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Abstract—Differential techniques are widely used in 

communication and sensor systems, as these techniques have 

been shown to improve the performance. This paper shows how 

differential sensing of permittivity can be conducted in a simple 

way. For that purpose, a microstrip line loaded with a pair of 

stepped impedance resonators is used in two different resonator 

connections: parallel and cascade. Each resonator is individually 

perturbed dielectrically so that: (i) when the two individual 

permittivities are identical, the structure exhibits a single 

resonance frequency; (ii) when the permittivies are different, 

resonance frequency splitting occurs, giving rise to two 

resonances (all these resonances are seen in the form of 

transmission zeros). The two sensing approaches are successfully 

validated through electromagnetic simulations and experiments. 

By virtue of a differential measurement, robustness against 

changing ambient factors that may produce sensor 

miscalibration is expected. 

 
Index Terms— differential measurement, dual-mode 

resonator, microstrip, microwave sensor, stepped-impedance 

resonator. 

I. INTRODUCTION 

ermittivity sensors are prominent electromagnetic sensors 

whose development begun in the mid-twentieth century  

[1],[2]. These sensors are highly versatile, as the measurand 

(the physical quantity of interest) can be either the permittivity 

or another physical variable directly related to it. 

 
This work was supported by MINECO-Spain (project TEC2013-40600-R), 

Generalitat de Catalunya (project 2014SGR-157), Institució Catalana de 

Recerca i Estudis Avançats (who awarded Ferran Martín), and by FEDER 

funds. Lijuan Su acknowledges the China Scholarship Council (CSC) for the 

grant 201306950011. This work was also partly supported by LOEWE STT. 

J. Naqui, L. Su, J. Mata-Contreras and F. Martín are with 

GEMMA/CIMITEC, Departament d’Enginyeria Electrònica, Universitat 

Autònoma de Barcelona, 08193 Bellaterra, Spain (e-mail: 

Ferran.Martin@uab.es). 

C. Damm, A. Wiens and R. Jakoby are with the Technische Universität 

Darmstadt, Merck str. 25, Darmstadt 64283, Germany. 

C. Damm, A. Wiens, and R. Jakoby are with the Institute for Microwave 

Engineering and Photonics. Technische Universitaet Darmstadt (Merckstrasse 

25) (64283 Darmstadt, Germany). 

 

 Nowadays, there are multiple technologies available to 

implement permittivity sensors. Nevertheless, the focus here is 

restricted to sensors consisting of passive planar transmission 

lines and/or resonators. In the last few years, many planar 

resonator-based permittivity sensors, where frequency shift is 

typically the electrical sensing variable, have been reported. 

These permittivity sensors are aimed at many topics, including 

material characterization [3]-[5] (this is indeed the context of 

the sensors proposed in this work), analysis of organic tissue 

[6][7], microfluidics [8]-[11], biosensing [12]-[16], or 

environmental factors [17]. Other planar permittivity sensors 

implemented by means of artificial transmission-lines have 

also been proposed [18]-[20].  

A general drawback of resonance-based sensors is that, as 

permittivity depends on environmental conditions (e.g., 

temperature), the resonance frequency can be unintentionally 

shifted by spurious effects [2],[17]. As is well known, ideal 

sensors are designed to be linear or linear to some simple 

mathematical function with the measurand. However, sensors 

may be sensitive to other physical quantities, an effect 

designated as cross-sensitivity that entails measurement errors 

(miscalibration). Common cross-sensitivities are those derived 

from ambient factors; in sensor design, environmental stability 

is usually a key point and cannot be ignored [21],[22]. 

Regarding permittivity sensors, it can be argued that 

environmental drifts should be defined in terms of sensitivity 

rather than cross sensitivities. Nevertheless, if ambient factors 

are uncontrolled, the drifts should be indeed categorized into 

cross sensitivities. Additionally, the resonance frequency is 

generally dependent not only on the permittivity of interest, 

but also on the permittivity of the substrate/s necessary to 

support the resonant element [3]-[17]; this dependency is 

clearly a cross sensitivity.  

In order to prevent or reduce systematic errors due to cross 

sensitivities as much as possible, several strategies can be 

utilized, such as compensation techniques, or the use of 

environmentally stable materials. Another typical solution to 

deal with changing environmental factors is through 

differential measurements, the one considered here. 

Differential measurements are robust against variable ambient 
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conditions provided that these conditions perturb in the form 

of a common-mode stimulus. Generally, two sensors are used 

to construct a differential sensor, both of them being subjected 

to the same external factors [18]-[22]; an ideal sensor should 

be capable of conducting measurements regardless of the 

surrounding ambient factors. 

Depending on the application, differential measurements 

can be used with sensing or comparison purposes. A 

differential sensor measures the difference in permittivity (or 

one of the two permittivities, provided that the other one is 

known), whereas a comparator (differential by definition) can 

be used to inquire about whether two permittivities are the 

same or not. Permittivity comparators may be of interest, for 

instance, for the detection of defects or alteration of a SUT 

(sample under test) by comparing it to a well-known 

reference.  

A differential permittivity sensor based on amplitude levels 

by means of an interferometer setup was reported in [18]-[20]. 

In [23] the authors presented a differential sensor/comparator 

consisting of a transmission line loaded with a pair of identical 

shunt-connected stepped-impedance resonators (SIRs) 

connected to the same junction. Instead of duplicating and 

combining sensors in pairs to construct a differential sensor, 

pairs of resonators connected to a single signal interface (a 

single transmission line) were employed. Because of the SIR 

semi-lumped behavior, the size was compact, and electric 

energy was concentrated in a small region allowing for small 

SUTs and for low cross sensitivities (if present) related to 

substrate/s. Due to the SIR high Q-factor, high frequency 

discrimination was expected. The sensing principle, 

experimentally validated in the vicinity of 60 GHz, is based on 

resonance frequency splitting derived from symmetry 

perturbation [23]-[25]; there is one or two transmission zeros 

depending on whether the two permittivities are the same or 

not, respectively. However, the inter-resonator coupling was 

seen to degrade considerably the sensitivity and discrimination 

for small differential inputs. 

This work is aimed at expanding the preliminary research 

work conducted in [23], with a view to performing real-time 

differential permittivity measurements. Further analysis for the 

topology proposed in [23] is carried out, and an alternative 

topology based on a transmission line loaded with a cascade 

connection of SIRs to face with the drawback of the original 

topology is proposed. Equivalent circuit models are proposed 

and validated, from which the theoretical sensitivity is 

inferred. Experimental data applying material permittivity 

perturbation is reported to validate the potentiality of the 

proposed approaches. As will be proven, the new proposed 

structure exhibits significant benefits against the original one 

when the individual permittivities attain close values; higher 

sensitivity, higher discrimination, and narrower bandwidth of 

operation.  

