longer be optimal in the present and it may become even less
well adapted in the future. In the transmission expansion planning problem, electrical power
flows in the grid according to the linearized second Kirchoff’s law, and has the following peculiar
property, unique to electrical networks. Namely, in some configurations, disconnecting an existent
transmission line (respectively, adding a new line) does not necessarily decrease (respectively,
increase) the network capacity. Our numerical testing shows that allowing for the network to be
re-designed while expanding it can result in significant savings.

Our paper is organized as follows. In Section 2, we start with a general transmission expansion
planning problem, then present our model with re-design, and comment on alternative models
proposed by some authors. As mentioned, the transmission expansion planning problem has bi-
linear constraints that need to be dealt with. Section 3 contains a mathematical study comparing
different disjunctive proposals that can be found in the literature. Some alternative linearization
techniques, improving the relaxed transmission expansion planning problem, are also analyzed. In
most of the proposals, bilinear constraints are “linearized” by using the “big-M” reformulation
from Disjunctive Programming. The problem of choosing suitable values for the corresponding
“big-M” coefficients is addressed in Section 4. We first give general minimum values for the models
with and without re-design, and then analyze how to exploit the initial network topology to reduce
the minimal bounds. Section 5 reports on our numerical testing, including a thorough comparison
of the various formulations performances on several grids of real size. The final Section 6 gives the
model with re-design when considering (N − 1) security constraints, some preliminary numerical
experience, and a discussion on how to handle uncertain demand and generation.
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List of Symbols

S bus-circuit incidence matrix

i ∈ B index bus, in the set of buses

gi maximal generation at bus i

di load at bus i

Ω = Ω0 ∪ Ω1 set of all circuits

Ω0 set of existing circuits

Ω1 set of candidate circuits

|Ω1| cardinality of set Ω1

i(k), j(k) terminal buses of circuit k

γk susceptance of circuit k

fk capacity of circuit k

ck investment cost of circuit k

k1 ∦ k2 not parallel circuits

k1 ‖ k2 parallel circuits

E = E0 ∪ E1 set of all “fat” edges

E0 set of “fat” edges containing existing circuits

E1 set of “fat” edges containing candidate circuits

xij maximum number of circuits that can be built between i and j

xij existing number of circuits between i and j

(ij) “fat” edge between i and j

ℓ ∈ Lij index circuit among all circuits belonging to “fat” edge (ij)

SPi−j shortest path between buses i and j

LPi−j longest path between buses i and j

LP l
i−j longest path between buses i and j not passing through bus l

2 Models for transmission expansion planning

For convenience, we start by formulating a deterministic transmission expansion planning problem
without contingencies; in Section 6, we consider how to incorporate uncertainty and (N − 1)
constraints in the modelling. From the Combinatorial Optimization point of view, the electrical
network is an undirected graph (B,Ω) where vertices i ∈ B are called buses and edges k ∈ Ω are
called circuits. The set of circuits is partitioned into a subset Ω0, of existing circuits, and a disjoint
subset of candidate circuits, denoted by Ω1. Circuits are connected to buses in a linear relation
given by S, the bus-circuit incidence matrix. For each circuit k ∈ Ω, indices i(k) and j(k) denote,
respectively, the head and the tail of the circuit, while γk is the circuit susceptance. The reference
bus angle is fixed at θref = 0. The grid can have parallel circuits, k1, k2 ∈ Ω, denoted by k1 ‖ k2,
linking the same terminal buses.
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2.1 Classical transmission expansion planning problem

The transmission network expansion problem is usually written in the following form:

(TEP)















































min
∑

k∈Ω1

ckxk

s.t. Sf + gi = di i ∈ B (Load)
fk − γk(θi(k) − θj(k)) = 0 k ∈ Ω0 (Kirchoff0)
fk − γkxk(θi(k) − θj(k)) = 0 k ∈ Ω1 (Kirchoff1)

|fk| ≤ fk k ∈ Ω (FlowBounds)
0 ≤ gi ≤ gi i ∈ B (GenBounds)
xk ∈ {0, 1} k ∈ Ω1 .

At first glance, problem (TEP) could be considered as a Capacitated Network Design problem,
used to model expansion of telecommunication networks [45] and freight transportation networks
[13], among others. However, there is one important difference, that has a crucial impact when
solving the transmission expansion planning problem. Specifically, most capacitated problems
satisfy the following property:

for any given x ∈ {0, 1}|Ω1|, with components xk =

{

1 for k ∈ Ω′ ⊂ Ω1

0 for k ∈ Ω1\Ω′,

if x is feasible for (TEP), then any vector x̃ ∈ {0, 1}|Ω1| such that x̃ ≥ x is also feasible for (TEP).
(1)

Such is not the case for transmission networks. As shown in Figure 1, Property (1) may not
hold for (TEP): adding one or more circuits to a functioning network may prevent it from working
properly.

Figure 1: gA = 100MW , gB = gC = gD = 0MW , dB = dC = 50MW,dA = dD = 0MW ,
γAB = γBC = 1MW

rad
and γCD = γDA = 2MW

rad
, and fAB = fBC = fCD = fCA = 50MW . Left

network is feasible for θA = 0 rad, θB = θC = −50 rad and θD = −25 rad, whereas right network
is infeasible.

This peculiar feature is in sharp contrast with Capacitated Network Design problems. We shall
come back to this issue in Section 2.2. Before, we give a result formalizing the intrinsic difficulty
in solving problem (TEP).

Proposition 1 (Complexity of transmission expansion planning). Problem (TEP) is NP-hard.

Proof. We show how to write a Steiner-tree graph problem in the form (TEP), by suitably choosing
the parameters therein. Given an undirected weighted graph defined by vertices in a set V and
edges in a set E, a set of terminal vertices T ⊆ E, with |T | ≥ 3, and edge weights ck ≥ 0 for all
k ∈ E, the Steiner Problem in Graphs consists in finding a connected subgraph S (called the Steiner
Tree) that includes all terminal vertices at minimum edge cost, i.e., min

∑

k∈S ck. This problem is
known to be NP-hard, especially for grid graphs, see [22], [2]. Likewise for the single-commodity
flow integer formulation of the Steiner problem; see [44]. This formulation expresses the original
(undirected weighted graph) problem as a directed weighted graph problem by choosing a “source”
terminal vertex ts offering commodities to the remaining terminal vertices. To see how this last
formulation can be cast in the form of problem (TEP), first we let B = V , Ω = Ω1 = E and Ω0 = φ.
Finally, if t denotes the cardinality of the set of terminal vertices T ⊂ B, for an arbitrary source
ts ∈ T , we take

gi =

{

t− 1 i = ts
0 i in B\{ts} , di =

{

0 i = in B\T ∪ {ts}
1 i in T\{ts} ,
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and, for all k ∈ Ω, f̄k ≥ t− 1 and γk = 1. With this data, an optimal solution to (TEP) is nothing
but a minimum cost Steiner tree connecting vertices in T .

