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Abstract: Measuring optical transmission matrix has enabled image detection through
scattering media, however its retrieved resolution is severely limited by the number of
measurements. In this paper, we introduce super resolution reconstruction into transmission
matrix based imaging scheme, to some extent bypassed this limitation. We demonstrate all
detailed information of high-resolution subpixel shifting target are preserved in its corre-
sponding speckle signals. And through phase conjugate reconstruction one can get target’s
low-resolution projection images with accuracy. The final high-resolution image is achieved
by subpixel registration and bilinear interpolation operations. The feasibility of the proposed
method is theoretically analyzed and proved by laboratory experiments.

Index Terms: Scattering medium, super-resolution imaging, transmission matrix.

1. Introduction

Light wave propagation through materials with refractive index heterogeneities suffer from strongly
scattering, which invalidate traditional imaging methods. In recent years there has been a series of
new-style methods, by use of scattered lights rather than ballistic lights, achieved image detection
through scattering media. For example, wave-front shaping based focusing [1], memory-effect
based method [2], and measuring the media’s input-output responses – the transmission matrix
(TM). The optical TM was first explored by Popoff et. al [3], and then extended for image detection
through opaque materials [4]. Measuring a TM transform an opaque sample as a linear optical
system thus enable object’s reconstruction from its scattered field. However, to calibrate a system
for its TM requires both the scanning of input modes and the recording of each input mode’s
complex field at the output. This process is rather time-consuming thus during that needs the
scattering sample stay stable. Considering the retrieved resolution is equivalent to the number of
calibrated input modes [4], TM based imaging methods must trade off the measurement time and
the reconstructed resolution. That’s one major reason why they only have been applied successfully
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Fig. 1 Schematic of proposed TM based SR reconstruction.

for static materials, for example a diffuser [5] or white paint [3], [4], [6], and failed in dynamic
materials (e.g., tissue) [7]. To deal with the resolution issue, many researches have tried to speed
up the calibration process by adopting more advanced modulator, such as digital micromirror device
(DMD) [8], [9], but the problem still exists.

As to traditional lens-based imaging applications, there are also a persistent need for high spatial
resolution. The most commonly hard-ware based way is to increase the number of pixels per
unit region of the detector. It’s not always effective because decreasing the pixel size reduce
the amount of lights reaching single pixel, which will induce more shot noise and so that the
image quality will be degraded. Another effective way is the resolution enhancement, often cited as
super-resolution (SR) reconstruction, which aims to obtain high-resolution (HR) image from single
or multi low-resolution (LR) images. For decades, the multiple images way [10]–[12] has attract the
most attentions. If the used target is movable or by use of extra micrometric displacement device,
with relative subpixel shifting, there will be complementary information preserved in LR images.
And one can achieved HR image from LR images by algorithms, for example interpolation [13],
wiener filter [14], [15] and learning based methods [16], [17].

In this paper, for the first time to our best knowledge, we introduce multi-images SR into TM based
imaging scheme, to some extent bypassed the trade-off between the measurement time and the
retrieved resolution. For simplicity, our method is named TM based SR reconstruction, described as
Fig. 1. As shown, a movable HR target with subpixel shifts contribute to multiple speckle signals. LR
projection images are obtained through TM based reconstructions. The used single TM is calibrated
by using a LR projector mask. The final HR image is achieved by a purposed SR operation.
In our method, the subpixel shifts are achieved by loading HR patterns with different subpixel
shift factors onto the spatial light modulator (SLM). We demonstrate TM based phase conjugate
operation can get LR projection image of the original HR target, with accurate complementary
information preserved in. By means of formula derivation, the modified observation model is given.
We deal with the signal-to-noise issue by simply increasing the number of chosen CCD pixels and
through superimposition. And with the observation model known, we achieve final HR image from
LR images by subpixel registration and further bilinear interpolation operations.

The rest of this paper is organized as follows: in Section 2, we show the principle of the proposed
TM based SR reconstruction and offer its detailed operations. In Section 3 we offer the experi-
mental results and evaluate the performance. We make a discussion and conclude this paper in
Section 4.