This paper is organized as follows. Section II is devoted to 

show the two considered physical sensing topologies, and to 

their modeling by equivalent circuits. In Section III, the 

capabilities of these structures to operate as a differential 

sensor or a comparator are investigated by analyzing the 

sensitivity and the discrimination, respectively. Next, Section 

IV reports experimental verifications of the sensing 

approaches. Finally, the main conclusions are drawn in 

Section V.  

II. TOPOLOGIES AND EQUIVALENT CIRCUIT MODELS 

This section analyzes transmission lines loaded with a pair 

of shunt-connected stepped impedance resonators (SIRs) in 

two different topologies; one with the SIRs loaded at the same 

junction, and the other one by cascading the SIRs. Two SIRs 

are used to perform a real-time (i.e., through a single 

measurement) differential measurement. Furthermore, the two 

SIRs are identical with the purpose of rejecting as much as 

possible common-mode stimulus. Equivalent circuit models 

including independent and arbitrary capacitive variations in 

the SIRs are presented and validated. Without loss of 

generality, we use microstrip implementation. Losses are 

disregarded throughout this work, eligible approximation 

when dealing with low-loss substrates and SUTs. 

Nevertheless, a method to estimate the loss factor is included 

in the last section.  

A. Microstrip Line Loaded with a pair of parallel SIRs 

The SIR in Fig. 1(a), in shunt connection to a microstrip line 

section, is a semi-lumped resonator [26]. Provided that the two 

sections are electrically small, the behavior of a shunt-

connected SIR may be approximated to that of a shunt-

connected lumped LC resonator. The inductance/capacitance 

of the SIR is essentially determined by the 

inductance/capacitance of the high/low impedance section. 

Consequently, the circuit model depicted in Fig. 1(b) may 

describe accurately a microstrip line loaded with a single SIR. 

The inductance and capacitance of the main host transmission 

line are L and C, respectively, whereas the SIR inductance and 

capacitance are Ls and Cs, respectively. Additionally, for 

sensing purposes, the model takes into account a capacitive 

perturbation, ΔCs, applied to the SIR. According to the circuit 

model of Fig. 1(b), a transmission zero (or notch) appears at 

the angular resonance frequency given by 

 
 0

1
.
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Fig. 1. (a) Typical topology of a SIR-loaded microstrip line, where 
geometrical and electrical parameters are indicated. (b) Equivalent 
circuit model with a capacitive perturbation applied to the SIR.  

(a) 

(b) 
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As a case study a single SIR-loaded line with dimensions 

W = 1.83 mm, l = 6 mm, l1 = l2 = 2.6 mm, w1 = 5.5 mm, and 

w2 = 250 µm and substrate Rogers RO4003C with relative 

permittivity r = 3.38, thickness h = 812.8 µm, and loss 

tangent tan = 0.0021, was considered in [23]. The model was 

validated by circuit simulation of extracted parameters, 

inferred following the systematic procedure reported in [27], 

which is based on a mapping of the scattering parameters 

obtained from full-wave electromagnetic simulation, adapted 

to the considered circuit. The resulting circuit parameters, 

characteristic impedances and electrical lengths were found to 

be: Z0 = 50 Ω, Z1 = 23 Ω, and Z2 = 120 Ω, electrical lengths at 

f0 = 3.83 GHz were βl0 = 45°, βl1 = 21°, and βl2 = 18°, and the 

circuit elements were L = 1.81 nH, C = 0.57 pF, Ls = 2.45 nH, 

and Cs = 0.70 pF (ΔCs = 0). 

In order to verify the modeling of an alteration in the 

resonator capacitance, a shape perturbation was produced in 

[23]. Namely, the length of the wide section of the reference 

resonator was enlarged (+|Δl1|) or shortened (−|Δl1|), with 

Δl1 = ±0.5 mm = ±0.19l1, to increase (+|ΔCs|) or decrease 

(−|ΔCs|) its associated capacitance, respectively. The circuit 

values of these perturbations (±|ΔCs|), with 

ΔCs = ±0.11 pF = ±0.15Cs, were obtained from (1) and the 

transmission zero frequencies inferred from electromagnetic 

simulations. The transmission coefficient of these structures, 

confirmed that the circuit simulations were in good 

accordance with those inferred from electromagnetic solvers 

in [23].  

As expected from (1), any capacitive perturbation may be 

sensed by monitoring the change in the resonance frequency. 

However, a real-time differential measurement of two 

capacitive perturbations cannot be performed by loading a 

transmission line with a single SIR. Therefore, transmission 

lines loaded with pairs of SIRs are necessary. 

Fig. 2(a) shows a microstrip line loaded with a pair of 

identical shunt-connected SIRs placed at the same junction, 

and on opposite sides of the line (parallel configuration). In 

this topology, as was already considered in [23], it is assumed 

that both resonators are individually and simultaneously 

capacitively-perturbed by ΔCsi (i = 1, 2). The lumped element 

equivalent circuit model that was proposed in [23] is 

represented in Fig. 2(b). The SIRs are close together, and 

magnetic coupling between them is accounted for, such a 

coupling being negative since the currents in the mirrored 

SIRs flow in opposite directions (i.e., the currents are anti-

parallel at the junction of the SIRs). This coupling is 

accounted for by the mutual inductance −|M|, the magnetic 

coupling coefficient being [26]  

 .m

s

M
k

L
   (2) 

From the equivalent T-circuit model of a two-port network 

consisting of a pair of coupled inductors, the circuit model 

shown in Fig. 2(c) is inferred. If the capacitive perturbations 

are identical (ΔCs1 = ΔCs2 = ΔCs), the simpler circuit depicted 

in Fig. 2(d) results. 

For balanced (i.e., identical) perturbations, according to the 

circuit of Fig. 2(d), it can be readily noticed that the structure 

exhibits a single transmission zero at 
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In the presence of coupling, the transmission zero simply 

shifts upwards. The resonance frequency in (3) is denoted by 

ωe, in agreement to the nomenclature used in [26] to 

emphasize the presence of an open circuit, under even mode 

excitation, at the symmetry plane of two identical coupled 

resonators.  

 

        
 

 

 
Fig. 2. (a) Microstrip line loaded with a pair of identical SIRs at the 
same junction and on opposite sides. (b) Equivalent circuit model 
with arbitrary capacitive perturbations in the two SIRs. (c) 
Transformed equivalent circuit model. (d) Transformed and 
simplified equivalent circuit model with balanced perturbations.  