2.2 Allowing for the network to be re-designed

In network design problems, new links are added to a network to make it capable of routing
given commodities. Typical examples of commodities are passengers using public transportation,
merchandise in a vehicle routing problem, data in a telecommunication network, or electricity in a
transmission grid.

As mentioned, the peculiar behavior of power flow makes transmission networks very different
from the other examples. In particular, for most network design problems, the routing is either
decided by some manager, or fixed by a rule aiming at minimizing some utility (congestion, travel
time, travel costs). In such circumstances, the fact of adding a new link to a functioning network
can never prevent the network from working properly. At worst, the manager can decide not to use
that particular link. By constrast, in transmission power systems, the network manager cannot
choose which circuits will be used. Only generation dispatch, indirectly affecting the routing,
can be chosen (generation levels are control variables, while voltage angles and flows are state
variables). The example in Figure 1 shows that, besides being useless, a new link can also make
the network inoperational. Similarly, an inoperational network unable to satisfy its load could in
some cases start functioning after cutting-off some of its circuits.

The remarks above indicate that, from a modelling point of view, it can be cheaper to allow
the network to be re-designed when planning its expansion. The approach is also sensible from a
practical point of view. When compared to the high investment required to build new lines, the
possibility of cutting some transmission lines, with almost no cost, is worth considering. However,
since existing lines can be cut, a model with re-design uses more binary variables and is more
difficult from the computational point of view.

The corresponding optimization problem is given by

(TEPR)







































min
∑

k∈Ω1

ckxk

s.t. Sf + gi = di i ∈ B (Load)
fk − γkxk(θi(k) − θj(k)) = 0 k ∈ Ω (Kirchoff)

|fk| ≤ fk k ∈ Ω (FlowBounds)
0 ≤ gi ≤ gi i ∈ B (GenBounds)
xk ∈ {0, 1} k ∈ Ω .

When compared to (TEP), we see that in (TEPR) the bilinear constraints, corresponding to the
second Kirchoff’s law, are set for all circuits, not only for the new ones. Both problems have the
same objective function: only investment cost in building new lines is considered, because the cost
of cutting an existing line is negligible. Note, in addition, that the classical model (TEP) can be
derived from (TEPR), by adding the constraints xk = 1 for k ∈ Ω0 to the re-design problem. This
unified approach will be useful in the sequel, when devising solution methods.

In addition to having more binary variables, model (TEPR) is harder to solve than (TEP) because
some of the binary variables have null objective cost. As a result, when using an enumeration
method, the fathoming of many nodes in the branch-and-bound tree can be significantly delayed.
For the same reason, metaheuristics providing very good feasible solutions for (TEP), such as the
GRASP described in [6], are no longer applicable to (TEPR), because they are based on selecting
circuits by the corresponding investement cost. Finally, as shown in Section 4, the linear relaxation
polyhedron for (TEPR) is larger than the one of (TEP). As a result, bounds for (TEPR) may be less
tight than for (TEP).

Despite the apparently negative comments above, it is important to keep in mind that, de-
pending on the particular problem, allowing for re-design may have a significant economic impact.
Our numerical results on real-life transmission networks show that the model with re-design gives
important savings for some configurations.
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2.3 Simplified related models

Both (TEP) and (TEPR) can be further complicated by the introduction of (N − 1) security con-
straints. These constraints state that if, for some contingency, any circuit happens to fail (alone),
the network must stay functional. We will come back to this issue in Section 6.

In view of the difficulty of the transmission expansion planning problem, even without contin-
gencies, several authors introduced simplified models that we review next. However, in all of the
models below, simplification comes at the stake of ending up with a network for which (1) holds.
Since this property is not satisfied by a transmission network, for some applications the (simplified)
optimal plan computed with such models may need to be modified when the network is actually
expanded.

In [5] the model is set to find a minimal cost capacity increase that ensures the network survival
to different failures. The network is represented by a graph without parallel edges, and each edge k
has an initial capacity, denoted by uk. Parallel circuits are summed up into a single edge with the
corresponding total capacity. In the absence of parallel edges, bilinear constraints can be avoided
by replacing, for all k ∈ Ω, constraints (Kirchoff) and (FlowBounds) by

fk − γk(θi(k) − θj(k)) = 0 and |fk| ≤ uk + fkxk ,

respectively. Failures are considered in two different variants, depending if they occur simultane-
ously or in cascade. The first variant is solved by an efficient Benders decomposition scheme. The
solution method for the second variant makes use of strong valid inequalities in a cutting planes
framework. For both variants, the elimination of parallel circuits allows the authors to solve much
bigger instances than the ones handled in our numerical results.

Another simplified model goes back to Garver’s transportation model [18], where (Kirchoff1)
is replaced by a flow constraint of the form |fk| ≤ xkfk for all k ∈ Ω1. The resulting mixed-
integer linear programming problem is easy to solve by modern solvers, because it is closely related
to the so-called single-commodity multi-facility capacitated network design problem. Although
unrealistic, the transportation model can provide a better lower bound for (TEP) and (TEPR) than
the optimal value of the linear relaxation, see Table 5 in Section 5. Hence, it can be efficiently
used in a branch-and-bound process to eliminate portions of the exploration tree.

The third model in our review was proposed in [39] for electricity distribution. Due to the
local span of distribution networks, there is one generating unit (only one generation bus) and the
network must be a tree (each pair of buses is connected by a single path). In this setting, the
model is no longer a simplification, because the actual network satisfies (1).

The tree requirement introduces many combinatorial affine constraints. In counterpart, we
show below that a tree network makes the (bilinear) second Kirchoff’s law redundant, simplifying
substantially the optimization problem (voltage angles disappear from the formulation).

Proposition 2 (Consequence of tree shape). Suppose the network under consideration is a tree
such that

for any pair of parallel circuits k1 ‖ k2, the relation fk1
/γk1

= fk2
/γk2

holds. (2)

Let Garver’s transportation model be given by















































min
∑

k∈Ω1

ckxk

s.t. Sf + gi = di i ∈ B

|fk| ≤ xkfk k ∈ Ω1 (TranspMod)

|fk| ≤ fk k ∈ Ω
0 ≤ gi ≤ gi i ∈ B
xk ∈ {0, 1} k ∈ Ω1

Tree Network satisfying (2) . (Tree)

Then any point (x, f, g) is feasible for the transportation problem above if and only if there ex-
ists a point (x, f ′, g, θ′) feasible for the transmission expansion planning (TEP) with the additional
constraints (Tree).
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Proof. The necessary condition is straightforward, because the feasible set of the transmission
expansion planning (TEP) is contained in the feasible set of the transportation model. To prove the
reverse inclusion, given (x, f, g) feasible for the transportation model, we define a point (x′, f ′, g′, θ′)
that is feasible for (TEP), as follows. First, we keep the same design variables, x′

k = xk for each
k ∈ Ω, and generation variables, g′i = gi for each i ∈ B. Then, we consider any circuit k ∈ Ω with
endpoints i and j. The total flow between i and j is bounded by the total capacity of the circuits
connecting i and j, so that their ratio Fij is smaller than one:

Fij ≡
∑

h∈Ω:h‖k fh
∑

h∈Ω1:h‖k xhfh +
∑

h∈Ω0:h‖k fh

≤ 1.

