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Abstract A well-planned electric transmission infrastructure is the foundation of
a reliable and efficient power system, especially in the presence of large scale re-
newable generation. However, the current electricity market designs lack incentive
mechanisms which can guarantee optimal transmission investments and ensure
reliable integration of renewable generation such as wind. This paper first pro-
poses a stochastic bilevel disjunctive program for optimal transmission investment
based on the newly proposed theoretical H-R-G-V incentive mechanism. The upper
level is a profit-maximization problem of an independent transmission company
(Transco), while the lower level is a welfare maximization problem. The revenue
of the Transco is bounded by a regulatory constraint set by the regulator in order
to induce socially optimal investments. The application of the H-R-G-V mecha-
nism allows the regulator to ensure social maximum transmission investments and
helps to reduce transmission congestion and wind power spillage. The transmis-
sion investment under the H-R-G-V mechanism is modeled as a stochastic bilevel
disjunctive program. To solve the developed mathematical model we first propose
a series of linearization and reformulation techniques to recast the original model
as a stochastic mixed integer linear problem (MILP). We exploit the disjunctive
nature of the reformulated stochastic MILP model and further propose a Bean
decomposition algorithm to efficiently solve the stochastic MILP model. The pro-
posed decomposition algorithm is also modified and accelerated to improve the
computational performance. The computational performance of our MILP model-
ing approach and modified and accelerated Bean decomposition algorithm is stud-
ied through several examples in detail. The simulation results confirm a promising
performance of both the modeling approach and its solution algorithm.
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1 Introduction

Optimal investment in transmission networks is a major concern in electricity
markets around the world, largely due to growing electricity demand and increas-
ing penetration of variable renewable generation. While the generation and retail
sectors are effectively managed through competitive market rules, the transmis-
sion sector remains a natural monopoly and in many states is managed through
independent profit-maximizing transmission companies (Transco). A Transco is
responsible for the transmission lines’ maintenance and the investments in addi-
tional transmission capacity. The reimbursement of transmission investment costs
depends on the regulation and the incentive mechanisms adopted by the regula-
tory entity of the state. Currently the transmission sector is experiencing a lack
of investment incentives (Rosellón et al 2018), (Hesamzadeh et al 2018). With the
growth of renewables the absence of adequate incentive mechanisms will result in
increased transmission congestion costs which will negatively affect social welfare
(European Commission 2003), (Dyer 2003).

Various incentive mechanisms were proposed to tackle the incentive problem.
They can be divided into two major groups, subsidy mechanisms and constraint
mechanisms. Subsidy mechanisms were initially introduced by (Loeb and Magat
1979) and further developed by (Sappington and Sibley 1988) where an incremental
surplus subsidy scheme (ISS) was proposed. The mechanism then was applied to
transmission pricing and investments in (Gans and King 2000). On the other hand,
constraint mechanisms were proposed by (Vogelsang 2001) and (Tanaka 2007),
who use price-cap constraints to incentivize optimal transmission investment by
a Transco. Under certain conditions, these mechanisms lead to transmission in-
vestment decisions which maximize social welfare (Hogan et al 2010). (Joskow
and Tirole 2002) propose a reward/penalty mechanism. In this mechanism, the
regulator rewards the Transco when the transmission network is expanded and
the merchandising surplus as well as network congestion are decreased. (Léautier
2000) proposes an out-turn mechanism. The out-turn is defined as the difference
between actual electricity prices and prices without transmission congestion. The
Transco is responsible for total out-turn cost and any transmission losses. Varia-
tions of such incentive mechanisms were widely applied on energy infrastructure
investments (Neumann et al 2015). More recently, an alternative incentive mecha-
nism for transmission investments has been proposed by (Hesamzadeh et al 2018)
following the incentive mechanisms in (Sappington and Sibley 1988) and (Hogan
et al 2010). The H-R-G-V (Hesamzadeh-Rosellon-Gabriel-Vogelsang) mechanism
envisages a dynamic interaction between a profit-maximizing Transco, the regula-
tor and an Independent System Operator (ISO). The H-R-G-V mechanism com-
bines the price cap approach with the ISS scheme. A regulatory entity (regulator)
sets a charge for transmission network users (generators and loads) with variable
fees corresponding to nodal price differences that are related to the merchandising
surplus. In addition, generators and loads are charged with a fixed fee. This mech-
anism induces social welfare maximizing investments and efficient nodal prices for
all planning periods. The comparison of advantages of aforementioned inventive
mechanisms is presented in Table 1.