In the case with different perturbations (ΔCs1 ≠ ΔCs2), the 

symmetry in the shunt branch of the circuit model is disrupted. 

Although the resulting circuit model is not as simple as with 

balanced perturbations, the resonance condition can be easily 

obtained by setting the shunt branch impedance to zero. This 

gives the resonance frequencies of a circuit network composed 

of two magnetically coupled resonators, given by [26]   
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 (4) 

 

where ωl and ωu denote the lower and upper resonance 

frequencies, respectively. Therefore, a jump discontinuity 

arises due to unbalanced perturbations giving rise to two split 

resonance frequencies. The most relevant aspect is the fact 

that, because of coupling, the two resonances depend on the 

two perturbations, i.e., ωl,u = f(ΔCs1, ΔCs2). Accordingly, each 

resonance frequency cannot be independently tuned by its 

corresponding perturbation. In other words, when one of the 

resonators is perturbed, the two resonance frequencies change 

(c) 
(d) 

(a) 

(b) 
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(the more similar the perturbations, the higher the cross-

dependence). It turns out that a parallel combination of shunt-

connected SIRs can be viewed as a dual-mode tri-section 

(wide-narrow-wide) SIR [28]-[32], where symmetry 

disruption is necessary to invoke the dual-mode behavior [33]. 

Note that multimode resonators are usually utilized to reduce 

the size of circuits, but in the present work a dual resonant 

behavior is used to conduct a differential measurement. 

 

 
 

 

 

 
Fig. 3. (a) Photograph of the considered microstrip lines loaded with 
pairs of parallel SIRs. The lower SIR is perturbed by ±|ΔCs2|, whereas 
the upper SIR is unperturbed (ΔCs1 = 0). The dimensions and 
substrate are those indicated in the text in reference to the single SIR-
loaded line of [23] (except l = 15.9 mm to solder the connectors). (b) 
Magnitude of the transmission coefficient obtained from lossless 
electromagnetic and circuit simulations, and measurements. The 
circuit parameters are those indicated in the text for the single SIR-
loaded line of [23], with M = −0.31 nH (km = −0.13), as the additional 
host line length produces a phase shift only. The indicated resonance 
frequencies correspond to those obtained by simulation.  

In order to demonstrate the validity and usefulness of the 

models in Fig. 2, in [23] three different pairs of SIRs loading a 

microstrip line were considered, as can be seen in Fig. 3(a): a 

symmetric pair, an asymmetric pair derived by increasing l1 in 

one of the SIRs (+|ΔCs2|), and another asymmetric pair derived 

by decreasing l1 (−|ΔCs2|). These structures were already 

fabricated (using a drilling machine) and measured in [23], but 

some fabrication-related tolerances and uncertainties were 

observed. For this reason, we have fabricated them again 

(using a photo-etching process) to fit better the measurements 

with the simulations. As the considered structures are built up 

from those of single SIR loaded line, the only circuit 

parameter that needs to be obtained is the mutual inductance. 

This parameter has been obtained by curve fitting the circuit 

simulation to the electromagnetic simulation in the case of the 

host line loaded with symmetric SIRs. Analytically, (3) can be 

used alternatively. The extracted value is M = −0.31 nH 

(km = −0.13). As proven in Fig. 3(b), the circuit simulations 

are consistent with both electromagnetic simulations and 

measurements, verifying that losses omission is a reasonable 

approximation using low-loss substrates. 

It should be noted from Fig. 3 that the resonance frequency 

at fu resembles that at fe, while an additional narrowband lower 

resonance frequency at fl appears. When symmetry (in regard 

to the line axis) is broken, the bandwidth at fl is narrower than 

that at fu. The smaller the difference in the perturbations, the 

narrower the lower notch. As a result, the discrimination to 

detect small differences between the perturbations is expected 

to be degraded by losses.  

B. Microstrip Line Loaded with a Pair of Cascaded SIRs 

This subsection deals with an alternative topology presented 

in this paper to perform differential capacitive measurements 

in such a way that inter-resonator coupling is prevented. The 

proposed topology is illustrated in Fig. 4(a), and consists of a 

transmission line loaded with a cascade connection of two 

identical SIRs which are spaced apart by a transmission line 

section of length ls. If the SIRs are loaded on the same side of 

the line, as is considered, the resonators may be coupled not 

only magnetically, but also electrically. However, the 

resonators are placed sufficiently separated so that we may 

assume that the total coupling is negligible.  

The proposed circuit model is that represented in Fig. 4(b). 

Regardless of the length of the transmission line section 

between resonators, ls, the transmission zero frequencies are 

given by   

 
   1 2

1 1
min , ,l

s s s s s sL C C L C C

 
 
     

  (5a) 
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max , ,u
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 (5b) 

where ωl and ωu denote again the lower and upper resonance 

frequencies, respectively. According to the previous 

expressions, the two resonances can be shifted independently 

like using single SIRs, even for unbalanced perturbations. 

Clearly, the resonance frequency splitting phenomenon, which 

emerges from unbalanced perturbations, is of different nature 

in the two configurations under study. In cascaded SIRs, 

splitting occurs as a mere result of frequency shifting, whereas 

in parallel SIR there is a combination of frequency shifting 

and inter-resonator coupling. 

Let us now assume the particular case where the in-between 

transmission line section is half-wavelength long (ls = λ/2, 

where λ is the guided wavelength). As the input impedance of 

a load seen through a λ/2 line is unchanged, the circuit in Fig. 

(b) 

(a) 
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4(b) is equivalent to that shown in Fig. 4(c). Note that the 

SIRs are virtually connected at the same junction so that the 

structure behaves like if the SIRs were physically located at 

the same junction (due to periodicity, this holds at integer 

multiples of λ/2). Indeed, the latter circuit is the ideal one 

which we would like to implement. The problems to 

implement this idealized circuit are: (i) in parallel SIRs, there 

is inter-resonator coupling (Section II-B); (ii) in cascaded 

SIRs, ls = λ/2 is satisfied at one frequency only (this condition 

is designed to be satisfied at the resonance frequency of the 

unperturbed resonators). However, the latter issue is not 

dramatic, since the resonance frequencies in (5) do not depend 

on the inter-resonator distance (as long as inter-resonator 

coupling can be ignored). Therefore, the resonance 

frequencies of the model in Fig. 4(c) always coincide with 

those of the model in Fig. 4(b).  

The last simplification makes the assumption that the 

perturbations are identical (ωl = ωu = ω0). In this circumstance, 

the circuit in Fig. 4(c) derives to the one in Fig. 4(d), which is 

formally identical to that with parallel SIRs depicted in Fig. 

2(d).  