Then, f ′
k = fkFij ≤ fk for k ∈ Ω0 and f ′

k = xkfkFij ≤ fk for k ∈ Ω1 so that f ′ satisfy the
(FlowBounds) constraints. The constraint (Load) for any b1 ∈ B is also satisfied, because gb1 is
equal to g′b1 and the total flow from b1 to any b2 ∈ B is unchanged: for any k ∈ Ω such that
i(k) = b1 and j(k) = b2, the total flow between b1 and b2 is given by

∑

h∈Ω:h||k

f ′
h = Fb1b2





∑

h∈Ω1:h‖k

xhfh +
∑

h∈Ω0:h‖k

fh



 =
∑

h∈Ω:h‖k

fh.

The new flow vector f ′ allows us to set up feasible voltage angles θ′ satisfying (Kirchoff0) and
(Kirchoff1), as follows. First, we choose any bus ref ∈ B and set θ′ref = 0. Then, we select any

built circuit k (k ∈ Ω1 and xk = 1, or k ∈ Ω0) with i(k) = ref and set θ′j(k) = θ′i(k) − f ′
k/γk =

0 − f ′
k/γk = −Fi(k)j(k) fk/γk. Assumption (2) ensures that choosing h ‖ k, instead of k, induces

the same angles difference. Next, we select a built circuit h ∦ k with i(h) ∈ {ref, j(k)} to set up
θ′j(h) in the same way. We repeat this procedure until all voltage angles are set, the tree shape
ensuring that each of them shall be set only once.

3 Linearizing the problem

We now address the problem of defining tight and convex relaxations for the mixed-integer bilinear
programming problem (TEPR). Since (TEP) can be formulated as (TEPR) plus constraints xk = 1 for
k ∈ Ω0, the formulations below can be used for both models.

The main difficulty of (TEPR) arises from its bilinear constraints (Kirchoff), defining the function

F (xk, θi(k), θj(k)) := γkxk(θi(k) − θj(k)) .

This is a bilinear function, neither convex nor concave (its Hessian eigenvalues are constant, equal
to 0 and to ±

√
2γk). Moreover, there is no quadratic convexification for F (xk, θi(k), θj(k)), be-

cause the function F (xk, θi(k), θj(k)) + λ(x2
k − xk), with Hessian eigenvalues equal to 0 and to

λ±
√

λ2 + 2γ2
k, remains neither convex nor concave, regardless the value of the scalar λ. For this

reason, efficient convex mixed-integer nonlinear programming tools, like the method in [34] and its
modern implementation FilMint [1], cannot be used in our problem.

Instead, bilinear constraints are “linearized” by using the so-called “big-M”-reformulations
for disjunctive programming [35]. Before detailing how to suitably choose such coefficients, we
compare two disjunctive approaches that have been used in the literature and give an alternative,
third, formulation using “big-M” constraints. To each one of the three formulations corresponds
a specific rewriting of bilinear constraints, that yields a different optimization problem, depending
if the model of interest is (TEP) or (TEPR).

3.1 Standard Disjunctive Formulation

Different authors, [33, 43], replace (Kirchoff) by a constraint of the form

−Mk(1− xk) ≤ fk − γk(θi(k) − θj(k)) ≤ Mk(1− xk) for all k ∈ Ω , (3)

for some fixed coefficients Mk > 0. Flow bounds are written in the form

|fk| ≤ xkfk for all k ∈ Ω . (4)
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The advantage of this formulation is that its number of variables and constraints grows linearly
with the size of the problem. Yet, the formulation is very hard to solve because of the “big-M”
coefficients in constraints (3).

3.2 Improved Disjunctive Formulation

A new disjunctive formulation, hopefully tighter than the standard one, and requiring additional
continuous variables, was considered in [4]. Each flow is rewritten by using two positive flow
variables, as follows:

fk = f+
k − f−

k for f+
k , f−

k ≥ 0 and k ∈ Ω . (5)

Likewise for each voltage angles difference:

∆θ+k −∆θ−k = θi(k) − θj(k) for ∆θ+k ,∆θ−k ≥ 0 and k ∈ Ω . (6)

Using the additional variables in (3) yields the following constraints

−Mk(1− xk) ≤ f+
k − γk∆θ+k ≤ 0

−Mk(1− xk) ≤ f−
k − γk∆θ−k ≤ 0

for all k ∈ Ω . (7)

With the new variables, flow bounds take the form

f+
k ≤ xkfk and f−

k ≤ xkfk for all k ∈ Ω . (8)

The relation expressing a variable as the difference of its positive and negative parts is a bijection.
For this reason, (5) and (8) are equivalent to (4). Since, rather than using the voltage angles, the
bijection is used for the voltage angles differences in (6), the feasible set defined by (7) differs from
the one defined by (3), as shown next.

3.2.1 Comparing linear relaxations

An important matter when relaxing mixed-integer constraints refers to how close the new feasible
set is to the convex hull of the original feasible set, see [27]. A formulation for which the relation is
tight is said to be stronger than one with a bigger set. To compare the strength of the disjunctive
formulations above, we consider their linear relaxation polyhedrons, obtained when replacing the
{0, 1} set by the interval [0, 1].

Accordingly, we define the polyhedrons

P = conv











(x, f, g, θ) satisfies





(Load) , (Kirchoff) ,
(FlowBounds) ,
(GenBounds)

for some (f, g, θ) and x ∈ {0, 1}|Ω|









 ,

corresponding to the convex hull of feasible vectors for model (TEPR);

P3.1 :=
{

(x, f, g, θ) satisfies (Load) , (3) , (4) , (GenBounds) for some (f, g, θ) and x ∈ [0, 1]|Ω|
}

,

corresponding to the linear relaxation of the standard disjunctive formulation of model (TEPR); and

P3.2 :=

{

(x, f, g, θ) satisfies

[

(Load) , (5), (6),
(7), (8) , (GenBounds)

for some (f, g, θ) and x ∈ [0, 1]|Ω|

}

,

corresponding to the linear relaxation of the improved disjunctive formulation of model (TEPR).

We first note that the improved disjunctive formulation is tighter than the standard one. More
precisely, in (7), substracting the second equation from the first one, and using (5) and (6), implies
satisfaction of (3). Therefore,

P3.2 ⊆ P3.1 . (9)

The following example shows that the inclusion may be strict.
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Example 1 (Strict inclusion). Consider a network formed by three buses A ,B, and C, with no
initial circuits and such that at most one circuit connecting each pair of buses can be built. Suppose,
in addition, that the parameters have the values gA = 100MW , gB = gC = 0, dA = dC = 0,
dB = 100MW , fAB = fBC = fCA = 400MW , γAB = γCA = 1MW

rad
and γBC = 0.5MW

rad
and

cAB = cBC = cCA = 10. The optimal value to the transmission expansion planning optimization
problem (TEPR) is 10, obtained by constructing only circuit AB: xAB = 1, the remaining optimal
binary variables being null. The corresponding voltage angles at the optimum are θA = 0 rad and
θB = −100 rad. We show next how to construct a cheaper fractional solution (x, f, g, θ) in P3.1
that does not belong to P3.2.