Theoretical justifications that the H-R-G-V mechanism can be effectively used
for transmission investments have been presented in (Vogelsang 2018). Mathemat-
ically, the transmission investment problem under the H-R-G-V incentive mecha-
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Table 1 Comparison of different incentive mechanisms.

Advantages: Cost-Plus ISS H-R-V H-R-G-V
Does not involve subsidies yes no yes yes
Guarantees socially optimal investments no yes no yes
Based on market information no yes yes yes
Promotes competitive behavior no no yes yes
Simple to model yes yes no yes
Convergence to global solution is guaranteed yes yes no yes

nism is formulated as a non-linear disjunctive program. The mathematical formu-
lation and the solution algorithm previously proposed for modeling the H-R-G-V
regulation are applied only to a small example system and they are not practi-
cal for real-size applications (Hesamzadeh et al 2018). Moreover, the application
of the H-R-G-V mechanism in (Hesamzadeh et al 2018) and in (Vogelsang 2018)
was considered only under deterministic input parameters. The growth of variable
renewable generation will result in increased stochasticity in the system which
should be taken into account in transmission investments as well. Thus, in this
paper we extend the application of the mechanism to a stochastic framework and
propose a solution algorithm which will mathematically guarantee a globally op-
timal solution.

The resulting initial model is the deterministic equivalent of a stochastic bilevel
disjunctive program with integer variables. The solution of the formulated problem
is complicated through several non-linear terms and disjunctive constraints. Thus,
through a series of proposed linearization techniques, the initial bilevel program
is transformed into a mixed-integer linear program (MILP) with disjunctive con-
straints. The disjunctive constraints are also complicating the solution process so
that state-of the art solvers cannot be applied directly with a guarantee of finding
a global solution.

A disjunctive program can be reformulated into a mixed-integer program using
several existing techniques including the convex hull, cutting planes and disjunctive
constraint linearization techniques1. All these techniques provide a reformulation
of the original feasible sets and there are limitations specific for each technique.
Convex hull methods are proved to provide a tight reformulation. Nevertheless,
the approach requires additional variables and constraints which considerably in-
crease the size of the problem for transmission investment models. On the other
hand, the disjunctive constraint linearization technique does not affect the size
of the problem. However, the disjunctive parameters involved in the reformula-
tion create computational issues for the solver. A disjunctive parameter that is
not tuned affects the convergence of the problem (Hooker 2011). The literature
provides several methodologies for tuning the disjunctive parameter. The method-
ologies for tuning the disjunctive parameter can be found in (Trespalacios and
Grossmann 2015) and (Hooker 2011). These methodologies are proved to provide
good approximations of the disjunctive parameters under certain conditions but
additional large scale optimization problems need to be solved for each case and
optimality of the outcome still cannot be guaranteed. The problem of the disjunc-

1 The disjunctive constraint linearization technique is also called the big-M reformulation
techniques in some literature. Please see references (Hooker 2011) and (Trespalacios and Gross-
mann 2015)
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tive parameter tuning becomes especially hard when the reformulation involves
variables without physical upper or lower bounds which is the case in our pro-
posed model.

Various solution algorithms can be considered to solve the reformulated dis-
junctive program. In (Garces et al 2009) and (Maurovich-Horvat et al 2015) state-
of-the-art solvers such as CPLEX are used to solve the transmission investment
model. Such methodology guarantees convergence to an optimal solution, however
the application to our proposed stochastic MILP will require additional tuning
of the disjunctive parameter. In addition, the tractability of the solution is low
for large-scale problems (Bertsimas et al 2018). In the large-scale problems, the
number of variables and constraints might exceed the level which can be handled
by state-of-the-art solvers such as CPLEX. Accordingly, solvers such as CPLEX
might not be able to find the optimal solution efficiently (tractability issue). In
these cases, it is suggested to decompose the large optimization problem into
smaller ones with reduced number of variables and constraints. In this way, the
optimal solution can be found more efficiently (improved tractability). One of the
most widely used decomposition algorithms is Benders decomposition algorithm.
In (Conejo et al 2006) and (McCusker and Hobbs 2003), the Benders decom-
position algorithm is used to improve computational tractability considering the
uncertainty in the system. The Benders decomposition algorithm proves to be an
effective tool and it reduces the computational complexity substantially. While the
Benders decomposition algorithm is proved to be effective and can be applied to
transmission investment models it does not solve the complications arising from
incorporating the incentive mechanism into the transmission investment model.
Moreover, the presence of a hard-to-tune disjunctive parameter will prevent a di-
rect application of the Benders decomposition algorithm to our proposed MILP.
A sub-optimally tuned disjunctive parameter will result in weak Benders cuts and
will cause reduced tractability of the problem (Hooker 2011),(Codato and Fischetti
2004).Additional Gomory cuts were proposed to tackle the problem of disjunctive
parameters in (Binato et al 2001), however the proposed approach achieves only
an approximate disjunctive parameter without guaranteeing that it was tuned
to optimality. Thus, the application of the Benders decomposition algorithm to
disjunctive problems has challenges associated with disjunctive parameters.