2. Principle
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2.1 Background

Monochromatic lights propagation through a complex media can be described as a matrix T , of
M × N, in which each element tmn links nth of N input mode and mth of M output mode, given by

E out
m =

∑

n

tmnE
in
n (1)

Where E in
n and E out

m are the average light fields on the modes at input and output respectively.
Usually, a T is obtained by phase-shifting interferometry [3], through controlling the input and
measuring the output. Typically, Nslm/N adjacent pixels of the used SLM are controlled as a single
macro pixel which indicates an input mode. The Nslm is the total number of SLM pixels in the
controlling part. Correspondingly, each used CCD pixel denotes an output mode. With a T obtained,
one can reconstruct the original target from its scattered speckle signal. The retrieved resolution
has been determined and thus limited by N [4], and the achieved ratio of signal-to-noise (SNR) is
proportion to the number of M [3], [18].

In traditional imaging system, HR target is projected onto the detector plane by lens. Then the
distorted projection image is down-sampled and saved by sensor arrays. The observation model
[10] can be expressed as

Y(k ) = DB(k )M(k )X (2)

where X stands for the HR target, and Y(k ) denotes its kth frame LR projection image. The D is a
down-sampling matrix operator which has been determined by the distribution of sensor arrays.
B(k ) represents a blur matrix, and the warp matrix M(k ) stands for the kth subpixel shifting. There
exists complementary information preserved in multiple Y(k )s. Given LR images, according to the
observation model, one can chose proper SR algorithm for the final HR image’s reconstruction.

2.2 Reconstruction of LR Image

For the scattering system’s calibration process, according to Eq. (1), usually lights scattered from
nth input macro pixel and collected by mth CCD pixel are simply expressed as one, with its
response reads tmn. However, these lights are actually from Nslm/N different SLM pixels, scattered
independently and finally interfered onto the CCD pixel. Therefore, illuminated by collimated lights,
the tmn is given by

tmn =
∑

i∈Rn

tmn,i
/

(Nslm/N ) (3)

Where the Rn stands for the region of nth macro pixel with Nslm/N SLM pixels included in, the tmn,i

stands for the response between the ith SLM pixel which is located in Rn and the mth CCD pixel.
Thus, mathematically, the T can be expressed as

T = SPt (4)

Where S of M × Nslm denotes a unknow TM of the used system, comprised of all the tmn,is. The S

can be thought as a small subset of the real scattering matrix and thus obeying Gaussian random
distribution [19], linking Nslm independent SLM pixels and M CCD pixels. The Pt is a transposed pro-
jector matrix whose format is contributed by the used projector mask. The superscript .t indicates
matrix transposition. The projector mask is used for measuring the TM, comprised of macro pixels,
which is a phase pattern loaded on SLM during the calibration process. For example, as seeing
in Fig. 2(a), a projector mask of 2 × 2 macro pixels loaded on a 4 × 4 SLM, the corresponding
transposed 16 × 4 projector matrix is as shown in Fig. 2(b) (for concision the re-transposed 4 × 16
projector matrix is showed).

For the process of acquisition of speckle signals, lights from kth subpixel shifted HR target and
collected by CCD should be expressed as

y(k ) = SM(k )x (5)
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Fig. 2 (a) Projector mask of 2 × 2 macro pixels loaded on a 4 × 4 SLM. (b) The corresponding 4 × 16
re-transposed projector matrix.

Where y(k ) is the kth complex-valued M × 1 speckle signal, obtained through interferometry. The
target x in this paper stands for a movable virtual pure amplitude object, of Nslm × 1 an image vector
(actually a

√
Nslm ×

√
Nslm pattern loaded on SLM), realized through subtracting two phase patterns.

The M(k ) indicates the target’s kth subpixel shifting, where the subpixel means partial macro pixel
defined by the adopted projector mask.

In the past, only single or multi points [3] or LR patterns [4]–[6] have been used as targets for TM
based imaging, and their minimum details are at least matched single input macro pixel. So that
directly they could be reconstructed, with accuracy and without resolution loss. We note that, as
expressed in Eq. (4) and (5), the calibration process is independent to the acquisition of speckle
signals. And at the assumption of ideal optics, all HR details are preserved in the speckle signals
without any loss of information.