In Section 4 we give the smallest values for the big-M coefficients to ensure a tight relaxation.
In particular, by Proposition 3 therein, the minimal value for MBC is 400MW . Consider the
fractional vector xAB = xBC = xCA = 0.25, with angles θA = 0, θB = θC = −50 rad and flows
fAC = fCB = fAB = 50MW . The corresponding objective function value is 7.5, smaller than the
optimal cost of the mixed 0-1 problem.

For the point under consideration, the potential differences γAB(θA − θB) = γAC(θA − θC) =
50MW are enough to induce the required flows, whereas γCB(θC−θB) = 0MW should not induce
any flow. However, since x is fractional, the “big-M” constraints may allow this flow to be routed
on the network. Namely, constraint (3) for circuit CB is

−300 ≤ fCB ≤ 300 ,

while constraint (7) for circuit CB is
fCB = 0. (10)

Thus, the flows fAC = fCB = fAB = 50MW give a feasible point in P3.1. By contrast, constraints
(10) will cut-off the point from P3.2.

For a linear relaxation to be useful for the optimization problem, its “shadow” projection on
the x-variables (see [27]) needs to be tight with respect to the original problem. This means that
in the relaxed polyhedrons only the x-components of feasible vectors (x, f, g, θ) matter.

In this sense, although the inclusion (9) ensures a similar relation for the shadow projections,
we are in no position to say if the inclusion is strict for the x-variables only. In particular, we now
show that for the counter-example above, it is possible to define flows and angles f̃ , θ̃ satisfying
(7) for the fractional values xAB = xBC = xCA = 0.25.

Example 2 (No longer strict inclusion). Consider the network in Example 1 and the same frac-
tional vector xAB = xBC = xCA = 0.25. Set angles to θ̃A = θ̃C = 0 rad and θ̃B = −100 rad, and
flows to f̃AB = 100MW , f̃AC = f̃CB = 0MW . Such flows f̃AB and f̃AC are correctly induced
by the potential differences, as long as the flow f̃CB is equal to 50MW . However, recalling that
MBC(1− xBC) = 300MW , constraint (7) for circuit CB is

−250 ≤ fCB ≤ 50, (11)

so that f̃CB = 0MW is feasible for (11) and (x, f̃ , θ̃, g) ∈ P3.2.

In summary, from relation (9), the linear relaxation of the improved disjunctive formulation
is not worse than the one of the standard disjunctive formulation. But it is not known if, when
considering only the x-components, the inclusion remains strict (unfortunately, no example is given
in [4]). In our computational experience in Section 5, both disjunctive formulations gave identical
results, for all the cases in Table 1.

3.3 Breaking Symmetry

In Combinatorial Optimization, it is well known that feasible sets exhibiting symmetry often
slow down significantly any branch-and-bound algorithm, due to (useless) exploration of many
symmetric nodes. In a transmission network, parallel circuits do induce such a symmetry, making
both disjunctive formulations in Sections 3.1 and 3.2 difficult to solve.
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Basically, parallel circuits yield feasible points that are indistinguishable by the objective func-
tion. Indeed, from a feasible vector involving parallel circuits k1 ‖ k2, another feasible vector with
the same cost can be obtained, simply by swapping indices corresponding to k1 and k2.

In order to address this important issue, in what follows we assume the condition below.

Assumption 1. Any pair of parallel circuits k1, k2 ∈ Ω has the same capacity, susceptance and
cost:

∀k1 ‖ k2 fk1
= fk2

, γk1
= γk2

, and ck1
= ck2

.

All the case studies considered in our numerical experience, and given in Table 1 below, satisfy
Assumption 1.

The interest of Assumption 1 is that it allows us to define new circuit sets, by gathering parallel
circuits into a single, “fat”, edge. We denote such new sets by E0 and E1, corresponding to Ω0

and Ω1, respectively, with E = E0 ∪ E1 associated to the full set Ω. This re-ordering does not
prevent the network from having parallel circuits: to each “fat” edge (ij) ∈ E we associate an
upper bound xij for the number of circuits that can be built. We also denote by xij the initial
number of circuits linking i and j. With this notation, instead of using a single index k for a circuit
and terminal points i(k) and j(k), each circuit is now determined by a pair (ij, ℓ), referring to the
circuit’s endpoints i, j ∈ B and the circuit position ℓ ∈ Lij := {1 , . . . , xij + xij}, in the “fat” edge
ij; see Figure 2.

k1

k2

i j
(ij, 1)

(ij, 2)

j(k1) = j(k2)i(k1) = i(k2)

Figure 2: Renaming parallel circuits as part of a single, “fat”, edge.

Variables xk and fk are renamed accordingly to xℓ
ij and f ℓ

ij , and similarly for the investment costs.

We show in Section 4 that the actual value used for M ℓ
ij is independent of ℓ, so that constraints

(3) and (7) are rewritten

−Mij(1− xℓ
ij) ≤ f ℓ

ij − γij(θi − θj) ≤ Mij(1− xℓ
ij) for all (ij) ∈ Ω, ℓ ∈ Lij , (12)

and
−Mij(1− xℓ

ij) ≤ f ℓ+
ij − γij∆θ+ij ≤ 0

−Mij(1− xℓ
ij) ≤ f ℓ−

ij − γij∆θ−ij ≤ 0
for all (ij) ∈ Ω, ℓ ∈ Lij , (13)

respectively.

Symmetry in the disjunctive formulations can be broken in two different ways:

By ordering parallel candidate circuits: a second circuit can be built only if the first one has
been built, and so on:

xℓ+1
ij ≤ xℓ

ij (ij) ∈ E, ℓ, ℓ+ 1 ∈ Lij . (14)

These constraints seem to be what in [28] is called “Logical precedence” constraints.

By introducing lexicographical costs: a drawback of the ordering above is the resulting in-
crease in the number of constraints. Instead, parallel circuits can be made distinguishable
(and ordered) by assigning to each one of them a different cost, depending on some positive
constant ǫ, possibly small:

cℓij = (ℓ− 1)ǫ ∀(ij) ∈ E , 1 ≤ ℓ ≤ xij

cℓij = cij + (ℓ− 1)ǫ ∀(ij) ∈ E , xij + 1 ≤ ℓ ∈ Lij .
(15)
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In our numerical tests, the improved disjunctive formulation in Section 3.2 did not give competitive
results. For this reason, we applied (14) and (15) only to the standard disjunctive formulation
from Section 3.1. The lexicographical ordering (15) turned out to be rather poor, at least in our
case studies. For instance, the transmission expansion planning for the network “Brazil South”,
modelled by (TEP) and using the standard disjunctive formulation, took 5 seconds to be solved
until optimality. When introducing (15), solution times climbed up to more than 300 seconds.