Employing the disjunctive nature of our reformulated MILP model, we pro-
pose an algorithm based on the Bean decomposition algorithm. The Bean decom-
position algorithm follows the Benders decomposition algorithm and these two
algorithms can be directly compared. The Bean decomposition algorithm directly
exploits the disjunctive nature of our proposed MILP model and it has a bet-
ter computational tractability than Benders decomposition algorithm. We also
modify the Bean decomposition algorithm such that disjunctive parameters are
completely removed from solution algorithm. Accordingly, they are not needed
to be optimally tuned. Moreover the modified Bean decomposition algorithm is
accelerated by using some additional constraints. The benefits of our proposed
algorithm in comparison to existing solution methodologies are presented in Table
2.

Accordingly, the main contributions of the current paper can be highlighted
through the following points:
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Table 2 Comparison of solution methodologies. Disj.: Disjunctive

Global Tuning of disj. Disj. parameter Improved
solution parameter optimality tractability

is required guaranteed
Direct application of yes yes no no
state-of-the-art solvers
Standard Benders yes yes no no
decomposition algorithm
Benders decomposition yes no no no
with disjunctive
parameter tuning
Standard Bean yes yes no no
decomposition algorithm
Our proposed decomposition yes no yes yes
algorithm

– The current paper presents an extension of the theoretical H-R-G-V incentive
mechanism to the stochastic modeling framework. Wind generation uncertainty
is considered in the proposed stochastic framework. The resulting model is
a stochastic bilevel disjunctive program which is hard to solve. Accordingly,
a series of reformulation and linearization techniques are proposed to recast
the original model into an easier-to-solve stochastic MILP with disjunctive
constraints.

– The paper then proposes a specialized decomposition algorithm based on the
Bean decomposition algorithm to solve the derived MILP model. The proposed
decomposition algorithm is aimed at guaranteeing the convergence to the glob-
ally optimal solution with good computational tractability and to avoid tuning
of the disjunctive parameters. Moreover, it is accelerated by using some addi-
tional constraints.

– Several case studies of different size are presented to illustrate the performance
of the incentive mechanism and solution methodology. We have demonstrated
that the H-R-G-V incentive mechanism can be effectively used for transmis-
sion investment. The numerical results show that the proposed decomposition
algorithm outperforms the standard Benders decomposition algorithm and it
can be used effectively to obtain a globally optimal solution with better com-
putational tractability.

The current paper is organized as follows. Section II describes the incentive-based
regulated transmission investment mechanism and formulates the mathematical
model. Section III then introduces a stochastic bilevel disjunctive program for the
transmission investment planning problem based on the H-R-G-V mechanism. In
Section IV the stochastic MILP reformulation of the proposed model is presented.
Section V contains a short description of the standard Benders decomposition algo-
rithm followed by our proposed decomposition algorithm. An illustrative example,
case studies and the results are presented in Section VI. Section VII provides con-
clusions. Finally, a short discussion of reliability issues as well as a description of
scenario generation methodology are presented in Appendix A.1 and Appendix
A.2.
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2 Incentive-based regulation: introduction to the H-R-G-V regulatory
constraint