With respect to the TM based reconstruction, the kth retrieved image can be achieved from the
kth speckle signal y(k ), given by

xLR
(k ) = T † y(k ) (6)

Here the phase conjugate operator .† is chosen, because T † = PS†. According to Eq. (5) and (6),
the retrieved image can be expressed as

xLR
(k ) = PS†SM(k )x (7)

Considering S†S ≈ I due to the character of Gaussian random matrix, according to Eq. (3), the
value of nth retrieved element is given by

xLR
(k ) (n) =

∑

i∈Rn

An,ie
iϕn,i/

(Nslm/N ) (8)

Where An,i and ϕn,i are amplitude and phase of the kth subpixel shifting target, at the location of ith
SLM pixel which is located in nth input macro pixel. Given the target is a pure amplitude pattern,
the ϕn,i ≡ 0 for ∀i ∈ Rn and n ∈ N, in other words eiϕn,i ≡ 1. That is to say, the value of the retrieved
xLR

(k )(n) is the average of the An,is for ∀i ∈ Rn. Thus the xLR
(k ), of N × 1, is a pure amplitude image vector,

can be thought as the kth down-sampled LR projection image of the original HR pattern.
Define the blur matrix B = S† S, considering Eq. (2) and (7), the modified observation model can

be expressed as

xLR
(k ) = PBM(k )x (9)

Indeed, the projector matrix P has been used like a typical down-sampling matrix operator
as defined in Eq. (2). Differ from traditional lens-based way in which the distorted image is
down-sampled by sensor arrays at the CCD plane, in TM based way the reconstructed LR image
can be thought as projected onto the SLM plane and down-sampled by the used projector mask.
The down-sampling process happen during the TM based reconstruction rather than the signal’s
acquisition process.
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Fig. 3 Schematic of reconstructions of LR images and the final HR image. During phase conjugate
operations the sampling rate parameter γ = 10.

2.3 TM based SR reconstruction

The process of proposed TM based SR reconstruction is as described in Fig. 3. As shown, LR
images are reconstructed from speckle signals, through phase conjugate operations by use of
single measured TM. The speckle signals are acquired from patterns loaded on SLM, these
patterns are of same target and with different subpixel shift factors. The kth shift factor is repre-
sented by M(k ) defined in Eq. (9). Given LR images with observation model known, we achieve
final HR image by a proposed SR method. The SR in this paper means the processes of subpixel
registration and further bilinear interpolation operation. The detailed operations are as follows. Note
that measuring multiple speckle signals will increase the acquisition time, the following multiple
TM based reconstructions and further SR operation means the purposed method has a higher
computation complexity.

In our method, the subpixel shifting is generated by loading single target’s patterns with different
translations, both in horizontal and vertical. The shift in horizontal is represented by �x, and the
shift in vertical is expressed by �y. Values of both �x and �y can be 0, 1/3, or 2/3. For example
as seeing in Fig. 4, a target moved from its original location to a new region, the value of shift factor
reads (�x,�y ) = (2/3, 1/3). Here, �x = 2/3 means the horizontal translation is 2/3 macro pixel
and �y = 1/3 indicates the translation in vertical is 1/3 macro pixel. The format of macro pixels has
been defined by projector mask which is used for measuring the TM. Totally, there exist 9 different
(�x,�y ), correspond to 9 independent speckle signals, and each speckle signal will contribute to a
specific LR image through TM based reconstruction. After acquisitions and following computations,
we achieve 9 LR images. The further SR operations are as described in Fig. 5.
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Fig. 4 Schematic diagram of subpixel shifting, a simply movable target as an example. The larger black
grids denote macro pixels defined by the used projector mask, while small gray grids indicate the step
size of subpixel shifting.

Fig. 5 (a) Schematic of LR image. Each is of 3 × 3, represented by a specific graph. (b) Result of
subpixel registration. The larger black grids and small gray grids denote macro pixels and the step size
of subpixel shifting respectively. Blanks between small grids are not shown. (c) Schematic of bilinear
interpolation. The showed region is of single macro pixel and comprised of 9 × 9 resolvable pixels.
Every defined sub window is of 4 × 4 resolvable pixels.