 

 
 

 

 

Fig. 4. (a) Microstrip line loaded with a pair of identical SIRs in 
cascade connection. (b) Equivalent hybrid circuit/TL model including 
arbitrary capacitive perturbations. (c) Simplified equivalent circuit 
model when the resonators are spaced half-wavelength apart, i.e., the 
in-between transmission line section has an electrical length of  
βls = 180°. (d) Simplified equivalent circuit model for βls = 180° in 
the case of balanced perturbations.  

To demonstrate the usefulness of the cascaded approach, we 

have considered the same three previous scenarios in line with 

the parallel connection [see Fig. 5(a)]. Accordingly, the same 

circuit elements have been used to validate the equivalent 

circuit models. As can be seen in Fig. 5(b), the agreement 

between the circuit/TL simulations, the electromagnetic 

simulations, and measurements is quite good. It deserves 

mentioning that a small ripple can be noticed from 

measurements in the symmetric structure, owing to the fact 

that the in-between transmission line is not exactly half-

wavelength at the corresponding resonance frequency. 

Importantly, the notch frequencies are the same as those using 

single SIRs. Another relevant result is that the bandwidth of 

both notches is not narrow by nature, in contrast to what 

occurs at the lower resonance frequency employing parallel 

SIRs.  

 

 

 

 
 

 

 

 
Fig. 5. (a) Photograph of the considered microstrip lines loaded with 
pairs of cascaded SIRs. The right SIR is perturbed by ±|ΔCs2|, 
whereas the left SIR is unperturbed (ΔCs1 = 0). The dimensions, 
substrate, and circuit parameters are those of the single SIR-loaded 
line (except ls = 23.9 mm and l = 35.9 mm). (b) Transmission 
coefficient magnitude obtained from lossless electromagnetic and 
circuit/TL simulations, and measurements. The indicated resonance 
frequencies correspond to simulations. 

C. Comparison between the Topologies 

To end this section, we compare the transmission zero 

frequencies given by the two considered configurations, 

namely, those depicted in Figs. 3(a) and 5(a).  

(a) 

(b) 

(c) (d) 

(b) 

(a) 
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The results for the three considered scenarios with different 

perturbations [Figs. 3(b) and 5(b), as well as the single SIR] 

are plotted in Fig. 6 for comparison purposes. In the light of 

this figure, it is clear that the two concerning topologies 

manifest a strongly different behavior caused by the presence 

or absence of inter-resonator coupling.  

 

 

 

 
Fig.6. Transmission coefficient magnitude (lossless electromagnetic 
simulation) of the considered microstrip lines loaded with parallel or 
cascaded SIRs for ΔCs1 = 0, and (a) ΔCs2 = 0, (b) +|ΔCs2|, and (c) 
−|ΔCs2|. For comparison purposes, the response using a single SIR 
[23] applying to it ΔCs2 is also plotted. 

 
Fig. 7. Resonance frequencies predicted by (3)−(4) and (5) versus a 
capacitive perturbation (ΔCs1 = 0 and −0.6 ≤ ΔCs2 / Cs ≤ 0.6) for the 
considered reference microstrip lines loaded with parallel and 
cascaded SIRs, respectively. The circuit parameters of the reference 
structures are: L = 1.81 nH, C = 0.57 pF, Ls = 2.45 nH, Cs = 0.70 pF, 
and M = −0.31 nH. The resonance frequencies of the three basic 
scenarios of Figs. 3 and 5, which correspond to particular 
perturbations, are mapped.  

Fig. 7 plots the resonance frequencies predicted by (3)−(4) 

and (5) in the case where a capacitive perturbation is applied 

to one of the SIRs (ΔCs1 = 0 and ΔCs2 ≠ 0). The considered 

circuit parameters of the unperturbed structures are those 

obtained previously. Additionally, the resonances for the 

particular perturbed structures are also mapped to the curves. 

It is especially visible that, when one of the resonators is 

perturbed (ΔCs2 ≠ 0), the frequency splitting in parallel SIRs is 

characterized by a shift in the two resonances. On the 

contrary, for cascaded SIRs only the resonance frequency of 

the perturbed resonator is shifted.  

In conclusion, it can be drawn that a cascade connection of 

SIRs provides a good solution to prevent coupling between 

them. Moreover, significant advantages arise, particularly, the 

resonances are independent to each other (enhancing the 

sensitivity, as will be shown in Subsection III-C), their 

bandwidth is moderately wide by nature (improving the 

discrimination), the spectral separation between the resonance 

frequencies is not enhanced by coupling (requiring a narrower 

bandwidth of operation), and unknown perturbations can be 

physically identified. As will be shown, these advantages hold 

as long as the perturbations are similar. 

III. SENSITIVITY ANALYSIS 

Thus far, capacitive perturbations have been produced by 

changing the physical dimensions of the resonators. Evidently, 

in practice, the capacitive perturbations in a permittivity 

sensor must be due to permittivity perturbations of samples 

under test (SUTs). We use the term sample in order not to lose 

generality, meaning that the sample can be a material, liquid, 

organic tissue, and so forth. Furthermore, the SUT may also 

refer to a functional layer that enhances the measurand-to-

permittivity relationship for sensing purposes (e.g., in 

environmental sensors based on functional layers, a material 

highly sensitive to the environmental factor of interest is 

used).   

This section evaluates the sensitivity in differential 

permittivity measurements, for both capacitive and 

permittivity perturbations. The study is conducted on the basis 

of the proposed equivalent circuit models, together with 

analytical expressions of capacitances, and on electromagnetic 

simulations.  

A. Analytical Sensitivity in terms of Capacitance 

With a view to performing differential sensing of 

capacitances in the considered approach based on frequency 

splitting, the differential input is the difference between the 

capacitances, that is 

 2 1.sd s sC C C   (6) 

The output electrical variable to be monitored is frequency, 

and the differential output is defined as the difference between 

the upper and lower resonance frequencies, that is 

 .d u lf f f   (7) 

Obviously, despite the fact that the resonance for balanced 

perturbations is denoted by fe or f0, when a single resonance is 

monitored, implicitly results fl = fu. The curve that relates the 

output and input quantities, namely fd(Csd), is named transfer 

function, whose slope is the sensitivity. Hence, the sensitivity 

is defined as the variation in the difference between the 

resonance frequencies divided by the variation in the 

difference between the capacitances.  Mathematically, the 

sensitivity can be written as 

(a) 

(b) 

(c) 
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(8) 

where ΔCsi (i = 1, 2) and Δfl,u stand for individual 

incremental/decremental changes in capacitance and 

resonance frequency, respectively. For simplicity, if one of the 

SIRs is not perturbed and considered to be a reference (so that 

ΔCs1 = 0) then (8) reduces to 

2 0
2 2

( )
lim .