The incentive-based regulated transmission investment assumes that three inde-
pendent organizations are involved in the investment planning and operation of a
power system. The first organization is the welfare maximizing independent system
operator (ISO) which operates dispatchable conventional and renewable genera-
tion assets and calculates the merchandizing surplus. The second organization is a
regulated independent transmission company (Transco) which owns a transmission
network and is responsible for transmission investment planning and for setting a
fixed fee for loads and generators for transmission investments expenses. Finally,
the third organization is a regulator which is responsible for providing proper reg-
ulatory mechanisms to ensure socially optimal investment decisions, meaning that
the regulator has a social welfare maximizing objective. The interaction between
ISO, regulator and Transco for transmission investments is illustrated in Figure 1.
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Fig. 1 Incentive-based regulation for transmission investments

The Transco maximizes its profit by expanding its transmission network while
considering a fixed fee calculated by the regulator. The Transco communicates
transmission investment decisions to the ISO. The ISO dispatches the system and
communicates the required information to the regulator. The regulator calculates
the fixed fee and communicates the fixed fee to the Transco. The Trasco also
receives the merchandising surplus through auctioning transmission contracts.

Under H-R-G-V incentive mechanism the regulatory constraint links the fixed
fee to the generator surplus and load surplus. These generator and load surplus
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are influenced by transmission investment decisions of Transco. The fixed fee is
closely related to the social welfare increase resulting from the network invest-
ments. The fixed fee paid by the network users could be seen as a substitute to
subsidy payments by the government or the regulator. In order to make a de-
cision on new line investments and transmission tariffs, the Transco has to take
into account expected generation dispatch, electricity demand and nodal prices
which are the outputs of the problem of the welfare maximizing ISO. In order to
provide the expected dispatch of the system, the ISO collects the bids from gener-
ators and loads. Under the assumption of perfect competition between generators
and between loads the interaction of ISO, generators and loads can be modeled
as cost-minimizing dispatch of a power system. Thus, the regulated transmission
investments can be formulated as an interaction between ISO, Transco and reg-
ulator. From the modeling perspective, the simulation of the interaction between
regulator and Transco can be merged. Under the H-R-G-V incentive mechanism
the regulator can be represented effectively through the regulatory constraint ap-
plied to the operation and investment planning of the Transco. This will lead us
to bilevel formulation of the regulated transmission investment problem.

In the upper-level problem, the Transco maximizes its profit which consists
of the sum of its network merchandising surplus and a fixed fee to transmission
network users (which is limited by the regulatory constraint) minus total invest-
ment costs. In the lower-level problem, the ISO takes into account the investment
decisions made by the Transco and dispatches generation and loads by maximiz-
ing social welfare. The optimal dispatch is used to calculate the merchandising
surplus, load surplus and generation surplus. The interaction between upper-level
problem and lower-level problem is illustrated in Figure (2).

Upper-level problem:
Regulated transmission
investment planning

Lower-level problem:
ISO economic dispatch

Merchandising Surplus
Load Surplus
Generation Surplus

Transmission
investment
decisions

Fig. 2 Relation between upper-level problem and lower-level problem under H-R-G-V incen-
tive regulation

The following assumptions are considered in this paper:

– The Transco and regulator have all information about economic dispatch model
of the ISO. The fixed fee is calculated by the regulator and considered by the
Transco. The transmission investment costs are only known by the Transco.

– We assume that the maximum demand is expected to grow by a certain percent-
age each of the following investment planning periods. Moreover, we assume
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that demand is horizontal until it reaches a maximum. The maximum demand
level is defined separately for each power system bus.

– Uncertainty comes only from wind generation and it is modeled using a moment-
matching technique. The demand uncertainty is considered to be relatively low
and negligible. A short discussion of incorporating additional uncertainties can
be found in the Appendix A.2.

– We assume that the dispatch is made in a merit order. This means perfect
competition in generation and load sector.

– The Transco is assumed to be a risk-neutral regulated profit-maximizing entity.
– The regulator has the power to affect the profit of the Transco by setting a

limit on the fixed fee. The main objective of the regulator is to maximize social
welfare.

– The transmission investment decision in a particular line corridor is performed
only once throughout the planning horizon and the investment decision is not
reversible (Xifan and McDonald 1994). The capacities of the candidate lines
considered for investment are fixed and known in advance.

