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Abstract—RLC transmission line synthesis is a difficult prob-
lem because minimal net delay cannot be achieved or accurately
predicted unless: 1) a termination scheme is chosen and properly
implemented, and 2) output driver transition rates are con-
strained at or below the net’s capability. This paper describes a
method to concurrently find, for any RLC net, an optimal termi-
nation value, a maximum source transition rate, and an approxi-
mate net delay using the first few response moments. When
optimal termination is accomplished and transition rates do not
exceed the capabilities of the net, the resulting delay metrics are
an interesting extension of the popular Elmore delay metric for
RC interconnects. The task of physical RLC interconnect design
is facilitated by the ease with which these first few moments are
calculated for generalized RLC lines.

I. INTRODUCTION

Because CMOS can easily provide balanced push-pull buff-
ers and system power limits are being stretched, source termi-
nation has become the method of choice for transmission line
control [7]. Sensing this trend, both the circuit and packaging
communities are tailoring their respective products to provide
variable source termination. MCM technologists propose inte-
grating source terminating resistors in their MCM designs.
Circuit designers routinely offer chips with programmable
output buffers.

In this paper, a synthesis procedure for RLC nets is pro-
posed that concurrently determines the optimal series termina-
tion resistance and the maximum source transition rate while
estimating the subsequent net delay. Because this procedure
“critically damps” the circuit response along the net, it thereby
minimizes system power and maximizes signal noise immu-
nity. And since optimal termination values, maximum transi-
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tion rates, and approximate net delays can be concurrently
computed with ease, this procedure is well suited for use in
placement and routing or transmission line synthesis tools.

II. THE SYNTHESIS DILEMMA

A transmission line synthesis tool might be used to itera-
tively place components and simultaneously route and size the
RLC wiring. Viability of a placement and its interconnect
routing would be based on how well thermal requirements and
net delay objectives were met. The latter presents a dilemma.

Because excessive settling time increases delay in some
sense, both under-damping and over-damping adversely
impact delay. RLC interconnect delays cannot be accurately
predicted unless a termination scheme is chosen and properly
implemented. Furthermore, ideal termination values in RLC
interconnects where topology, line parameters, load values,
and rise times can all vary, are unique to every net. (Which is
why MCM technologists have proposed imbedding series
resistors in their packages.) A synthesis tool must, therefore,
concurrently and efficiently determine optimal termination
value, maximum source transition rate, and net delay.

III. OPTIMAL TERMINATION USING CIRCUIT MOMENTS

Two methods for determining optimal termination using
circuit moments have already been proposed for point-to-
point RLC nets [6,8]. Both methods attempt to critically damp
the circuit response at the end of the line and both use circuit
moments to arrive at the solution. After a brief introduction of
circuit moments, we will review [8].

The moments of a time-domain waveform, h(t), are classi-
cally defined via the Laplace transform as follows:

(1)

where mk are the Maclaurin series coefficients of H(s) which
are related to the moments of h(t):

(2)
While the concepts of moments stem from the fields of sta-

tistics and mechanics, they have been successfully applied to a
number of problems. In one paper of particular interest,
Elmore [3] computed the approximate delay and rise time of
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the step response using first and second moments of the
impulse response.

 A. End of Line Waveform Matching

Waveform matching to find optimal termination was
recently proposed in [8]. It can be best explained by first com-
paring the input and output response of a perfectly series ter-
minated, unloaded, lossless, point to point net. Consider the
multidrop daisy chain net shown in Fig.1, where the line is
lossless, the source is located at C0, the length of the line d =
(d1+d2), Rs = Z0, and C0 = C1 = C2 = 0.

For this ideal case, the output response at the end of line
identically matches the input response when the latter is
shifted in time by the time of flight of the line. In the Laplace
domain representation, this ideal matching can be stated as

(3)

where H(s) represents the transfer function at the end of the
line, d is the length of the line, and L and C are the per unit
length inductance and capacitance.

When applying this concept to lossy, loaded lines in [8],
they attempt to match the transfer function H(s) to some
unknown delay. The first term in (3) is replaced with ,
where Td is the unknown net delay to the end of the line.
Expanding both  and H(s) in terms of Maclaurin series
and collecting like coefficients of s yields

(4)

Recognizing that the first term vanishes because m0 = 1 for
lines with dc gain of 1, they then solve for Rs and Td such that
the next two terms also vanish. The first three terms of the far
end response, H(s), now match the first three terms of a pure
delay shift, . For an input ramp signal it is shown that
the far end circuit response jumps onto the steady state
asymptote as quickly as possible, while the transient response
decays to zero as rapidly as possible (critically damping).