s

d u l

C
s s

df f f
S

dC C 

 
 


                    

(9) 

In addition, in the cascade configuration, the magnitude of the 

analytical sensitivity for null perturbation (y-axis) becomes 

0

2

.
2 s

f
S

C
                   (10) 

The sensitivity should be as high as possible, and constant 

values of it are preferred. In order to gain insight into the 

sensitivity, instead of analyzing (9), that is cumbersome when 

the resonance frequencies are governed by (4), numerical 

solutions will be given. The resonance frequencies determined 

by (3)−(4) for two different coupling coefficients and by (5) 

are plotted in Fig. 8(a) assuming ΔCs1 = 0. It is evident that the 

output is null in the case of a perfect balance of perturbations 

(ΔCs1 = ΔCs2 = 0). On the other hand, unbalanced 

perturbations have been introduced by a capacitive variation in 

one of the SIRs (ΔCs1 = 0, ΔCs2 ≠ 0). As expected, when 

km ≠ 0, corresponding to the case with parallel SIRs, fu is more 

sensitive to −|ΔCs2| than fl, and complementarily fl is more 

sensitive to +|ΔCs2|. Both frequencies tend to the frequencies 

without coupling as the capacitive perturbation increases. 

Fig. 8(b) shows the corresponding transfer function from 

which it is apparent that, as |km| increases, the frequency 

splitting, fd, strengthens. It turns out that the sensitivity, shown 

in Fig. 8(c), worsens as |km| increases. Indeed, the maximum 

sensitivity corresponds to the case of (uncoupled) cascaded 

SIRs, and is given by (10). Specifically, a significant 

degradation in the sensitivity results for small perturbations. 

As was stressed earlier, even for loose coupling coefficients, 

coupling cannot be neglected for similar perturbations. 

Nevertheless, the parallel configuration can be useful when the 

perturbations differ from each other significantly. In these 

situations, coupling plays an insignificant role.  

 The results in Fig. 8 were already published in [23], where 

using parallel SIRs with km = 0 was assumed to be fictitious. 

Here, km = 0 is no longer fictitious, as is implemented 

employing cascaded SIRs. For small inputs, since the inter-

resonator coupling in parallel SIRs decreases the sensitivity, 

parallel-connected SIRs are apparently not much appropriate 

to properly operate as a sensor. Additionally, this topology 

working as a comparator between two capacitively-perturbed 

SIRs is not much promising. As mentioned before, the 

discrimination for small differential inputs is expected to be 

rather limited due to the narrowband nature of the lower 

resonance. Conversely, SIRs in cascade connection are 

expected to achieve high sensitivities and discriminations.  

 

 
 

 
Fig. 8. (a) Resonance frequencies given by (3)−(4) for different km 
and (5) normalized to the constant resonance frequency of the non-
perturbed uncoupled SIR determined by (5). The capacitive 
perturbations are ΔCs1 = 0 and −0.6 ≤ ΔCs2 / Cs ≤ 0.6. (b) Normalized 
transfer function. (c) Sensitivity magnitude normalized to the case of 
balanced perturbations (ΔCs2 = 0) in the cascaded configuration. For 
the parallel arrangement, sensitivity is calculated using (4) solely, 
disregarding (3) in order not to calculate the sensitivity across the 
jump discontinuity. 

It should be mentioned that the dynamic range of 

measurement is not limited to the considered one 

(|ΔCs2| ≤ 0.6Cs). This relatively small dynamic range, 

however, allows for illustrating properly the handicap of the 

parallel configuration, i.e., low performance under small 

inputs. Finally, it is also important to highlight that the 

sensitivity is not constant due to the fact that the transfer 

function is not linear [this is indeed evident from the simplest 

form of the sensitivity given by (10)]. Moreover, sensitivity is 

(a) 

(c) 

(b) 
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not a symmetric function with respect to the y-axis, i.e., 

S(+|ΔCsd|) ≠ S(−|ΔCsd|). Instead, the sensitivity magnitude 

increases or decreases as the input capacitance is increasingly 

lower or higher, respectively. 

B. Analytical Sensitivity in terms of Permittivity  

In the previous subsection we considered a capacitive input 

as a generalization. Capacitive variations can be produced by 

several means, e.g., by changing the physical dimensions of 

the resonators (i.e., shape perturbation as done in Section II) or 

by changing dielectric properties (i.e., material perturbation, as 

it must be in practice). Therefore, in a real sensor the 

differential input is the difference in the relative permittivity 

of the SUTs, defined here as 

 2 1.rd r r     (11) 

It should be noted that the sensor measures a difference 

between two permittivities. Provided that one of the two 

permittivites is known, the other permittivity can be inferred.   

The sensitivity in terms of the relative permittivity becomes 

2 1 0
2 1

lim ,
r r

d u l

rd r r

f f f
S

  

   
 
      

              

(12) 

where Δεri (i = 1, 2) stands for changes in relative permittivity. 

The partial derivatives indicate that the output differential 

frequency may be influenced by other physical variables 

related to cross sensitivities, as will be illustrated before 

ending this subsection. By assuming a linear dependence of 

the capacitance with the permittivity (with proportionality 

constant k), and letting Δεr1 = 0 and km = 0 once again, the 

sensitivity magnitude becomes  

0

2

.
2 r

f
S 


              

(13) 

To establish analytically the transfer function and sensitivity 

above, the SIR capacitance was approximated by the parallel-

plate capacitance of its wide section, namely 

0 2 1 1
2

r
p r

w l
C k

h
 
   ,        (14) 

where ε0 is the vacuum permittivity. In (14), the substrate in 

the vicinity of the wide section is supposed to be replaced with 

one SUT. The most relevant aspect in this approximation is 

that the SIR capacitance is linearly dependent on the 

permittivity. The corresponding capacitance for the reference 

SIR is Cp = 0.53 pF. However, (14) must be considered as a 

first-order approximation as mentioned above, where l1, w1 >> 

h are required for accurate results. Likewise, Cs is neither 

exactly proportional to l1; Δl1 = ±0.19l1 produces 

ΔCs = ±0.15Cs.  