TABLE 1

Different Graphs Denote Different LR Images

In order to explain our method in vivid, we suppose the Nslm = 27 × 27 and the adopted projector
mask is of 3 × 3. Therefore, each macro pixel covers 9 × 9 adjacent resolvable SLM pixels. As
discussed above, the sized of retrieved LR images is consistent with the size of projector mask.
The values of used shift factors have been showed above, just like Fig. 4. Partial retrieved LR
images are as seeing in Fig. 5(a). As shown, information of different LR images with different shift
factors are represented by specific graphs. The relationship between shift factors and graphs is
given in Table 1.

Because the shifts are already known, we do the subpixel registration by directly putting LR
images into HR grids. The arrange of information in HR grids from the 9 LR images are showed in
Fig. 5(b), in a simplified form of which blank pixels are not shown. All the 3 × 3 macro pixel regions
are included in Fig. 5(b). The actual region of each macro pixel is as seeing in Fig. 5(c), of 9 × 9
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Fig. 6 (a) Schematic of the proposed experimental setup. BS, beam splitter; M, mirror; and P, polarizer.
(b) Schematic of illuminated SLM, the controlling part is comprised of 288 × 288 resolvable pixels.

HR grids. The resolution of all HR grids is equivalent to the original target pattern, in other words
27 × 27. We fill the blank pixels by bilinear interpolation for the final HR image.

The HR grids are divided into several sub windows, as seeing in Fig. 5(c), each is comprised of
4 × 4 adjacent resolvable pixels and with 4 registered pixels consisted in. The 4 registered pixels
in every sub window are from different LR images. For each macro pixel region there needs 9 sub
windows, and totally 81 sub windows are necessary to cover the supposed SLM area. The bilinear
interpolation operations are executed in all sub windows sequentially.

In practice, noise is inevitable which will degrade the reconstruction quality. There are recon-
struction noise and experimental noise in the proposed method experimentally. The reconstruction
noise is included in the modified observation model Eq. (9), expressed as the blur matrix B.The
B is unknown, of Nslm × Nslm, defined by B = S†

Nslm×M · SM×Nslm
. According to the feature of phase

conjugate operator discussed in [4], [18], the more M has been used, the B is more approached
the identity matrix I. In other words, one can simply increasing M for a better LR reconstruction
performance. In the proposed setup, the main experimental noises include the residual amplitude
modulation, the optical system distortion and the nonuniform of the used scattering sample. Given
the noises are randomized and the retrieved target image is constant, we adopt a simple but
effective way for the SNR’s improvement. We superimpose multi retrieved LR images each is
reconstructed from a shifted target pattern, with different full macro pixel shifting and with the same
subpixel shift factor. During that both the reconstruction noise and the experimental noises are
averaged and thus eliminated while the target image is held. For example, after 9 superimpositions
each LR image’s intensity SNR is approximately 9 times than before. The final improved HR images
is obtained by SR using these superimposed LR images.

3. Experimental results

The experimental setup is as showed in Fig. 6(a). An expanded monochromatic collimated beam
at 532nm is illuminating on a LC-SLM (PLUTO-2-vis-096). As seeing in Fig. 6(b), the SLM’s
illuminated pixels has been divided into controlling part and referenced part. Both the projector
mask and the target pattern are loaded on the controlling part. Lights from the referenced part are
used for interferometry. There are 288 × 288 modulator pixels (the number of Nslm) located in the
controlling part. A 4-f telescope system with magnification of 0.75 is used to conjugate SLM pixels
to points at the entrance of the sample (two stacked diffusers, DG600, Thorlabs). A CCD camera
(Point Gray GS3-U3-14S5M-C) is placed 3cm behind the sample’s output to record the scattered
field.
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Fig. 7 (a) The original HR target. Pure amplitude pattern with the white arrows indicate the translations
in horizontal and vertical. (b) The adopted projector mask for measuring TM. (c) The ideal LR projection
image without subpixel shifting from computer simulation.