The work in [8] can also be interpreted “statistically”. Just
like Elmore pointed out in [3], we can interpret the impulse
response h(t), like a probability density function. If H(s) were
to match a pure delay, , then h(t) would be given by

. The mean of h(t) would be Td, and the cumulative
area and thecentral moments of h(t) would be as follows:

FIGURE 1:   Series terminated three drop daisy chain net.
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End of line waveform matching accomplishes these goals
in a limited way. The cumulative area of h(t) is one, and the
1st and 2nd central moments are shaped to zero. The first and
second central moments are more commonly known as the
mean, m1, and the variance,σ2, respectively, where

. (7)

One interpretation of [8] is that h(t) is forced to be a response
with zero variance and a mean equal to a pure delay.

B. Shaping Central Moments about the Mean

The approach proposed here attempts to extend the idea in
[8], and it’s link to Elmore’s work one step further. When low-
loss, lightly loaded point-to-point and daisy-chain nets are
perfectly series terminated, all points along the net monotoni-
cally rise to one half their final value as the incident wave
passes. The reflected wave completes the switching by charg-
ing these points to their final value.

While the impulse responses at all points along the net are
different, they all share one common characteristic. When a
low-loss, lightly loaded transmission line is perfectly series
terminated, all impulse responses are symmetric. Further-
more, all impulse responses are symmetric about the same
mean. This is best illustrated with an example.

Consider the case of a three drop daisy chain net driven
from one end of the net (Fig.1 with d=d1+d2, and the source Rs
is located at C0). If this line were lossless, unloaded (i.e. C0 =
C1 = C2 = 0), and perfectly series terminated (i.e. Rs = Zo), the
middle and far end step responses would be like that shown in
Fig.2. The far end response would identically match the input
response when the latter were shifted in time by ,
the time of flight to the end of the line. The middle response
would step up to its final value in two equal increments. The
first step would occur at time Td - dt, where dt is the time of
flight distance between the middle and far ends. The second
step would occur at time Td + dt.
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FIGURE 2:   Ideal middle and far end step response.
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The middle and far end impulse responses would be like
that shown in Fig.3. If we treat these responses like probabil-
ity density functions, the middle and far end responses share
two characteristics. They’re both symmetric and they’re both
centered about a mean of Td.

The symmetry of a probability density function is measured
by its skew [2], which is given by

(8)

whereµ3 is the 3rd central moment andσ is the standard devi-
ation. The 3rd central moment of a probability density function
is defined by (6) with k=3 and Td =m1, and reduces to a simple
algebraic expression involving m1, m2, and m3:

(9)

Because a symmetric probability density function has zero
skew, we will apply this symmetry measure to determine opti-
mal series termination for point-to-point and daisy-chain nets.
That is, we will solve for the parameters such that .
Although, this paper focuses entirely on series terminated nets
where reflected wave switching is the objective, these tech-
niques can be applied equally well to parallel terminated nets,
where incident wave switching is the objective.

While setting the numeratorµ3 to zero is the primary goal
of this technique, the role of denominatorσ3 is also important.
In statistics, probability density functions are strictly non-neg-
ative, and therefore, the 2nd central moment,µ2=σ2, is always
positive. When the step response of a network is monotonic,
the network impulse response, h(t), is a non-negative function,
and so,σ ≥ 0. Furthermore, as Elmore [3] observed, the step
response rise time, , is proportional toσ. Because of this
relationship to rise time and line ringing, this technique will
invoke the additional restriction thatσ be strictly positive real
at all points along the net. Although, input rise time will be
used throughout this paper as the means of controllingσ,
other techniques such as RC termination are equally effective.

Furthermore, as the next sections will show,σ is very use-
ful in predicting RLC net delays and determining maximum
transition rates. We will also show thatσ2 can be used withµ3

to determine a series termination design point with minimal
net delay.

FIGURE 3:   Ideal middle and far end impulse response.
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In lossless LC trees, the following properties can be shown
regarding this metric. Firstµ3 is independent of position. The
3rd central moments at the ends of the net are identical to the
3rd central moments at all other points along the net. Second,
µ3 is of the form

(10)

Hence, there’s only one non-zero source resistance value for
which µ3 equals zero.