The H-R-G-V regulatory constraint is based on the overall change of generation
and demand surplus and is formulated as:

∆Φt = ∆E[πGt ] +∆E[πLt ] (1)

Where Φt is a fixed fee at investment period t to be set by the regulator and paid
to the Transco and ∆Φt = Φt−Φt−1. E[πGt ] and E[πLt ] are the expected generation
and demand surplus at investment period t while ∆E[πGt ] = E[πGt ]− E[πGt−1] and
∆E[πLt ] = E[πLt ] − E[πLt−1]. Mathematically, the bilevel regulated transmission
investment problem can be expressed as:

Maximize
∑
t∈T

(E[πTt ] + Φt − C
T
t ) (2a)

Subject to :

Transmission investment decision constraint ∀t∈{T \t1} (2b)

∆Φt = ∆E[πGt ] +∆E[πLt ] ∀t∈{T \t1} (2c)

Φt1 = 0 (2d)

Maximize
∑
t∈T

(E[πGt ] + E[πTt ] + E[πLt ])

Subject to : system’s technical constraints. (2e)

Here E[πTt ] is the merchandising surplus earned by the Transco in the spot market.

C
T
t and Φt are the total transmission investment cost and the fixed fee respectively.

In addition, we assume that the first investment planning period t1 is a status quo
period with no investment decisions and no fixed fee.

Social Welfare (SWt) in the context of this paper is defined for each investment
planning period as

SWt =
∑
t∈T

(E[πGt ] + E[πTt ] + E[πLt ]− CTt ) (3)
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If we reformulate the objective function (2a) by replacing the fixed fee with the
regulatory constraint we obtain (Hesamzadeh et al 2018):∑
t∈T

(E[πTt ] + Φt − C
T
t ) =

∑
t∈{T \t1}

(E[πGt ] + E[πTt ] + E[πLt ]− CTt ) + E[πTt=t1]+

(|T | − 1)(E[πGt=t1] + E[πLt=t1]) (4)

The reformulated objective function (4) shows that the regulated objective func-
tion of the Transco is equivalent to the social welfare objective (sum of generator,
load and transmission surplus minus investment cost) at investment planning pe-
riods t ∈ {T \ t1}. Transco does not perform investments in period t1 ∈ T and the
term (|T | − 1)(E[πGt=t1] + E[πLt=t1]) will not affect the investment results. Thus,
the H-R-G-V mechanism promotes efficient cost allocation of the transmission in-
vestments and social maximizing investment decisions.
In (2) the ISO objective function is formulated as maximization of total generator,
load and transmission surplus in the spot market. This maximization is equivalent
to total load utility minus the total generation cost in the spot market. We assume
perfect competition between generators and between loads. Thus, the mathemati-
cal formulation of regulated transmission investment with the H-R-G-V incentive
mechanism can be presented in general terms as:

Maximize Merchandizing surplus + Fixed fee

- Total transmission investment cost (5a)

Subject to:

H-R-G-V regulatory constraint for each planning period (5b)

Linearized transmission investment constraints (5c)

Maximize (Total load utility - total generation cost ) (5d)

Subject to: (5e)

Energy balance constraint (5f)

Power flow constraints (5g)

Upper and lower operation bounds (5h)

2.1 Nomenclature

Indices and Sets

t, t̂ ∈ T Investment planning periods;
k ∈ K Operation sub-periods;
n ∈ N Buses ;
i ∈ D Demand;
j ∈ G Generation;
w ∈ W Wind generation;
l ∈ L Existing transmission lines;
m ∈M Candidate transmission lines;
s ∈ S Wind power generation scenarios;
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Parameters

Ξ(m) Disjunctive parameters used to linearize power flow constraints of
candidate lines

Ξ(T ) Disjunctive parameters used to linearize terms T1 and T2
Cm,t Investment cost of new line m ($);
cj Marginal cost of generator j, ($/MWh);
αi Intercept of linear utility i, ($/MWh);
β Expected annual price escalation rate;
γ Expected periodic rate of return;
πs Probability of scenario s;

I
(n)
ni Elements of incidence matrix I which shows the relation

between set N and D ;

J
(n)
nj Elements of incidence matrix J which shows the relation

between set N and G ;

W
(n)
nw Elements of incidence matrix W which shows the relation

between set N and W ;

S
(n)
nl , R

(n)
nl Elements of incident matrices S and S which shows the

relation between set N and L ;
Rn,l, Rn,m Elements of incident matrices R and R which shows the

relation between set N and M ;
Fl Maximum capacity of line l, (MWh);