We mention that CPLEX 11 has an automatic symmetry breaking procedure which can sensibly
affect solution times. When this procedure is deactivated, by setting IloCplex.IntParam.Symmetry
= 0, the standard disjunctive formulation is much slower than when using the approaches (14) or
(15). However, when setting IloCplex.IntParam.Symmetry = -1, the impact of (14) becomes much
less expressive.

3.4 Alternative Disjunctive Formulation

We also considered a third disjunctive formulation, grouping together parallel circuits:



















































min
∑

(ij)∈E1

cij
∑

Lij∋ℓ≥xij+1

(ℓ− xij)x
ℓ
ij

s.t. Nf + gi = di i ∈ B

−M ℓ
ij(1− xℓ

ij) ≤
fij
ℓ

− γij(θi − θj) ≤ M ℓ
ij(1− xℓ

ij) (ij) ∈ E, ℓ ∈ Lij (BigM)
∑

ℓ∈Lij
xℓ
ij ≤ 1 (ij) ∈ E (SOS1)

|f1
ij | ≤ f ij

∑

ℓ∈Lij
ℓ xℓ

ij (ij) ∈ E (FlowCap)

0 ≤ gi ≤ gi i ∈ B
xℓ
ij ∈ {0, 1} ij ∈ E, ℓ ∈ Lij ,

where N is defined from S by selecting only one column for each “fat” edge (ij) ∈ E. Although
this formulation significantly reduces the number of flow variables, such potential advantage was
not reflected in our computational results; see Section 5. In an effort to improve performance,
we also tried CPLEX functionality of using type SOS 1 constraints instead of (SOS1) above. But
this option was not effective, probably due to the important increase in the number of nodes to
be explored. Setting different values to IloCplex.IntParam.Symmetry did not bring much benefit
either.

4 Choosing suitable “big-M” coefficients

The efficient solution of the linearized disjunctive formulations depends strongly on how the coef-
ficients “big-M” are set. Bigger coefficients give less tight polyhedrons, and worse optimal values.
It is then worthwhile to compute minimal values, M ij , such that constraints (12), (13) and (BigM)
above are valid for P, for any given value of g and d. Recall that an inequality is said to be valid
for a polyhedron Q if Q is contained in the half space delimited by the inequality.

We first give general minimum values for the models with and without re-design, and then
analyze how to exploit the initial network topology (E0) to reduce the minimal bounds.

In our analysis, paths are always assumed without cycles (they cannot contain twice the same
node).

We start with model (TEPR), allowing re-design, noting that, for any vector x ∈ {0, 1}|E|, when
g = d = 0, the point (x, f = 0, θ = 0, g = 0) trivially belongs to P. For this reason, the bound
for the “big-M” coefficients should be found for any binary vector x. We now show that the
computation of such bound involves solving a longest path problem (see [20]).

Proposition 3. Suppose Assumption 1 holds and let (ij) be given. Consider constraints (12) and
(13) from Section 3.3. Then the minimal admissible value for Mij such that these constraints are

valid for P, for any g, d ≥ 0, is given by M
(TEPR)
ij = γijLPi−j, the length of the longest path

between the buses i and j, computed with costs

c̃b1b2 =
f b1b2

γb1b2
. (16)
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Proof. For given (ij) ∈ E and ℓ ∈ Lij , when xℓ
ij = 1, constraints (12) and (13) imply that

f ℓ
ij = γij(θi − θj), regardless the value of Mij . Therefore, we only need to consider xℓ

ij = 0. The

flow bounds (4) and (8) force f ℓ
ij = 0. Since the corresponding constraints (12) and (13) state that

Mij ≥ γij |θi − θj | ,

we just need to find the largest value of |θi− θj |, among all possible network configurations having
xℓ
ij = 0.

To this aim, take n 6= ℓ in Lij and set xn
ij = 1. The flow on (ij, n) is at most f ij , so (12) and

(13) written for the circuit (ij, n) imply that γij |θi − θj | ≤ f ij . Thus, Mij must be at least greater

than f ij .
Now, set xn

ij = 0 for all n ∈ Lij such that for some path p between i and j and any link (b1b2) in
the path it holds that

∑

n x
n
b1b2

≥ 1. Then, regardless the other values of x, the difference |θi − θj |
cannot be greater than:

∑

(b1b2)∈p

|θb1 − θb2 | ≤
∑

(b1b2)∈p

f b1b2

γb1b2
.

Since we do not know in advance which path will satisfy the relation
∑

n x
n
b1b2

≥ 1, we must take
the maximum over all paths between i and j. Therefore, |θi − θj | ≤ LPi−j , with costs given by

(16). We are left to show that LPi−j is a minimal value to obtain M
(TEPR)
ij = γijLPi−j .

To see that LPi−j is a minimal value, it is enough to show that for any path p between i and
j,

θi − θj =
∑

(b1b2)∈p

f b1b2

γb1b2
(17)

for at least one generation vector g and one demand vector d. Define g and d as follows: for

each (b1b2) ∈ p, gb1 = db2 = f b1b2
, and gr = dr = 0 otherwise. Thus, θb1 = θb2 +

fb1b2

γb1b2

for each

(b1b2) ∈ p, yielding (17).

Note that if the only path from i to j is given by a single candidate circuit from i to j, i.e., by

(ij, 1), then there are no constraints on Mij and we can just take M
(TEPR)
ij = 0.

The computation of the minimal value for the third disjunctive formulation can be done in a
similar manner.

Corollary 1. Suppose Assumption 1 holds and let (ij) be given. Consider constraint (BigM) from
Section 3.4. Then the corresponding minimal admissible value for M ℓ

ij, for any g, d ≥ 0, is given

by M
(TEPR),ℓ
ij = γijLPi−j, the length of the longest path between the buses i and j computed with

the costs (16) for (b1b2) 6= (ij), and the following cost for (ij)

c̃ℓij =







xij+xij−ℓ

ℓ

fij

γij
ℓ ∈ Lij , ℓ 6= xij + xij

xij+xij−1

xij+xij

fij

γij
ℓ = xij + xij .