Finally, to illustrate the robustness of differential 

measurements against cross sensitivities, let us assume that we 

compare two identical materials (ΔCs = ΔCs1 = ΔCs2). Using a 

two-step process with a single SIR, the resulting resonance 

frequencies are 

 
 0

1
.

s s s
L C C




  (15) 

Let us now introduce a spurious change in the capacitance 

related to a cross sensitivity, denoted by ΔCxi (i = 1,2). As the 

effect of cross sensitivities may change over time, one may 

assume ΔCx1 ≠ ΔCx2 (neither a compensation technique nor 

recalibration is considered). Hence, in the presence of cross 

sensitivities, the different drifts shift the resonance frequencies 

to 

 01

1

1
,

s s s x
L C C C


 

     (16a) 

 02

2

1
.

s s s x
L C C C


 

     (16b) 

Therefore, fd ≠ 0 and the readout is going to be wrong. By 

contrast, performing the proposed real-time differential 

measurement, using the cascaded configuration, the resulting 

single resonance frequency is  

 
 0

1
.l u

s s s
L C C

  


    (17) 

Since the two materials are the same and affected by cross 

sensitivities at the same time, it is reasonable to assume that 

ΔCx = ΔCx1 = ΔCx2, so that 

 0

1
.l u

s s s xL C C C
  

 
       (18) 

Consequently, fd = 0, indicating that there is no difference 

between the materials. Note, however, that a comparison 

between identical materials is the most favorable case to reject 

cross sensitivities, this case being theoretically totally immune 

to them, as indicated by (18). In a differential sensing, some 

degree of robustness is expected, as different materials may 

respond in a different way to the same stimulus. Particularly, 

if we compare fd for different materials (characterized by 

ΔCs1 = 0, ΔCs2 = ΔCs), and the same quantity under the 

presence of a common mode stimulus fd’, the difference is 

found to be: 

' .
2( ) 2

x x
d d u l

s

C C
f f f f

C C C

 
   


                (19)                

i.e., not exactly null if Cx  0, but small (and identical to zero 

if Cs = 0). 

C. Simulated Sensitivity in terms of Permittivity   

It is apparent that the optimum position (i.e., the most 

sensitive region) where the SUTs must be loaded depends on 

the technology of implementation. In microstrip technology, 

as is well known, most of the electric field is concentrated in 

the substrate. Therefore, the SUTs should be located between 

the SIR and the ground plane, like filling a parallel-plate 

structure. Otherwise, the sensitivity will be decreased. Figure 

9 shows a 2D cut of the electric field amplitude simulated with 

CST Microwave Studio, confirming that most of the electric 

field confinement lies below the wide section of the SIR (i.e., 

the electric field is dominated by the capacitance effect of the 

resonator). Moreover, since the field is roughly uniformly 

distributed, the wide section behaves approximately like a 

parallel-plate capacitance. 
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Fig. 9. Electric field amplitude at the SIR resonance frequency of the 
reference structure (single SIR) over the mid-plane between the SIR 
and the ground plane. The SUT height is set to h−2t where t = 35 μm, 
and its length and width extend 1 mm beyond the wide section of the 
SIR, as depicted. The SUT size is 4.6 mm x 7.5 mm x 812.8 μm.  

In order to characterize the sensitivity in terms of 

permittivity perturbations, we have considered the same 

reference structures as in Section II [Figs. 3(a) and 5(a)], and 

we have introduced a bulk dielectric SUT in one of the SIRs 

as illustrated in Fig. 9. The structures have been simulated 

with different values of the SUT relative permittivity, εr2, and 

the resulting resonance frequencies are plotted in Fig. 10. The 

resulting sensitivity derived from the results in Fig. 10 is 

plotted in Fig. 11. Clearly, for small perturbations, the 

sensitivity in cascaded SIRs is superior to that obtained using 

parallel SIRs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Resonance frequencies for parallel and cascaded SIRs, 
obtained by electromagnetic simulation, versus a perturbation in the 
relative permittivity of a SUT loaded to one of the SIRs. The relative 
permittivity is perturbed by steps of ±10% so that 1.352 ≤ εr2 ≤ 5.408 
(−0.6 ≤ Δεr2/εr ≤ 0.6) where εr = 3.38. Losses are considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.11. Magnitude of the sensitivity derived from Fig. 10  by steps of 
Δεr2/εr = ±0.1 (±10%). The sensitivity in the jump discontinuity of the 
parallel configuration is not calculated. As stated by (13), the 
sensitivity and the perturbation have the same sign.  

It can be observed that the results in Fig. 10 are similar to 

those in Fig. 7. More specifically, the sensitivity to a 

permittivity perturbation (∆εr2/∆εr) is a bit smaller than that to 

a capacitive perturbation (∆Cs2/∆Cs) with the same amount of 

relative perturbation. This verifies again that the capacitance is 

not exactly proportional to the permittivity.  

 
Fig. 12. Transmission coefficient obtained by electromagnetic 
simulations for small differential permittivity perturbations in (a) 
parallel and (b) cascaded SIRs. The perturbations are those necessary 
to obtain two −3-dB notches: Δεr2/εr = ±0.06 and ±0.02 (6% and 2%), 
respectively. 

The discrimination for small differential inputs, εrd, is of 

relevant importance in comparators. To gain insight into the 

performance of the considered topologies to operate as 

comparators, the discrimination from balanced to unbalanced 

perturbations should be defined as the minimum εrd necessary 

to produce a discriminable doubly notched response. It is 

assumed that two −3-dB notches suffice for reasonable 

accurate discrimination. For the considered topologies, these 

values are about ±6% and ±2% in the parallel and cascaded 

configurations. The transmission coefficients for these inputs 

are plotted in Fig. 12. Therefore, the cascade configuration 

exhibits higher discrimination than the parallel one, and it is 

an appropriate means to enhance the capability of detecting 

(a) 

(b) 

Max. 0 
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inputs as small as possible (i.e., to enhance the 

discrimination). As was expected, wideband notches are 

required. Otherwise losses may mask the notches, as occurs in 

the lower notch for parallel SIRs when the input differential 

permittivity is close to zero. In summary, the discrimination is 

better with the cascaded configuration, where both notches are 

wide. 

 

On the other hand, in the case of large perturbations and as 

proven in Fig. 13, the parallel and cascaded configuration have 

similar resonance frequencies and, in turn, sensitivities. 

 

 
Fig.  13. Transmission coefficient obtained by electromagnetic 
simulations for a large differential permittivity perturbation: 
εr1 = 3.38 and εr2 = 11.2 resulting in Δεr2/εr = +2.3 (+230%). 