Fig. 8 Experimental results of retrieved LR images. The shift factor (�x,�y ) = (0, 0). (a)–(d) are
reconstructed with γ = 1, 2, 5 and 10, respectively. (e) The superimposed result is from 9 frame, all
with γ = 10.

In the rest of this chapter, we first illuminate the used HR target and the adopted projector mask.
Then we offer the experimental results of LR images reconstruction and evaluate its performance.
The results and performance evaluation of SR are given at last.

The adopted HR target is as seeing in Fig. 7(a), pure amplitude pattern of 288 × 288, of which
different part have gradually enhanced intensity (square of amplitude). The black background
indicates region of SLM’s controlling part. For the TM’s measurement, the used projector mask
is as seeing in Fig. 7(b). As shown, every 9 × 9 adjacent resolvable pixels are controlled as single
macro pixel, and totally 32 × 32 macro pixels cover the entire controlling part. In the object pattern
Fig. 7(a) and all following images including the prior Fig. 3, the scale bars mean the same length
of 3 macro pixels. The target’s ideal LR projection image without subpixel shifting is as seeing in
Fig. 7(c), an intensity image (square of obtained pure amplitude pattern) obtained from computer
simulation.

In this implement, Nslm = 288 × 288, N = 1024 by the projector mask. And the number of chosen
CCD pixels M which is used for TM based reconstructions is quantified by the sampling rate
parameter γ , defined as γ = M/N. For example, while γ = 10, the used M = 10240. The shift
factors in horizontal and vertical �x and �y can be 0, 1/3, or 2/3, correspond to 9 LR images.
With γ = 10, partial experimental retrieved LR images with different shift factor have been showed
in Fig. 3. Given the LR reconstruction performance is concerned with the number of γ and the
process of superimposition theoretically, to test that we offer the reconstructed LR images with
(�x,�y ) = (0, 0) as an instance. With γ = 1, 2, 5 and 10 without superimposition, the experimental
results are showed in Fig. 8(a)–(d), respectively. The superimposition result is as seeing in Fig. 8(e),
superimposed from 9 frame full-pixel shifting image each obtained with γ = 10.

The Pearson Correlation Coefficient (CORR) has been used to evaluate the performance of TM
based image detection, while LR pattern is used as target whose resolution matches its projector
mask [4]. Value of CORR is calculated between the retrieved image and the original LR pattern.
Here, we chose this parameter to quantify the performance of LR reconstructions, by computing
the value between the retrieved LR image like Fig. 8 and the ideal LR result from simulation. The
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TABLE 2

Relationship Between CORR and γ , for (�x, �y ) = (0, 0) with Different γ

TABLE 3

Relationship Between CORR and γ , for Different Subpixel Shift Factors with γ = 10

Fig. 9 Experimental results of final retrieved HR images. (a)–(d) are reconstructed from LR images with
γ = 1, 2, 5 and 10, respectively. (e) The result from superimposed LR images, with γ = 10.

ideal image of Fig. 8 has been showed in Fig. 7(c). We give the CORR values of Fig. 8 in Table
2. Besides, the CORR for LR images with other subpixel shift factors, seeing in Fig. 3, are also
given in Table 3. As shown, when γ is increasing, the accurate result emerged gradually. And after
superimposition, the CORR run up to 0.9412. The experimental result bear comparison with the
ideal result.

The resolution of retrieved LR images is 32 × 32. As expressed in Fig. 5, we put them
into HR grids directly, or say the subpixel registration operation. The resolution of HR grids is
288 × 288, matching the original pattern, comprised of 1024 macro pixels. Each macro pixel region
is of 9 × 9 HR grids, and with 3 × 3 sub windows included. Each window is of 4 × 4 resolvable
pixels. Totally 1024 × 9 sub windows are necessary to cover all HR grids. We execute bilinear
interpolation operations in all sub windows for the final HR image. The retrieved HR image is as
seeing in Fig. 9. And Fig. 9(a)–(d) correspond to γ = 1, 2, 5 and 10, respectively. That means,
for example γ = 2 indicates the HR image is reconstructed from 9 LR images, every LR image is
reconstructed with γ = 2 like Fig. 8(b). Fig. 9(e) is reconstructed from superimposed LR images,
all superimposed from 9 frame, each with γ = 10.