F̂m Maximum capacity of line m, (MWh);
Xl Reactance of line l, (p.u.);
Xm Reactance of line m, (p.u.);
Gj Maximum production of generator j , (MWh);

Ĝwks Maximum production of wind generator w in scenario s
in operation sub-period k, (MWh);

Dit Maximum demand i at planning period t, (MWh);
Θ Voltage angle limits, (p.u);
Ψ Number of operation sub-periods in one year;
Binary variables
zmt, ymt Investment variables for line m at investment period t;
Continuous variables
ditks Consumption of demand i at investment period t,

sub-period k and scenario s, (MWh);
gjtks Production of generator j at investment period t,

sub-period k and scenario s, (MWh);
ĝwtks Production of wind generator w at investment period t,

sub-period k and scenario s, (MWh);
fltks Flow of line l at investment period t,

sub-period k and scenario s, (MWh);

f̂mtks Flow of line m at investment period t,
sub-period k and scenario s, (MWh);

θntks Voltage angle at bus n, investment period t,
sub-period k and scenario s, (p.u.);

Φt Fixed fee of Transco at investment period t, ($);
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2.2 The welfare-maximizing ISO

The ISO performs economic dispatch by maximizing the total load utility mi-
nus the generation cost given the available transmission lines. The power system
consists of buses, which represent demand or generation or both. The buses are
connected through existing (l) or newly built (m) transmission lines. Incident ma-
trices S,R, S and R are used to link sending and receiving buses to existing and

candidate lines. The elements of the matrices S
(n)
nl , R

(n)
nl , R

(n)
nm and S

(n)
nm will be

equal to one if bus n is a sending or receiving bus for line l or m. By analogy

incident matrices I, J and W with elements I
(n)
ni , J

(n)
nj and W

(n)
nw are used to map

generators and loads to buses of the power system. The economic dispatch prob-
lem is presented by a linear optimization problem described in (6) that models the
dispatch for a given investment planning period t, an operation sub-period k and
a scenario realization s. The assumed scenarios are the result of fluctuating wind
power generation which is modeled using a moment-matching scenario generation
technique (see Appendix A.2). The detailed description of power system modeling
approaches can be found in (Leuthold et al 2012).

The objective of the optimization problem (6) is to maximize the utility of

demand minus the cost of generation. Ωs = {ditks, gjtks, ĝwtks, fltks, f̂mtks, θntks}
is the set of decision variables of (6).

Maximize
Ωs

∑
i∈D

αiditks −
∑
j∈G

cj gjtks (6a)

Subject to :∑
j∈G

J
(n)
nj gjtks +

∑
w∈W

W (n)
nw ĝwtks −

∑
i∈D

I
(n)
ni ditks −

∑
l∈L

S
(n)
nl fltks +

∑
l∈L

R
(n)
nl fltks−∑

m∈M
S
(n)
nmf̂mtks +

∑
m∈M

R
(n)
nmf̂mtks = 0 ∀n∈N ,t∈T ,k∈K,s∈S (6b)

− 100

Xl
(
∑
n∈N

S
(n)
nl θntks −

∑
n∈N

R
(n)
nl θntks) + fltks = 0 ∀l∈L,t∈T ,k∈K,s∈S (6c)

[
f̂mtks = 0
zmt = 0

]
∨

[
f̂mtks − 100

Xm
(
∑
n∈N S

(n)
nmθntks −

∑
n∈N R

(n)
nmθntks) = 0

zmt = 1

]
∀m∈M,t∈T (6d)

− F̂m ≤ f̂mtks ≤ F̂m ∀m∈M,t∈T ,k∈K,s∈S (6e)

− Fl ≤ fltks ≤ Fl ∀l∈L,t∈T ,k∈K,s∈S (6f)

0 ≤ gjtks ≤ Gj ∀j∈G,s∈S,t∈T ,k (6g)

0 ≤ ĝwtks ≤ Ĝwks ∀w∈W,t∈T ,k∈K,s∈S (6h)

0 ≤ ditks ≤ Dit ∀i∈D,t∈T ,k∈K,s∈S (6i)

θn=n1tks = 0 ∀t∈T ,k∈K,s∈S (6j)

ditks, gjtks, ĝwtks, fltks, f̂mtks, θntks ∈ R (6k)