IV. EXPERIMENTAL VALIDATION OF THE SENSING 

APPROACHES AND DISCUSSION 

In this section, permittivity perturbations are experimentally 

validated. To do so, the reference structures in Figs. 3 and 5 

are considered again. In order to apply both positive and 

negative differential permittivity perturbations, the substrate in 

the vicinity of one of the SIRs is removed using a drilling 

machine, creating a cavity. Next, the cavity is either unfilled 

(−|∆εr2|) or filled with a Rogers RO3010 substrate εr = 11.2 

(+|∆εr2|), and covered with a metallic adhesive tape to act as 

the ground plane etched from the microstrip structure. Figure 

14 shows different photographs to illustrate the cavities, and 

their filling and covering. Note that the effects of the air-gap 

present between the cavity and the SUT can be minimized by 

putting some pressure to the structure, as we have done in the 

measurements with the Rogers slab (in [5] a systematic 

method to eliminate the effects of the air gap is reported). 

 
(a) 

 
(b) 

 

 

(c) 

 

Fig. 14. Photograph of the reference structures composed of 
microstrip lines loaded with pairs of (a) parallel and (b) cascaded 
SIRs. From left to right: (i) cavity in one of the SIRs; (ii) filled cavity 
with Rogers RO3010 with εr2 = 11.2; (iii) cavity covered with a 
metallic tape. The photograph of the experimental set-up for 
measurement is shown in (c), including the Agilent N5221 network 
analyzer, cables, connectors and sensing system. 

(a) 

 
(b) 

 
Fig.  15. Measured transmission coefficient magnitude for the (a) 
parallel and (b) cascaded topologies under dielectric loading. Three 
scenarios are considered: (i) without cavity (∆εr2 = 0); (ii) unfilled 
cavity so that εr2 = 1 (−|∆εr2|); (iii) filled cavity with Rogers RO3010 
with εr2 = 11.2 (+|∆εr2|). No perturbation is applied to the other SIR 
(∆εr1 = 0). 

A. Determining the dielectric constant of the SUT 

The measured results of the positive/negative perturbations, 

plotted in Fig. 15 together with those with no perturbation, are 

in accordance with theory. Even though the cavity dimensions 

cannot be controlled very accurately with the in-house drilling, 

these experiments validate the sensing principle under 

permittivity perturbation. Nevertheless, inspection of Fig. 15 

reveals that the difference in notch frequencies is somehow 

smaller than the results of Fig. 10 for the considered dielectric 

constant values (1 for the unfilled cavity, and 11.2 for the 

filled cavity with the considered Rogers material). The reason 
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is that the cavity has been implemented by milling, and we 

have not completely removed all the substrate material, since 

the SIR needs some material for mechanical stability. 

Therefore, the unfilled cavity, including the remaining 

substrate layer, has an effective dielectric constant larger than 

1, and the cavity filled with the Rogers substrate (dielectric 

constant 11.2) has actually an effective dielectric constant 

smaller than 11.2. In other words, the measurement provides 

the effective dielectric constant of the structure below the SIR, 

including not only the SUT but also the presence of a narrow 

dielectric layer of relative permittivity 3.38. Moreover, the 

thickness of the whole structure, layer on top the cavity plus 

SUT, is not necessarily the same as the thickness of the 

substrate. In the simulations that have been carried out to 

obtain the results of Fig. 10, we have not considered this 

substrate layer between the SIR metal level and the SUT. In 

practice, it is very difficult for us to precisely control the 

thickness of the remaining substrate between the SIR patch 

and the cavity. For this main reason such layer has not been 

considered in the simulations. However, note that with a more 

sophisticated fabrication technology (e.g., micromachining), 

such control would not be a problem.  

Nevertheless, we have proposed a method to determine this 

thickness that subsequently allows us to obtain the dielectric 

constant of the SUT once the reference permittivity (the one of 

the substrate, i.e., r1) and the thickness of the SUT are known. 

Let us consider that h1 and hc are the thicknesses of the 

substrate layer on top of the cavity and cavity, respectively, so 

that h1 + hc = h, the substrate thickness. Moreover let us 

assume that the SUT corresponds to a material with well-

known dielectric constant, r2, and thickness, h2 (see Fig. 16). 

The method is based on the fact that the effective dielectric 

constant of the composite formed by the substrate layer on top 

of the cavity plus the SUT, eff, is related to the respective 

dielectric constants by 

1 2

1 2

1 2

1 2

.

r r

eff

r r

ε ε
 ε h h

ε εh

h h






                                (20)                                            

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 16. Sketch (not drawn to scale) of the top and cross sectional 
view of the SIR and cavity loaded with the SUT. 

From the previous expression, the dielectric constant of the 

SUT can be isolated: 

1 2

2

1 1

,
eff r

r

r eff

 ε ε h
ε

ε h ε h



                            (21)                   

eff can be inferred from the split in frequency of the SUT and 

the curve of Fig. 10 corresponding to the cascade connection. 

Thus, if r2 and h2 are known, h1 can be obtained from (21). 

For the SUT corresponding to the Rogers substrate with r2 = 

11.2 and h2 = 635 m, and taking into account that the notch 

frequencies of Fig. 15(b) provide eff = 4.9, according to Fig. 

10, the resulting thickness of the layer on top of the cavity is 

found to be h1 = 369 m. To verify the validity of this result, 

we have considered the curve of Fig. 15(b) corresponding to 

the unfilled cavity (εr2 = 1). By introducing the corresponding 

effective dielectric constant eff = 1.69 in (21), and h1 = 369 

m, the air thickness is found to be h2 = 371 m, which is in 

reasonable agreement with the thickness of the cavity (note 

however that the metallic tape is somehow flexible and hence 

may reduce the effective value of the cavity thickness). 

Once h1 is known, we have calculated the dielectric constant 

of another SUT, an Arlon slab with r2 = 2.43 and h2 = 490 

m. The measured transmission coefficient for the cascaded 

configuration is depicted in Fig. 17. The effective dielectric 

constant that results from Fig. 10 is eff = 2.70, and using (21), 

the dielectric permittivity is found to be r2 = 2.50, very close 

to the nominal value (2.43). 

 
 

 

 

 

 

Fig. 17. Measured transmission coefficient magnitude for the 
cascaded topology with the cavity filled by an Arlon substrate with 
characteristics indicated in the text. 

It is interesting to analyze expression (21), and the 

dependence of the dielectric constant of the SUT with the 

different parameters. Particularly, it depends linearly on the 

thickness of the SUT, h2. Therefore, uncertainties in this 

parameter are directly translated to the dielectric constant. The 

dependence with the other geometrical parameters, h and h1, 

can be appreciated in expression (21) as well. The thickness of 

the substrate, h, is typically known with good accuracy. On the 

other hand, the dependence on h1 is modulated by eff, and the 

effects of the uncertainty with this parameter are minimized in 

samples with small dielectric constant (and hence small eff). 

In view of (21), and taking into account that eff is roughly 

proportional to r1, namely,  

1 2 1 1 1

0

2 ,eff r r r r r

f fε ε ε ε ε ε
S f

 
                  (22)                   
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it follows that r2 is proportional to r1 (see 21) and hence the 

uncertainties in the dielectric constant of the reference 

material are (roughly) directly translated to the one of the 

measured material.  

