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Abstract—RLC transmission line synthesis is a difficult prob- tion rates, and approximate net delays can be concurrently
lem because minimal net delay cannot be achieved or accurately computed with ease, this procedure is well suited for use in
predicted unless: 1) a termination scheme is chosen and properly placement and routing or transmission line synthesis tools.
implemented, and 2) output driver transition rates are con-
strained at or below the net’s capability. This paper describes a
method to concurrently find, for any RLC net, an optimal termi-
nation value, a maximum source transition rate, and an approxi- A transmission line synthesis tool might be used to itera-
mate net delay using the first few response moments. When tively place components and simultaneously route and size the
optimal termination is accomplished and transition rates do not RLC wiring. Viability of a placement and its interconnect
exceed the capabilities of the net, the resulting delay metrics are royting would be based on how well thermal requirements and
an interesting extension of the popular Elmore delay metric for ot gelay objectives were met. The latter presents a dilemma.
RC interconnects. The task of physical RLC interconnect design  go. 56 excessive settling time increases delay in some
is facilitated by the ease with which these first few moments are . .
calculated for generalized RLC lines. sense, both under—dampmg and over-damping adversely

impact delay. RLC interconnect delays cannot be accurately
predicted unless a termination scheme is chosen and properly
implemented. Furthermore, ideal termination values in RLC

Because CMOS can easily provide balanced push-pull buinterconnects where topology, line parameters, load values,
ers and system power limits are being stretched, source terand rise times can all vary, are unique to every net. (Which is
nation has become the method of choice for transmission ||Why MCM techno|ogists have proposed |mbedd|ng series
control [7]. Sensing this trend, both the circuit and packagirresistors in their packages.) A synthesis tool must, therefore,
communities are tailoring their respective products to provicconcurrently and efficiently determine optimal termination
variable source termination. MCM technologists propose intyalue, maximum source transition rate, and net delay.
grating source terminating resistors in their MCM design:

Circuit designers routinely offer chips with programmabls I1l. OpmimaL TermiINATION UsiNg Circurr MomMENTS
output buffers.

In this paper, a synthesis procedure for RLC nets is pr
posed that concurrently determines the optimal series termii
tion resistance and the maximum source transition rate wh
estimating the subsequent net delay. Because this procec
“critically damps” the circuit response along the net, it therek
minimizes system power and maximizes signal noise imm
nity. And since optimal termination values, maximum trans

Il. THe SynTHESIS DiLEMMA

|. INTRODUCTION

Two methods for determining optimal termination using
circuit moments have already been proposed for point-to-
point RLC nets [6,8]. Both methods attempt to critically damp
the circuit response at the end of the line and both use circuit
moments to arrive at the solution. After a brief introduction of
circuit moments, we will review [8].

The moments of a time-domain waveform, h(t), are classi-
cally defined via the Laplace transform as follows:
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the step response using first and second moments of the 00

impulse response. fh(d =1 (5)
0
A. End of Line Waveform Matching o0 .
Waveform matching to find optimal termination was [ (t=Ty) th(yat =0  forallk 21 ®)

recently proposed in [8]. It can be best explained by first com- 0

paring the input and output response of a perfectly series terEnd of line waveform matching accomplishes these goals
minated, unloaded, lossless, point to point net. Consider tinea limited way. The cumulative area of h(t) is one, and the
multidrop daisy chain net shown in Fig.1, where the line ist and 2nd central moments are shaped to zero. The first and
lossless, the source is located gt te length of the line d = second central moments are more commonly known as the

(di+dy), Ry=25,and G=C, =C,=0. mean, m, and the variance?, respectively, where
For this ideal case, the output response at the end of line 2 0 20
identically matches the input response when the latter is G =Onp—-my ™

shifted in time by the time of flight of the line. In the Laplac%ne interpretation of [8] is that h(t) is forced to be a response

domain representation, this ideal matching can be stated aS,ith zero variance and a mean equal to a pure delay.
eSd/LC _py (s) = 0. 3)

] B. Shaping Central Moments about the Mean
where H(s) represents the transfer function at the end of the

line, d is the length of the line, and L and C are the per unit | & @pproach proposed here attempts to extend the idea in
length inductance and capacitance. [8], and it’s link to EImore’s work one step further. When low-
When applying this concept to lossy, loaded lines in [gipss, lightly .Ioaded _point—to-point_ and daisy-chain nets are
they attempt to match the transfer function H(s) to sorferfectly series terminated, all points along the net monotoni-
unknown delay. The first term in (3) is replaced vt Ty cally rise to one half their final value as the incident wave
where T is the unknown net delay to the end of the lind?aSSes. The reflected wave completes the switching by charg-