In order to evaluate the performance of the final SR results, we introduce the Structural Similarity
Index (SSIM) parameter, computed between the retrieved HR image and the original pattern. The
SSIM is ranging from 0 to 1, larger SSIM means better performance. The SSIM values of Fig. 9 are
offered in Table 4. The SSIM value of ideal simulated result which has been given in Fig. 3 is 0.6048.
As shown the performance of superimposed result (SSIM = 0.5874) with γ = 10 approaches the
theoretical value. And in contrast with Fig. 9(d) (SSIM = 0.4709), the superimposed result Fig. 9(e)
smoothed the inhomogeneous noise mainly induced by the sample’s nonuniform.
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TABLE 4

Relationship Between SSIM and Different γ

Fig. 10 (a) The experimental result after subpixel registration without bilinear interpolation. (b) The
simulation result after subpixel registration without bilinear interpolation. (c) The result of bilinear
interpolation without subpixel shifts.

For the SNR issue, both simply increasing M and the superimposition process just act in LR
reconstruction processes, therefore finally improve the SR performance. In our method the SR
operation is comprised of subpixel registration and the simplest bilinear interpolation. We further
discussed the resolution influence of the two processes respectively. Fig. 10(a) is the experimental
result of subpixel registration without bilinear interpolation. The achieved image is of resolution 96 ×
96, generated from the 9 superimposed LR projector images each is of resolution 32 × 32 as shown
in Fig. 8(e). The simulation result is in Fig. 10(b) which is directly down-sampled from the original
target pattern in Fig. 7(a), also of resolution 96 × 96. The CORR between these experimental and
simulation results is 0.9533. We further compared the result with and without the subpixel shifts.
Fig. 10(c) is the straightforward bilinear interpolation result generated from single LR projector
image showed in Fig. 8(e). The CORR between Fig. 10(c) and the simulation result Fig. 10(b) is
0.7220, far less than that 0.9533. As shown, through subpixel shifts based TM reconstruction and
further subpixel registration operation, the achieved resolution improvement successfully reaches
to a factor of 3. In the proposed method, in order to compare SSIM between the final result and the
original target pattern, we adopted the bilinear interpolation operation to make the final resolution
reach to 288 × 288 equivalent to that original. It doesn’t means our resolution improvement reaches
to a factor of 9 exactly. Other popular SR algorithm may perform better than the proposed method.

4. Discussion and conclusion

Among our method the phase conjugate operator has been chosen. Another popular one, the
pseudo-inverse operator .−1 which has showed theoretical advancement of being able to recon-
struct without reconstruction noise at low-level experimental noise [4], [20]. It’s not straightforward
for unmatched HR target because T −1 �= PS−1, referring to Eq. (4). Other TM based reconstruction
ways by use of iteration-based algorithms such as OMP [21], TVAL3 [22] and compressive sensing
based methods [6], [23] have not been discussed in this paper. In the proposed implement, virtual
patterns have been used as the original target, which are loaded on the SLM. For real life target, TM
based image detection method has been explored such as detection through single multimode fiber
[24], [25]. Our method may be helpful for these TM based uses for a higher resolution performance,
while its number of calibrated input modes or say the achieved resolution have not reached fiber’s
number of resolvable modes. Besides, the purposed setup has a limitation for imaging dynamic
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objects, better performance may be achieved by using advanced device such as DMD or through
using FPGA instead of computer for controlling.

In this paper, we propose a transmission matrix based image super-resolution reconstruction
method. HR patterns loaded on SLM with subpixel shifting factors are used as imaging target.
Formula derivation and experimental results show that the images from phase conjugate recon-
struction can be thought as LR projection images of the original HR target. The LR images are
down-sampled by the adopted projector mask during TM based reconstruction processes. We
achieve final HR image by subpixel registration and bilinear interpolation operations. The SNR
issue has been discussed. Experimental results show the feasibility of the proposed method.
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