Clearly lossless source terminated LC trees are under-
damped when the source resistance is small, and over-damped
when the source resistance is large. The source resistance that
critically damps the net is somewhere in between, and the 3rd
central moment must change sign between these extremes.

Lossy RLC nets can be self terminated and various
researchers have computed the optimal self termination for
lossy point-to-point RLC nets [4,6]. Their results for optimal
line resistance range from  to  when the net is
unloaded. Our metric (i.e. the line resistance at which the 3rd
central moment at the end of the line vanishes), predicts an
optimal line resistance of .

III. D ELAY ESTIMATION USING CIRCUIT MOMENTS

When low-loss, lightly loaded point to point or daisy chain
nets have been optimally series terminated, we propose the
following estimate for the RLC net delay:

(11)

We select this metric based on the knowledge that m1 + σ
bounds the median of any probability density function [2].

As an example, referring to the step response in Fig.2, it is
obvious that the delay from the source end to the far end and
middle are Td and Td + dt respectively. Using (2) to calculate
m1 and m2 in Fig.3, the far end values are Td and  while
the middle point values are Td and . The variances,
are therefore, zero and dt2 for far end and middle respectively.
If we compute our net delay as prescribed in (11), this esti-
mate yields net delays of Td and Td+dt for the far end and mid-
dle respectively. These values match the obvious
interpretation of Fig.2, therefore the delay metric in (11) is
exact for this ideal case.

While real point-to-point and daisy-chain nets will not
exhibit perfectly symmetric impulse responses, the intent of
reflected wave switching on these nets is to achieve a criti-
cally damped monotonic response at the far end while the
points along the line step up to their final value in two equal
increments. And when this condition is achieved, the 3rd cen-
tral moments at all points along the line become negligibly
small and m1 + σ provides a good upper bound estimate of net
delay, (providedµ2 is greater than zero).

Care should be taken with these metrics. When , the
net is over-damped and the net delay is bounded by the
Elmore delay [5]. When , the net is under-damped and
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the net delay is not predictable becauseµ2 < 0. However,
when the net is critically damped, ,µ2 > 0 at all points
on the net, and net delay is approximately given by m1 + σ.

There are net topologies for which we cannot set
and µ2 > 0 at all points using series termination alone. This
metric is indicating that for nets with large discontinuities and
stubs, critical damping requires additional parameters. Adding
more termination (e.g. RC termination), or adjusting the net
topology, or changing the driver rise time can be used to set

 andµ2 > 0. Here we will consider rise time as a second
independent parameter to adjust these metrics, and hence, ter-
minate the net.

IV. RISE TIME EFFECTS ONPRECEDINGMETRICS

When the unit step input is replaced with a saturated unit
ramp input, these “statistical” based metrics can be extended
further. In [2], the distribution function, F(x), of the sum of
two independent variables is shown to be given by

(12)

where F1(x) and F2(x) are the respective distribution functions
of the two independent variables. Furthermore, the probability
density function, f(x), of the distribution function F(x) is given
by the convolution of f1(x) and f2(x), the probability density
functions of the distribution functions F1(x) and F2(x).
Because the two variables are independent, the resultant
mean, variance, and 3rd central moment of f(x) is given by the
sums of the means, variances, and 3rd central moments of
f1(x) and f2(x).

Since the circuit response to a saturated unit ramp has the
same form as (12),

(13)

it can also be interpreted “statistically”. In this interpretation,
the saturated ramp, rsat(t), is the distribution function of a uni-
form probability density function of height  and width .
The mean, variance, and 3rd central moments for a uniform
probability density function of this height and width are

 and 0 respectively. Therefore, the ef-
fect of a non-zero input rise time on the mean, variance, and
3rd central moment is as follows:

(14)
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Although the 3rd central moment is independent of rise
time, the skew, (8), depends on rise time since it is a measure
of the symmetry of a probability density function. When an
RLC net has minimal ringing, skew will be small at all points
on the net and the minimum value ofσ2 will be commensurate
with the variance of the input rise time.