Expanding botreSTy  and H(s) in terms of Maclaurin serief'd these points to their final value. _
and collecting like coefficients of s yields While the impulse responses at all points along the net are

different, they all share one common characteristic. When a
B(l_mo) — (T4—m,;) s+ ETS _mZEE_ZI_ E =0. (& low-loss, lightly loaded transmission line is perfectly series
: terminated, all impulse responses are symmetric. Further-
Recognizing that the first term vanishes becayse infor ~more, all impulse responses are symmetric about the same
lines with dc gain of 1, they then solve fayahd T, such that mean. This is best illustrated with an example.
the next two terms also vanish. The first three terms of the farConsider the case of a three drop daisy chain net driven
end response, H(s)ow match the first three terms of a purdrom one end of the net (Fig.1 with d=dl,, and the sourceR
deiay shift, e—S-Ia . For an input ramp Signai it is shown thdﬁ located at 6) If this line were IOSS|eSS, unloaded (l%:C
the far end circuit response jumps onto the steady st&te=C;=0), and perfectly series terminated (i.¢ +RZ,), the
asymptote as quickly as possible, while the transient resporgigldle and far end step responses would be like that shown in
decays to zero as rap|d|y as possibie (Critica”y damping) F|g2 The far end response would identica"y match the input
The work in [8] can also be interpreted “statistically”. Justesponse when the latter were shifted in tima@gy= d./LC ,
like Elmore pointed out in [3]’ we can interpret the impuiséhe time of ﬂlght to the end of the line. The middle response
response h(t)ike a probab”ity density function. If H(S) were would step up to its final value in two equal increments. The

to match a pure de|ap—s-|a , then h(t) would be given bvst step would occur at tlmed-l: dt, where dt is the time of
8 (t—Ty) . The mean of h(t) would be;Tand the cumulative flight distance between the middle and far ends. The second

area and theentral momentsf h(t) would be as follows: step would occur at timeyF dt.
far end step response\‘
Rs dy dy 1.0 | Middle step response
Vi s) I I 1 v(®) \ :
! Co Cy Cy 0.5 [ -
Td - dt Td Td +dt time

FIGURE 1: Series terminated three drop daisy chain net. FIGURE 2: Ideal middle and far end step response.



The middle and far end impulse responses would be likeln lossless LC trees, the following properties can be shown
that shown in Fig.3. If we treat these responses like probahigarding this metric. Firgt; is independent of position. The
ity density functions, the middle and far end responses sh&re central moments at the ends of the net are identical to the
two characteristics. They're both symmetric and they’re botrd central moments at all other points along the net. Second,

centered about a mean qf. T s is of the form
The symmetry of a probability density function is measured .0 2 [
by its skew [2], which is given by Mg = Ry R -BG (10)
Mg Hence, there’s only one non-zero source resistance value for
skew = pc (8)  whichps equals zero.

Clearly lossless source terminated LC trees are under-
wherey; is the 3rd central moment aads the standard devi- damped when the source resistance is small, and over-damped
ation. The 3rd central moment of a probability density functiowhen the source resistance is large. The source resistance that
is defined by (6) with k=3 andyFm,, and reduces to a simple critically damps the net is somewhere in between, and the 3rd
algebraic expression involvingmmy, and na: central moment must change sign between these extremes.

Lossy RLC nets can be self terminated and various
researchers have computed the optimal self termination for

Because a symmetric probability density function has zel@SSy point-to-point RLC nets [4,6]. Their results for optimal
skew, we will apply this symmetry measure to determine opll® resistance range fro@l7,  w[Z when the net is
mal series termination for point-to-point and daisy-chain neténloaded. Our metric (i.e. the line resistance at which the 3rd
That is, we will solve for the parameters such tlaéw= 0 qen_tral njomenfc at the end oflt/hze line vanishes), predicts an
Although, this paper focuses entirely on series terminated n@fimal line resistance of15/2) * “ [ =2.74[Zq
where reflected wave switching is the objective, these tech-

niques can be applied equally well to parallel terminated nets, III. Devar Estimarion Usine Circur Moments

where incident wave switching is the objective. When low-loss, lightly loaded point to point or daisy chain
While setting the numeratqu; to zero is the primary goal nets have been optimally series terminated, we propose the

of this technique, the role of denominatdis also important. following estimate for the RLC net delay:

In statistics, probability density functions are strictly non-neg-

ative, and therefore, the 2nd central momento?, is always

positive. When the step response of a network is monotonigie select this metric based on the knowledge that-ra

the network impulse response, h(t), is a non-negative functiagsbunds the median of any probability density function [2].

and soo = 0. Furthermore, as Elmore [3] observed, the step As an example, referring to the step response in Fig.2, it is

response rise timeg, , is proportionaldoBecause of this obvious that the delay from the source end to the far end and

relationship to rise time and line ringing, this technique wilhiddle are T and T, + dt respectively. Using (2) to calculate

invoke the additional restriction thatbe strictly positive real m, and m in Fig.3, the far end values arg ahd T¢*> while

at all points along the net. Although, input rise time will béhe middle point values are,and Tgdt? . The variances,

used throughout this paper as the means of contro#fing are therefore, zero anc?ér far end and middle respectively.

other techniques such as RC termination are equally effective.we compute our net delay as prescribed in (11), this esti-
Furthermore, as the next sections will showis very use- mate yields net delays of, &ind T+dt for the far end and mid-

ful in predicting RLC net delays and determining maximundle respectively. These values match the obvious

transition rates. We will also show that can be used with;  interpretation of Fig.2, therefore the delay metric in (11) is

to determine a series termination design point with minimalxact for this ideal case.

net delay. While real point-to-point and daisy-chain nets will not

exhibit perfectly symmetric impulse responses, the intent of

reflected wave switching on these nets is to achieve a criti-

3
Hg = m,—3m;m, + 2m; 9)

Net Delay= m+0o (12)

far end impulse response|  cally damped monotonic response at the far end while the
[ ) : points along the line step up to their final value in two equal
1.0 4 middle impulse response increments. And when this condition is achieved, the 3rd cen-
v(®) tral moments at all points along the line become negligibly
0.5 A 4 small and m+ o provides a good upper bound estimate of net
: . delay, (providequ,is greater than zero).
- : Care should be taken with these metrics. Whgn 0 , the
Tg-dt  Tyq Ty +dt time net is over-damped and the net delay is bounded by the

FIGURE 3: Ideal middle and far end impulse response. Elmore delay [5]. Wherlu?) «0 , the net is under-damped and



the net delay is not predictable becapse< 0. However, Although the 3rd central moment is independent of rise

when the net is critically damped, =0 3> 0 at all points  time, the skew, (8), depends on rise time since it is a measure

on the net, and net delay is approximately given by m. of the symmetry of a probability density function. When an
There are net topologies for which we cannotisgt 0 RLC net has minimal ringing, skew will be small at all points

and, > 0 at all points using series termination alone. Thisn the net and the minimum valued3fwill be commensurate

metric is indicating that for nets with large discontinuities andith the variance of the input rise time.

stubs, critical damping requires additional parameters. Adding

more termination (e.g. RC termination), or adjusting the net V. RLC SynTHESIS

topology, or changing the dr_|ver rse t|m_e can be used 1o Selrhe approach proposed here is to minimize the skew for all
M3 = 0 andyl,> 0. Here we W'l.l consider rise t_|me asa SeconHodes with the smallest possible rise time, thereby allowing
|n(_jependent parameter to adjust these metrics, and hence’t?%’fastest possible signal. Since the variance is smallest at the
minate the net. extremities of the net, we first minimizg; at the farthest
point from the source. Therefore, step one is to compute the
source resistance for which the 3rd central moment at the far-
When the unit step input is replaced with a saturated utitest point from the source is zero. If the line is lossiegs,
ramp input, these “statistical” based metrics can be extendeghce skew, will be zero at all points along the line. Although
further. In [2], the distribution function,(8, of the sum of this condition ensures the chosen resistance will damp out the

IV. Rise Tive ErrecTs onPrecebing METRICS

two independent variables is shown to be given by aggregate line reflections as rapidly as possible, it does not
o . guarantee monotonic response along the net.