Comparison of the proposed differential sensor with other 

permittivity sensors based on microstrip technology, such as 

those sensors based on CSRRs [3]-[5] is not easy. 

Nevertheless, the fact that the proposed sensors are differential 

represents advantages in several aspects. As comparators, 

common-mode stimuli are minimized by means of a 

differential-mode approach, as discussed before, and small 

changes between two (apparently identical) samples can be 

detected. Comparators based on this approach can be of 

interest to determine defects or abnormalities in a sample, as 

compared to a well known reference, as well as soft 

permittivity changes in circuits manufactured on microwave 

laminates. In a real scenario, two identical cavities must be 

present, each one below the corresponding SIR patch. 

Concerning sensitivity, the capacitance of the SIR is 

broadside and hence very sensitive to the permittivity, as 

compared to the case of edge capacitances (such as the one of 

CSRRs). The sensitivity that can be inferred from the sensors 

reported in [3]-[5] is very reasonable but not as good as the 

one reported here [of the order of 0.6 GHz for small 

perturbations, according to Fig. 10 and expression (13) –note 

that we have considered the relative permittivity, i.e., 

dimensionless, in the denominator of (13)]. Note that 

according to expression (13), such sensitivity can be 

modulated by means of the SIR dimensions, which provide the 

resonance frequency for the unperturbed state. 

B. Loss tangent estimation 

Even though this paper is focused on low-loss substrates 

and SUTs (as mentioned before), let us discuss a procedure to 

estimate the loss tangent. It is based on the depth of the notch 

(similar to [4],[5]), and for this reason a structure with a single 

SIR is preferred (i.e., non differential). Otherwise, the 

presence of closed notches (as results in cases with small 

differential permittivities) may obscure the results. The initial 

assumption is that the substrate material below the SIRs is 

completely removed and replaced with the SUT. Let us 

consider two causes of losses, i.e., metallic losses, mainly 

associated to the narrow inductive strip of the SIR, and 

dielectric losses, related to the SUT. The model of the SIR-

loaded line with losses included is the one of Fig. 1(b), but 

including a resistance, RM, in series with the inductance Ls, 

plus a resistance, RD, parallel connected to the capacitance Cs. 

The impedance of this shunt branch is 
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and this expression can be approximated by 
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where it has been assumed that RD
2Cs

22 >> 1, corresponding 

to SUTs with moderate or low-loss levels (note that in an ideal 

lossless SUT, RD = ). At the notch frequency, the reactive 

part of Zin nulls, and the resulting resistance can be expressed 

as 

Ds

MLOSS
QC

RR

1

  ,                           (25)                   

where QD is the SUT quality factor. Such resistance is related 

to the magnitude of the transmission coefficient at the notch 

frequency by 
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  ,                               (26)                   

and therefore it can be inferred from the measured frequency 

response. On the other hand,  

11
tan  D

sD

Q
CR 

  .                         (27)                   

If RM is known, (25) gives QD and hence tan can be 

inferred from (27). To determine the contribution of the 

metallic losses, RM, a possible procedure is to consider a 

reference SUT (or substrate) with a well-known tan (and 

hence QD). From (25), RM can be isolated, and used 

subsequently for the determination of the loss tangent of the 

SUT (it is assumed that RM does not vary with the SUT). 

The previous procedure cannot be directly applied in 

general to our proof-of-concept cascaded SIR based sensor 

since it is based on two SIRs, and, moreover, there is a 

remaining substrate layer on top of the cavity. However, for 

the considered SUT, the Arlon slab with nominal permittivity 

and thickness r2 = 2.43 and h2 = 490 m, the frequency 

response shows quite uncoupled notches and, therefore, we 

can modify the procedure and at least make an estimation of 

the tan. By introducing the SUT into the cavity, expression 

(25) can be re-written as  

2211

11

QCQC
RR MLOSS 

 ,                        (28)                  

where the sub-index 1 and 2 refer to the layer on top of the 

cavity and SUT, respectively. By identifying the last two 

terms with the loss contribution of the composite, (CeqQeq)-1, 

it follows that 

2211

2121 )(

CQCQ

QQCC
Qeq 


  .                            (29)                   

This expression depends on the ratio C2/C1, which can be 

determined from the thickness of the layer and SUT and from 

the dielectric constants. Using (25) with Cs = Ceq and QD = Qeq 

and with RLOSS inferred from (26), where S21 is obtained from 

the depth of the second notch in Fig. 17, we can determine 

Qeq, which is found to be Qeq = 366. Since Q1 is known (Q1 = 

tan)-1 = 476, we can isolate Q2 from (29), and the resulting 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

13

value is found to be Q2 = 353, which gives tan = 0.0028 (in 

reasonable agreement with the nominal value of 0.0020). Note 

that we cannot expect an accurate value of the loss factor with 

the considered in-house measurement system, necessarily 

affected by additional losses such as those derived from the 

connectors, soldering, metallic adhesive tape, etc. 

Nevertheless, a procedure to estimate the tan of the SUT has 

been reported. 

V. CONCLUSIONS 

This paper analyzes two simple strategies to conduct 

differential measurements of permittivity. These strategies are 

based on loading pairs of stepped impedance resonators 

(SIRs), in either parallel or cascade connection, to a microstrip 

line. It has been shown that, although the most canonical 

symmetric configuration to perform a differential 

measurement is the one where the SIRs are parallel-connected, 

such a structure exhibits lower performance for small 

differential permittivities due to inter-resonator coupling, and 

hence the cascade connection is preferred in these situations. 

The differential technique is simple, as a transmission line is 

driven with a single-ended RF/microwave signal, and the SIRs 

are simply simultaneously and individually loaded with 

dielectric materials. The sensing principle is based on 

resonance frequency splitting, so that when the permittivities 

of the two dielectric materials are identical the sensor exhibits 

a single resonance frequency, whereas two resonances are 

present if such permittivities are different. The sensing 

principle has been experimentally validated by both shape and 

material perturbations. This main focus in this work has been 

on the differential measurement. A method to determine the 

dielectric constant of a certain sample under test (SUT), 

provided the one of the reference is known, has been 

proposed. Finally, in spite that the analysis of the present work 

has been carried out by excluding losses, a method to estimate 

the loss tangent of the SUT has been also reported. As is well 

known, changing environmental factors may change the 

permittivity and, therefore, miscalibrate. By virtue of a 

differential measurement, sensing and comparison with some 

degree of immunity to these external factors is expected. 
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