V. RLC SYNTHESIS

The approach proposed here is to minimize the skew for all
nodes with the smallest possible rise time, thereby allowing
the fastest possible signal. Since the variance is smallest at the
extremities of the net, we first minimizeµ3 at the farthest
point from the source. Therefore, step one is to compute the
source resistance for which the 3rd central moment at the far-
thest point from the source is zero. If the line is lossless,µ3,
hence skew, will be zero at all points along the line. Although
this condition ensures the chosen resistance will damp out the
aggregate line reflections as rapidly as possible, it does not
guarantee monotonic response along the net.

Large discontinuities and excessive stub lengths inevitably
produce line ringing that cannot be constrained with a single
source termination value. Therefore, although the signal is
reaching its final value as fast as possible, the signal can be
“critically damped” only by adjusting either the input rise-
time or the RLC net features to compensate for the discontinu-
ities present in such line topologies. When the settling time is
long, σ2 is small or even negative (since h(t) in not really a
probability density function).

Therefore, step two in our procedure is to compute the max-
imum source transition rate for the unaltered net. We propose
that the output response rise time must be commensurate with
the input rise time. Using Elmore’s observation that rise time
is proportional to the standard deviation, we forceσ2

ramp in
(15) to satisfy the following relationship:

(17)

where 0 <α < 1 andα is a function of the net topology. (For
example, unbalanced RLC trees require a largerα than simple
daisy chain nets.) When the source transition rate has been de-
graded to this maximum rate, the waveform response will be
nearly monotonic and net delay will be given by .

VI. EXAMPLES

Six variations of the three drop net in Fig.1 are analyzed
here. These six examples variously illustrate the effects of
source location and capacitor placement and value on optimal
termination and maximum transition rate for low loss multi-
drop bidirectional nets.

In the first example the source was located at C0 and the cir-
cuit was analyzed for its optimal termination by setting the
skew to zero at C2. Referring to Fig.1, the transmission line
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parameters and capacitor values were as follows: Z0=50 Ω,
R=0.1Ω/mm, L=0.335nH/mm, C=0.134pF/mm, d1=50mm,
d2=25mm, and C0=C1=C2=3pF. The 2nd and 3rd central
moments at C0, C1, and C2 are shown as a function of Rs in
Fig.4. Because the line is relatively low-loss, the 3rd central
moments are very similar for all values of Rs and when

, the 3rd central moment for the end is zero. The sec-
ond central moments are all positive at this termination value,
thereby satisfying (17) and indicating that a step input can be
propagated without undue ringing. By using m1 andσ for this
termination value in our delay equation, , unit step
response delays of 1.34, 1.01, and 0.75 ns were predicted from
source to C0, source to C1, and source to C2. Notice that, as
expected, the maximum delay is at C0 due to the reflected
wave switching.

The time domain waveforms for this example are shown in
Fig.5. Analyzed using HSPICE*, Fig.5 depicts the output
response of the circuit in Fig.1 after a unit step input has been
applied at C0 through a series resistance of 35Ω. The marks at
1.34, 1.01, and 0.75 ns on the time domain waveform indicate
our unit step delay predictions. These waveforms show very
little overshoot indicating the line was properly terminated.
All waveforms reach approximately 50% of their final value
at their predicted delays.

In the second example the transmission line parameters and
capacitor values were held constant, and the source was

*HSPICE, Version H92 from Meta-Software, Inc.

Rs 35Ω≈

m1 σ+

FIGURE 4:    Third and second central moments vs. series termination
resistance, Rs, for three drop net with source at C0.
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FIGURE 5:   Time-domain waveforms for the example in Fig.4
along with delay estimates.
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moved to C1. The results of this analysis are shown in Fig.6
where the 2nd and 3rd central moments at C0, C1,and C2 are
plotted as a function of Rs. Again the 3rd central moments are
very similar for all values of Rs. When , the 3rd cen-
tral moment is zero at the end of the line (which is C0 in this
example). The 2nd central moment however, is negative at C0
when . This indicates that the waveform response at
C0 will exhibit considerable ringing when the net is driven
with a unit step input. This can be expected for this example
since we have a stub which is half the size of the main line.
Using (17) withα = 0.8, a rise time of 1.28 ns is required to
damp the signal ringing due to this long stub. Using m1 andσ
for this source resistance and rise time in our delay equation,
unit ramp response delays of 1.34, 1.59, and 1.53 ns were pre-
dicted from source to C0, source to C1 and source to C2
respectively.