F(x) = Fl(x_z) dF2(z) = FZ(X_Z) dpl(z) 12) Large Qiscoptir?uities and excessive stub _Iength; ineviFany

—o —oo produce line ringing that cannot be constrained with a single

. e . source termination value. Therefore, although the signal is
where f(x) and k() are the respective distribution funCtlonSreachin its final value as fast as possible, the signal can be
of the two independent variables. Furthermore, the probabilit 9 P ’ 9

density function, (), of the distribution function (k) is given ¥r|t|cally damped” only by adjusting either the mpgt rse-
: - . time or the RLC net features to compensate for the discontinu-
by the convolution of {{x) and (x), the probability density

functions of the distribution functions & and K(x). ities present in such line topologies. When the settling time is

Because the two variables are independent, the result[aonqg’ ¢* is small or even negative (since h(t) in not really a

mean, variance, and 3rd central momen{xfi¢ given by the probability density function).

) ?’herefore, step two in our procedure is to compute the max-
sums of the means, variances, and 3rd central moments. 0 o
£,00 and b(x). imum source transition rate for the unaltered net. We propose

Since the circuit response to a saturated unit ramp has Eﬁat the output response rise time must be commensurate with

€. O . . o
€ input rise time. Using Elmore’s observation that rise time
same form as (12),

is proportional to the standard deviation, we fom@pampin

o (15) to satisfy the following relationship:
Vramp(t) = [ re(t=T) dVStep(T) , (13) 5 )
- o = | 6%tept o > —(a 1) 17)
it can also be interpreted “statistically”. In this interpretation, ramp steP™ 12 12

the saturated rampy,ft), is the distribution function of a uni-
form probability density function of heightt, and width . X )
The mean, variance, and 3rd central moments for a unifofi@mple, unbalanced RLC trees require a langéan simple
probability density function of this height and width aréjalsy chain pets.) When the source transition rate has be_e-n de-
(1/2)1,, (1/12 12, and O respectively. Therefore, the ef9raded to this maximum rate, the waveform response will be
aarly monotonic and net delay will be givenrny + o

where 0 <a <1 anda is a function of the net topology. (For

fect of a non-zero input rise time on the mean, variance, afl

3rd central moment is as follows:
VI. ExampLES

M ramp = mlstep+I2—r (14) Six variation§ of the three drop net_ in Fig.1 are analyzed
here. These six examples variously illustrate the effects of
) ) Trz source Igcation and gapacitor plggement and value on optir_nal
O ramp = O stept P (15) termination and maximum transition rate for low loss multi-
drop bidirectional nets.
H3 ramp = M3 step (16) In the first example the source was locatedyar@ the cir-

cuit was analyzed for its optimal termination by setting the
skew to zero at £ Referring to Fig.1, the transmission line



parameters and capacitor values were as follows5@Q, moved to G. The results of this analysis are shown in Fig.6
R=0.1Q/mm, L=0.335nH/mm, C=0.134pF/mm,;=b0mm, where the 2nd and 3rd central moments at@,and G are
d,=25mm, and &C,=C,=3pF. The 2nd and 3rd centralplotted as a function of RAgain the 3rd central moments are
moments at ¢; C;, and G are shown as a function of R very similar for all values of RWhenR_=21Q , the 3rd cen-
Fig.4. Because the line is relatively low-loss, the 3rd centrasl moment is zero at the end of the line (which 4srCthis
moments are very similar for all values of Bnd when example). The 2nd central moment however, is negativg at C
R,=35Q, the 3rd central moment for the end is zero. The sewhenR_=21Q . This indicates that the waveform response at
ond central moments are all positive at this termination valu€y will exhibit considerable ringing when the net is driven
thereby satisfying (17) and indicating that a step input can béth a unit step input. This can be expected for this example
propagated without undue ringing. By usingando for this  since we have a stub which is half the size of the main line.
termination value in our delay equatiom; +o , unit stepJsing (17) witha = 0.8, a rise time of 1.28 ns is required to
response delays of 1.34, 1.01, and 0.75 ns were predicted frdamp the signal ringing due to this long stub. Usin@nuo
source to G source to ¢ and source to £ Notice that, as for this source resistance and rise time in our delay equation,
expected, the maximum delay is aj dile to the reflected unit ramp response delays of 1.34, 1.59, and 1.53 ns were pre
wave switching. dicted from source to & source to ¢ and source to £

The time domain waveforms for this example are shown nespectively.
Fig.5. Analyzed using HSPICE Fig.5 depicts the output Fig.7 depicts the output response of the circuit after a unit
response of the circuit in Fig.1 after a unit step input has bestep input was applied at €hrough a series resistance of 21
applied at @through a series resistance of33he marks at Q. Fig.8 depicts the output response when the unit step was
1.34,1.01, and 0.75 ns on the time domain waveform indicatplaced with a unit ramp with an 1.28 ns rise time. The wave-
our unit step delay predictions. These waveforms show veigrms in Fig.8 show little ringing indicating the line was prop-
little overshoot indicating the line was properly terminatecerly terminated and the output responseds @pproximately
All waveforms reach approximately 50% of their final valu&0% of the input rise time. But are the waveforms in Fig.8 any
at their predicted delays. faster than the waveforms Fig.7?