(18)

Proof. When xℓ
ij = 1, (BigM) forces fij = ℓγij(θi − θj), for any value of M ℓ

ij . Consider then that

xℓ
ij = 0 for all n ∈ Lij . By constraint (FlowCap) in Section 3.4, fij = 0 and, like in Proposition 3,

constraint (BigM) becomes Mij ≥ γij |θi − θj |. As a result, M ℓ
ij must be at least greater than the

length of the longest path between i and j, in the graph E\{(ij)}.
Otherwise, let xn

ij = 1 for some n ∈ Lij , with n 6= ℓ. Then, fij = nγij(θi − θj), so that (BigM)
written for (ij, ℓ) is

M ℓ
ij ≥

∣

∣

∣γij

(n

ℓ
− 1

)

(θi − θj)
∣

∣

∣ = γij
|n− ℓ|

ℓ
|θi − θj | . (19)

This value cannot be greater than |n−ℓ|
ℓ

f ij . If ℓ < xij+xij , the right-hand-side of (19) is maximized
when n = xij + xij . If ℓ = xij + xij , the right-hand-side of (19) is maximized for n = 1.
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Note that, even though the shortest path problem is polynomial and can be solved efficiently by
-for instance- Dijkstra’s algorithm, the situation is quite different for the longest path. For a graph
containing cycles, for instance, the problem can be NP-hard. Otherwise, if we could compute in
polynomial time the longest path between two adjacent nodes i and j, not passing by trough (ij),
with all arc lengths set to 1, we would also be able to find out in polynomial time whether the
graph has an Hamiltonian cycle (this illys an NP-complete problem, see [2]).

The longest path value LPi−j is often so big that Kirchoff’s second law usually fails to hold
for the relaxed optimal solution when design variables x are fractional. We now show that the
bound can be substantially improved for model (TEP), without re-design (and, hence, with less 0-1
variables than (TEPR)).

Because we extend an existing transmission network, we assume the condition below.

Assumption 2. Let B0 ⊆ B denote the subset of nodes belonging to edges in E0. The graph
(B0, E0) is connected.

We now consider the convex hull of feasible vectors for model (TEP)

P̃ = conv











(x, f, g, θ) satisfies





(Load) , (Kirchoff)0,1 ,
(FlowBounds) ,
(GenBounds)

for some (f, g, θ) and x ∈ {0, 1}|Ω1|









 .

In the notation gathering parallel circuits, this means that xℓ
ij = 1 for all (ij) ∈ E0 and each

ℓ ∈ Lij = {1, . . . , xij}.
For costs (16), the improved bound makes use of the shortest path SPi−j between buses i and

j ∈ E0, as well as the longest path LP k
i−j between i and j, not passing through k ∈ E1\E0.

Proposition 4. Suppose Assumptions 1 and 2 hold, and let (ij) be given. Consider constraints
(12) and (13) from Section 3.3. Then the minimal admissible value for Mij such that these con-

straints are valid for P̃, for any g, d ≥ 0, is given by

M
(TEP)
ij =







γijSPi−j i , j ∈ B0

γij maxl∈B0(LP j
i−l + SPl−j) i /∈ B0 , j ∈ B0

γij max
(

LPi−j , maxl1,l2∈B0(LP j
i−l1

+ SPl1−l2 + LP i
l2−j)

)

i /∈ B0 , j /∈ B0 .

Proof. When both i, j ∈ B0, the proof is similar to the one in Proposition 3. First, because
γij |θi− θj | ≤ Mij , we must compute the maximum feasible value for the differences |θi− θj |. Once

more,
∑

(b1b2)∈p |θb1 − θb2 | ≤
∑

(b1b2)∈p

fb1b2

γb1b2

for any path p in E0 between i and j. Therefore, we

must have |θi − θj | ≤ SPi−j , since θ cannot induce flows exceeding the capacity of any existing
circuit.

When i /∈ B0 , j ∈ B0, any path p from i to j must enter at least once in B0. Let l ∈ B0 be the
first entry bus and p1 the sub-path of p from i to l. If

∑

n x
n
b1b2

≥ 1 for each edge (b1b2) ∈ p1, then

|θi − θj | ≤
∑

(b1b2∈p1)

f b1b2

γb1b2
+ |θl − θj | ≤

∑

(b1b2∈p1)

cb1b2 + SPl−j .

This must be satisfied for any path p from i to j, hence, for any sub-path p1 from j to l ∈ B0.
Therefore, |θi − θj | ≤ maxl∈B0(LP j

i−l + SPl−j), as stated.
When neither i nor j belong to B0, consider any path p from i to j. If this path does not enter

in B0, then

|θi − θj | ≤
∑

(b1b2)∈p

cb1b2 . (20)

If this path crosses B0 at least once, let l1 be the first entry bus, l2 be the last exit bus, p1 the
sub-path of p from i to l1 and p2 the sub-path of p from l2 to j. Thus,

|θi−θj | ≤
∑

(b1b2∈p1)

cb1b2 + |θl1 −θl2 |+
∑

(b1b2∈p2)

cb1b2 ≤
∑

(b1b2∈p1)

cb1b2 +SPl1−l2 +
∑

(b1b2∈p2)

cb1b2 . (21)

Finally, taking the maximum of (20) and (21) over all p from i to j and considering a minimality
argument, similar to the one in Proposition 3, ends the proof.
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We mention that a result similar to Proposition 4 has already been proved in [7]. However,
our result is more compact and general. Moreover, Theorem IV.4 from [7] contains the following

(minor) glitch in equation (79) therein. This equation states that if (i, j) ∈ E0, then M
(TEP)
ij is

given by f ij . Actually, such statement can be made more precise when SPi−j < f ij/γij , because

in this case M
(TEP)
ij = γijSPi−j < f ij .

Once more, the computation of the minimal value for the third disjunctive formulation can be
done as for Corollary 1, using the modified costs (16) and (18).

Corollary 2. Suppose Assumptions 1 and 2 hold and let (ij) be given. Consider constraint (BigM)
from Section 3.4. Then the corresponding minimal admissible value for M ℓ

ij, for any g, d ≥ 0, is
given by

M
(TEP),ℓ
ij =







γijSPi−j i , j ∈ B0

γij maxl∈B0(LP j
i−l + SPl−j) i /∈ B0 , j ∈ B0

γij max
(

LPi−j , maxl1,l2∈B0(LP j
i−l1

+ SPl1−l2 + LP i
l2−j)

)

i /∈ B0 , j /∈ B0 .

Finally, we show next how the “big-M” constraints can be further strengthened. Consider the
“fat” edge (ij) ∈ E. If circuit (ij, 1) is built, x1

ij = 1, the difference γij |θi − θj | can certainly not

exceed f ij , reducing M ℓ
ij to f ij for each ℓ > 1. Hence, given that x1

ij = 1, we have no longer
“big-M” coefficients for the remaining candidate circuits belonging to (ij). Therefore, during the
exploration of the branch-and-bound tree, constraints (22) below may yield a linear relaxation that
is better than using constraints (12). Without loss of generality, we give the result for the standard
disjunctive formulation in Section 3.1.

Proposition 5 (Improved “big-M” constraints). Suppose Assumption 1 holds and let (ij) be given.
Consider constraints (12) from Section 3.1, and suppose symmetry is broken by using (14). Then
for all (ij) ∈ E and ℓ ∈ Lij, constraints (12) can be replaced by the reinforced constraints

−(Mij − f ij)(1−x1
ij)− f ij(1−xℓ

ij) ≤ f ℓ
ij −γij(θi− θj) ≤ (Mij − f ij)(1−x1

ij)+ f ij(1−xℓ
ij) , (22)

which are valid for P, for any g, d ≥ 0.