Fig.7 depicts the output response of the circuit after a unit
step input was applied at C1 through a series resistance of 21
Ω. Fig.8 depicts the output response when the unit step was
replaced with a unit ramp with an 1.28 ns rise time. The wave-
forms in Fig.8 show little ringing indicating the line was prop-
erly terminated and the output response at C0 is approximately
80% of the input rise time. But are the waveforms in Fig.8 any
faster than the waveforms Fig.7?

The issue here is settling time [1], and some heuristics are
needed to answer this question. Settling time is most com-
monly equated with the last crossing of the 90% point. When
waveform response is measured to this criteria, the 1.28 ns
rise time improves net delay at both C0 and C2. The marks at
1.34, 1.59, and 1.54 ns on the time domain waveform in Fig.8

Rs 21Ω≈

Rs 21Ω≈

FIGURE 6:    Third and second central moment vs. series termination
resistance, Rs, for three drop net with source at C1.
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FIGURE 7:   Time-domain waveforms for example in Fig.6 with unit
step input.
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indicate our delay predictions. All waveforms reach approxi-
mately 75% of their final value at their predicted delays.

In the final four examples, the source was again located at
C0, but the line was made lossless, total line length d was
increased to 10 cm, and the values and locations of C0, C1 and
C2 were varied. Optimal termination and minimum rise time
was determined by setting the skew to zero and satisfying (17)
at C2. Because of the simple daisy chain net configuration, a
smaller value ofα was used, (i.e.α = 0.5). To contrast these
results against a more conventional metric, an effective
impedance was also evaluated assuming the total lumped
capacitance, C0+C1+C2, was evenly distributed along the net.

(18)

The optimal source resistances and minimum acceptable rise
times predicted by our metric are summarized in Table 1. The
optimal source resistances predicted by the conventional met-
ric, (i.e. Rs=Zeff), are also included.

In the first example, when the net was unloaded, both met-
rics predicted an optimal source resistance value equal to Z0,
the characteristic impedance of the line. Our metric, however,
also predicted the net could be safely driven with a step input.
In the second example, the capacitors C0, C1 and C2 were set
to 5 pF, and C1 was located exactly in the center of the line.
Both metrics predicted similar optimal source resistance val-
ues, and these values were, as expected, less than Z0. Our met-
ric also predicted that the line should be driven with a non-
zero input rise-time to reduce undue line ringing.

In the third and fourth examples, C1 was first moved closer
to the source, and then moved closer to the end of the line.
The conventional metric, because it does not discriminate load
placement, failed to predict a change in the optimal source
resistance value. Our metric, however, predicted different
resistance values and different minimum transition rates.
When C1 was moved closer to the source, our metric predicted
the expected result [7], (i.e. the optimal source resistance
decreases while the minimum rise time increases). When C1
was moved to the opposite end of the net, our metric again

FIGURE 8:   Time-domain waveforms for the example in Fig.6 with 1.28
ns ramp input along with delay estimates.
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predicted the expected result, (i.e. the optimal source resis-
tance increases while the minimum rise time decreases).

VII. CONCLUSIONS AND FUTURE WORK

RC interconnect design uses well-established metrics for
estimating the signal delay. In contrast, RLC transmission
lines synthesis for interconnect routing has no similar corre-
sponding estimate for delay. This paper presents a technique
for determining the conditions of critical damping for series
terminated transmission line nets, and subsequently for esti-
mating net-delays in terms of the circuit moments. This metric
forms the basis for a delay-estimation tool to be used at the
core of a transmission line interconnect router.

Future work will examine more complicated net topologies
such as lossy multi-drop RLC nets, and other termination
schemes such as parallel and RC termination will be consid-
ered.
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Rs @
skew=0

minimum
rise-time

Rs = Zeff
(dist. net)

d1=d2=5cm & C’s=0pF 50.0 Ω 0.0 ns 50.0 Ω

d1=d2=5cm & C’s=5pF 32.4 Ω 1.31 ns 34.3 Ω

d1=2cm, d2=8cm & C’s=5pF 29.0 Ω 1.67 ns 34.3 Ω

d1=8cm, d2=2cm & C’s=5pF 34.8 Ω 1.10 ns 34.3 Ω

TABLE 1. Optimal termination characteristics for lossless three drop net
in Fig.1 when capacitor values and placement are varied.