In the second example the transmission line parameters and he issue here is settling time [1], and some heuristics are
capacitor values were held constant, and the source weded to answer this question. Settling time is most com-

monly equated with the last crossing of the 90% point. When

g 300.0 | ® 800 waveform response is measured to this criteria, the 1.28 ns
z 1500 | % rise time improves net delay at both &d G. The marks at
. Q . . . .
g E 400 1.34, 1.59, and 1.54 ns on the time domain waveform in Fig.8
o
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FIGURE 6: Third and second central moment vs. series termination
- resistance, R for three drop net with source &f.C
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step input.



indicate our delay predictions. All waveforms reach approxpredicted the expected result, (i.e. the optimal source resis-
mately 75% of their final value at their predicted delays. tance increases while the minimum rise time decreases).
In the final four examples, the source was again located at

C,, but the line was made lossless, total line length d was R - B
. . s @ minimum Rs = Zog
increased to 10 cm, and the values and locationg, &,Gnd skew=0 rise-time (dist. net)
C, were varied. Optimal termination and minimum rise time 5000 00T 5000
was determined by setting the skew to zero and satisfying (17) 91=%=5cm & C's=0pF ' ' '
at G,. Because of the simple daisy chain net configuration, a dy=d,=5cm & C's=5pF 324Q 1.31ns 343Q
smaller value ofx was used, (i.ea = 0.5). To contrast these

. ! . . . _ _ e 29.0Q 1.67 ns 343Q
results against a more conventional metric, an effectiye®1=2cm. ¢=8cm & C's=5pF
impedance was also evaluated assuming the total lumpeg _gcm g=2cm & C's=5pF 348Q 1.10ns 3430
capacitance, §C,+C,, was evenly distributed along the net. TABLE 1. Optimal termination characteristics for lossless three drop net

(Cl T C2 T CS) in Fig.1 when capacitor values and placement are varied.
Zeff = L/|:C+——-—d ] (18)
VII. Concrusions anp Future Work

T_he OP“”‘"?" source resistar_1ces and minir_num_acceptable ”S‘Tfec interconnect design uses well-established metrics for
tlm_es predicted by_our metric are summarized in Tab_le L. TQgtimating the signal delay. In contrast, RLC transmission
(’.pt”‘."a' source re5|stancgs predicted by the conventional Miles synthesis for interconnect routing has no similar corre-
”CI' ("E' F;%:Ze“)’ are ?ISO ECIUdhed‘ loaded. both s(fonding estimate for delay. This paper presents a technique
. t ed_lrstdexamp &, WI en the net_was un oal ed, both mel; determining the conditions of critical damping for series
rI[ICS phre icte an th'mj‘ sour(,;e hresi!stan(():e value equ]J@l to érminated transmission line nets, and subsequently for esti-
the ¢ ara_ctenstlc Impedance of the Ine. Lur m_etnc, Ow_ev?ﬁ’ating net-delays in terms of the circuit moments. This metric
also predicted the net could be saf_ely driven with a step NPHlims the basis for a delay-estimation tool to be used at the
In the second example, the capamt(_)@s(q and G were Se_t core of a transmission line interconnect router.

to 5 pF, a_nd g:wa; Iocatt_ad_exactly in the center (_)f the line. Future work will examine more complicated net topologies
Both metrics predicted similar optimal source resistance V@(Jch as lossy multi-drop RLC nets, and other termination

ues, and thege values were, as expected, Ies_s@l‘@n_anet- schemes such as parallel and RC termination will be consid-
ric also predicted that the line should be driven with a nogp,

zero input rise-time to reduce undue line ringing. red.
In the third and fourth examples; @as first moved closer

to the source, and then moved closer to the end of the line.

The conventional metric, because it does not discriminate lo&# H-B-Bakoglu.Circuits, Interconnections, and Packaging for VL/&id-
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the expected result [7], (i.e. the optimal source resistance 1948.
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FIGURE 8: Time-domain waveforms for the example in Fig.6 with 1.28
ns ramp input along with delay estimates.