Proof. For ℓ = 1, (22) is the same as (12). Hence, suppose ℓ > 1. If x1
ij = 0, then xℓ

ij = 0 for
each 2 ≤ ℓ ≤ xij + xij , because of (14), and the left-(respectively, right-) most expression in (22)

equals −Mij(resp., Mij). If x1
ij = xℓ

ij = 1, then (22) forces f ℓ
ij = γij(θi − θj). Finally, if x1

ij = 1

and xℓ
ij = 0, (22) is γij |θi − θj | ≤ f ij ; and constraint (12) for ℓ = 1 implies that f1

ij = γij(θi − θj)

so that γij |θi − θj | ≤ f ij .

5 Computational Experiments

We make a numerical assesment comparing the different formulations from Section 3 on models
(TEP) and (TEPR), with and without re-design. The main data for our test instances, based on real
transmission networks, are reported in Table 1; for full details, we give the corresponding reference
in the fourth column of the table. Note that instances “Garver”, “IEEE RTS 24-bus”, and “Brazil
South R” allow redispatch, while the generation variables are fixed for instances “Brazil South”
and “Brazil Southeast” (no redispatch is allowed).

The three reformulations from Section 3 gave the same linear relaxation for all cases from Table
1. In order to evaluate the impact of allowing for re-design of the network, we also compared the
value of the optimal solutions for some of the models from Section 2. For this comparison, we used
the bounds in Section 4 and an alternative bound, simpler to compute, that we detail next.

Remark 1 (Alternative lower bound). Recall that in Section 4 we gave two types of lower bound
for the coefficients Mij in each reformulation. The first one (given by Proposition 4 when i, j ∈ B0)
is the solution to a shortest path problem, easy to compute, which often has a small value inducing
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Topology Circuits Generation/Load References
name |B| |E| |Ω0| |Ω1|

∑

g in MW
∑

d in MW
Garver 6 15 6 90 1110 760 [3, 19]

IEEE RTS 24-bus 24 34 38 102 10215 8560 [14]
Brazil South 46 79 62 237 6880 6880 [7]

Brazil South R 46 79 62 237 10545 6880 [7]
Brazil Southeast 79 143 156 429 37999 37999 [7]

Table 1: Networks data

a tight linear reformulation of (Kirchoff1) for (ij). Such is not the case for the second bound (given
by Proposition 4 when i /∈ B0, and by Proposition 3 for any i, j ∈ B), because its computation
requires to solve a longest path problem.

Indeed, being a generalization of the Traveling Salesman Problem, the longest path problem
itself is very difficult to solve, see [20]. Although polynomial algorithms have been proposed for
special classes of graphs, see for instance [42], solving the problem for general graphs requires to
develop a specialized branch-and-cut algorithm, which is beyond the scope of this work. Moreover,
since the value of the second bound, M ij, is already very big, considering an alternative bigger
bound neither modifies the quality of the linear relaxation nor decreases the solution times. This
remark was confirmed by a set of unreported tests, with increasing values for coefficients Mij.
Therefore, instead of trying to solve a longest path problem, we use the following alternative upper
bound MM ij for M ij, with value depending on the considered model:

Model (TEPR)with re-design: For each bus b ∈ B, let kb be the maximum-cost edge connected
to b, according to costs (16). Summing up the costs c̃kb

we certainly get an upper bound on
the length of any path in the graph (B,E). We can reduce this value, by forbidding to pick
up twice the same edge. After ordering the buses b1, . . . , b|B|, this is formally written as

MM
(TEPR)
ij = γij

|B|
∑

i=1

max
(bibj)∈Ebi

c̃b1b2 , (23)

where Ebi = E\{kb1 , . . . , kbi−1
} for i = 2, . . . , |B|.

Classical transmission expansion planning model (TEP): When an initial structure (B0, E0)

is given and i /∈ B0, the bound (23) can be reduced with no additional computational effort
to

MM
(TEP)
ij = γij



 max
b1,b2∈B0

SPb1−b2 +

|B\B0|
∑

i=1

max
(bibj)∈E1

bi

c̃b1b2



 ,

where E1
bi
= E1\{kb1 , . . . , kbi−1

} for i = 2, . . . , |B|.

All the codes were written in JAVA, using CPLEX concert technology 11 [21], on a computer
with an Intel Core 2 Duo processor at 2.40 GHz and 2 GB of RAM memory.

Although we used the MIP black-box solver of CPLEX to handle both (TEP) and (TEPR), we
provided CPLEX with a lower bound for (TEP), and lower and upper bounds for (TEPR). The lower
bound was obtained from the optimal value t of Garvers’s transportation model: we added the

constraint
∑

k∈Ω1

ckxk ≥ t to the formulations. Then, solving first (TEP), we could provide CPLEX

with a starting feasible solution defining an upper bound. Both bounds reduced significantly the
solution times.

Tables 2, 3, and 4 report the results obtained for each formulation from Section 3, for models
(TEP), (TEPR), and Garver’s transportation model [18], respectively.

In each table, columns “Standard”, “Improved”, and “Alternative” stand for formulations from
sections 3.1, 3.2, and 3.4, respectively, whereas “Ordering” refers to the “Standard” formulation
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Standard Improved Ordering Alternative
name T nodes T nodes T nodes T nodes
Garver 0.015 5 0.078 8 0.093 11 0.031 45
IEEE 0.23 81 0.92 363 0.56 121 0.67 499
South 5.085 4403 47.75 12149 24.18 5595 48.61 31768

South R 1.51 579 9.079 1823 1.88 395 3.52 1508
Southeast 2438 468428 2888 317314 599 113460 5095 2096088

Table 2: Results for the formulations from Section 3 on (TEP).

with the addition of constraints (14), and “Reinforced” refers to “Ordering”, using constraints (22)
instead of (12). Solution times are given in seconds, and they exclude the time needed to compute
the bounds. We also give the number of nodes explored in the branch-and-bound trees for the
different formulations.

Standard Ordering Reinforced
name T nodes T nodes T nodes
Garver 0.124 0 0.0936 0 0.0468 0.15
IEEE 50 12756 13 5021 12 3999
South 35091 1368186 19052 952880 20438 1079935

South R 144 14933 31 4408 29 3155

Table 3: Results for the formulations from Section 3 on (TEPR).

Note that Table 3 does not contain the results for “Brazil Southeast” network, because none
of the formulations could solve that instance within 10 hours of computing time. For such a large
network, allowing for re-design with the formulations from Section 3 would require to develop a
more sophisticated branch-and-cut algorithm.

name T nodes
Garver 0.015 0
IEEE 0.031 14
South 2.71 1351

South R 0.078 57
Southeast 0.343 137

Table 4: Garver’s transportation model.

Table 5 contains the optimal values found for the models from Sections 2.1, 2.2, and Garver’s
transportation model. Columns “LPrelax” report the values of the LP relaxations at the root
node and the rounded gaps Optimal−LPrelax

Optimal
. For small instances, reinforced constraints (22) do

not improve the solutions times. However, when used in conjunction with a high branching priority
for x1

ij , we could obtain a better upper bound for model (TEPR) of network “Brazil Southeast” (the
same branching strategy applied to smaller instances increased the solution times). Apart from
this special case, all parameters of CPLEX were left to their default values.

Our results from Table 5 for (TEP) coincide with the best ones reported in the literature. In
this sense, any cost below these values can be considered as an improvement. We see on table 5
that the (TEPR) model for “Brazil South” network induces a cost reduction of 9.67 = 72.87− 63.2
and 8.2 = 154.4 − 146.2 for the cases with and without redispatch, respectively. For “Brazil
Southeast”, the best cost obtained was 405.9 after 10 hours of computing time, with a duality gap
of about 29% (the best cost obtained when using (12) instead of (22) was 412). Thus, also for
this network, when comparing with the best known values, we have already a cost reduction of
18.9 = 424.8− 405.9. At least on our tested instances, allowing the network to be re-designed can
bring important savings in transmission expansion investments.
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(TEP) (TEPR) Transportation
name Optimal LPrelax Optimal LPrelax Optimal LPrelax
Garver 110 99 – 10% 110 99 – 10% 110 99 – 10%
IEEE 152 75 – 50% 152 68.8 – 55% 102 69 – 32 %
South 154.4 82 – 47% 146.2 71.8 – 51% 127 72 – 43%

South R 72.87 41 – 44% 63.2 33 – 48% 53 33 – 38%
Southeast 424.8 173 – 59% ≤ 405.9 120 – N.A. 284 120 – 58%

Table 5: Optimal costs and relaxations.

6 Towards (N-1) reliability

In the previous sections, we investigated some of the difficulties of the transmission expansion
problem, leaving aside an important criterion: the designed network must be resistant against the
failure of any of its circuits. In principle, (N − 1) reliability constraints should ensure that the
network remains operational if any of its circuits happened to fail alone. However, in view of (1),
it may be too restrictive (thus, too expensive) to require the whole load to be supplied under any
circuit failure. This is especially true if the failure of some link would prevent the network from
working, whereas not attending to a small portion of the load while the circuit is repaired would
keep the network operational.

Therefore, we model the problem as a two-stage stochastic program with continuous recourse,
see [8]. First stage variables xk indicate which circuits are built (or left operational, when k ∈ Ω0).
At the second stage, for each contingency scenario h ∈ Ω, we define continuous shortage variables
uh
i , i ∈ B, and associated binary coefficients δhk stating which circuits are operational:

δhk =

{

0 if h = k
1 if h 6= k.

In order to take into account the fact that the network must supply the whole load when all of its
circuits are operational, we also define the scenario “all” (and Ω∗ = Ω ∪ {all}), corresponding to
uall ≡ 0 and δall ≡ 1. Finally, the vector (fh, gh, uh, θh) describes the routing for each scenario
h ∈ Ω∗.

With these additional variables, the (N − 1) criterion for (TEPR) has the form:

(TEPR N− 1)























































min
∑

k∈Ω1

ckxk +
∑

h∈Ω,b∈B

phi u
h
i

s.t. Sfh + ghi + uh
i = di i ∈ B, h ∈ Ω∗

fh
k − γkδ

h
kxk(θ

h
i(k) − θhj(k)) = 0 k ∈ Ω, h ∈ Ω∗ (Kirchoff)

|fh
k | ≤ fk k ∈ Ω, h ∈ Ω∗ (FlowBounds)

0 ≤ ghi ≤ gi i ∈ B, h ∈ Ω∗

0 ≤ uh
i ≤ di i ∈ B, h ∈ Ω

0 ≤ uall
i = 0 i ∈ B

xk ∈ {0, 1} k ∈ Ω .

In the objective function above, each penalty factor phi is an estimation of the practical cost of
shortage for bus i, multiplied by the probability of failure h to happen. Then, we can use any of
the linearized reformulations from Section 3 to handle the bilinear constraints. For instance, with
the standard approach from Section 3.1, we replace constraints (Kirchoff) by

−Mk(1− δhkxk) ≤ fh
k − γk(θ

h
i(k) − θhj(k)) ≤ Mk(1− δhkxk), for all k ∈ Ω, h ∈ Ω∗, (24)

and constraints (FlowBounds) by

|fh
k | ≤ δhkxkfk for all k ∈ Ω, h ∈ Ω∗, (25)

yielding the model introduced in [41] (without re-design).
We mention that in [30] the authors also make a two-stage formulation of the (N −1) criterion.

However, their model considers a different bus-circuit incidence matrix Sh for each scenario h ∈ Ω∗.
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Such second-stage matrices are defined by suppressing in S the column related to circuit h (so that
Sall = S). Our simpler recourse formulation (TEPR N − 1), with a fixed matrix S, should ease the
use of Stochastic Programming decomposition algorithms.

Model time nodes optimal LPrelax
Transportation 1.2 34 132 109.4 – 17%
(TEP N− 1) 13 114 152.1 109.4 – 28%
(TEPR N− 1) 32 294 152.1 109.4 – 28%

Table 6: (N − 1) reliability constraints for Garver’s network.

We can see preliminary computational results on Table 6 for Garver’s network, using again the
MIP solver of CPLEX 11. Model (TEP N − 1) stands for (TEPR N − 1) with additional constraints
xk = 1 for k ∈ Ω0, and “Transportation” for (TEPR N− 1) without (Kirchoff). Since the considered
network is small, there is no “slack” for the re-design model to give any improvement: the optimal
values of (TEP N− 1) and (TEPR N− 1) are equal. For this reason, rather than giving insight on the
model with re-design, our results in Table 6 should be considered as a validation of our solving
methodology for (TEPR N− 1).

In addition to (N−1) constraints, it is important for the expansion planning problem to consider
uncertainty both in the electricity demand and generation. In this case, instead of (or in addition
to) considering contigency scenarios h ∈ Ω, the 2-stage formulation (TEPR N− 1) makes use of a set
W such that to each scenario ω ∈ W corresponds a demand/generation vector (d(ω), g(ω)). As in
(TEPR N− 1), the design decisions x must be taken here-and-now, while the wait-and-see decisions
of recourse (f(ω), g(ω), u(ω), θ(ω)) depend on each scenario ω ∈ W. The main difference with the
reliability models is that demand/generation scenarios do not need the additional vector δ, because
uncertainty is fully characterized by the values of d(ω) and g(ω). Finally, one could consider both
the (N − 1) reliability criterion and different scenarios for demand and generation, see [30].

For networks bigger than “Garver”, solving to optimality (TEPR N− 1) or one of the extensions
evocated above needs developing efficient decomposition algorithms, an interesting subject of future
research.
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