Following the general formulation in (5) the energy balance constraints (5f) at
each bus are formulated in (6b). Power flows constraints (5g) are modeled as in
(6c) for existing transmission lines and through disjunctive constraints (6d) for
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candidate lines. Integer variables zmt in optimization problem (6) are considered
to be parameters and are decision variables of the upper-level problem which will
be discussed in the following subsection. Thermal limits of the lines are set in (6f)
and (6e). Finally, upper and lower limits on generation, demand and voltage angles
are enforced through (6g)-(??). The maximum demand is assumed to change for
each investment planning period to reflect the growing trend of the demand over
the years. The maximum wind generation is assumed to be a stochastic parameter
and varies for each investment planning period t, operation sub-period k and
scenario realization s. Constraint (6j) sets bus n = n1 as the reference bus.

2.3 The profit-maximizing Transco

The profit maximization model of the Transco is presented through the stochastic
bilevel disjunctive program in (7) .

Maximize
zmt,ymt,Φt

∑
t∈T

(1 + β)t

(1 + γ)t
〈Φt + Ψ

∑
s

πs(
∑
n,i,k

I
(n)
ni λntksditks −

∑
n,j,k

J
(n)
nj λntksgjtks−∑

n∈N ,w∈W
W (n)
nw λntksĝwtks)−

∑
m∈M

Cm,tymt〉 (7a)

Subject to :

zm,t=t1 = 0 ∀m∈M (7b)

zmt =
∑

t̂∈{t1,..t}

ym,t̂ ∀m∈M,t∈T (7c)

∑
t∈T

ymt ≤ 1 ∀m∈M,t∈T (7d)

Φt=1 = 0 (7e)

E[πLt ] =
∑
s

πs(
∑
i,k

αiditks −
∑
n,i,k

I
(n)
ni λntksditks) ∀t∈T (7f)

E[πGt ] =
∑
s

πs(
∑
n,j,k

(J
(n)
nj λntksgjtks −

∑
j,k

cjgjtks) +
∑
n,w,k

W (n)
nw λntksĝwtks) ∀t∈T

(7g)

Φt − Φt−1 = Ψ(E[πLt ]− E[πLs,t−1] + E[πGt ]− E[πGs,t−1]) ∀t≥t2∈T (7h)

zmt ∈ {0, 1} (7i)

Where {ditks, gjtks, ĝwtks, λntks} ∈

{argMaximize
Ωs

∑
i∈D

αiditks −
∑
j∈G

cj gjtks (7j)

Subject to :

(6b)− (6k)} ∀t∈T ,k∈K,s∈S (7k)

Optimization problem (7) simulates the bilevel program of the Transco under the
H-R-G-V incentive mechanism. The optimization problem (6) is the lower-level
program of the optimization problem (7). The objective of the Transco (7a) is
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to maximize its expected profit over the investment planning period (t). The ex-
pected revenue of the Transco is the expected merchandising surplus. The profit
of the Transco is modeled as an expected value due to the stochasticity of wind
generation and consequently the stochasticity of ISO economic dispatch. Each in-
vestment period (t) consists of operation sub-periods (k) which take into account
representative hours of each year. In order to reflect the time value of the invest-
ment decision the total profit of the Transco for each investment planning period

t is discounted using the present value factor calculated as (1+β)t

(1+γ)t . The present
value factor is based on the expected rate of price escalation between investment
periods β and the expected periodic rate of return γ. The parameter (ψ) is used
to match short-term operation costs incurred in each operation sub-period k with
long term investment costs incurred in each investment planning period t. For
daily operation sub-periods (K = {k1, ...k24}) and yearly investment periods, the
parameter Ψ will be set to 365 while for hourly operation and yearly investment
periods parameter Ψ will be set to 3870. The total Transco profit is the sum of
the network merchandising surplus and a fixed fee to loads and generators (Φt)
minus the investment costs (

∑
m∈M Cm,tymt). The fixed fee (Φt) is set by the reg-

ulatory constraint (7h) which is modeled according to the formulation provided
in (1). Generation surplus is calculated as a difference in generation revenue from
operating in the spot market and generation operating costs as (7g). Similarly,
demand surplus is calculated as a difference between the total benefit of consump-
tion calculated using a linear utility function and the cost of energy purchased
in the spot market. Generation surplus and demand surplus are affected by the
stochastic nature of wind generation and thus should be included as expected val-
ues to consider different possible scenarios of economic dispatch. Earlier we have
assumed that the first investment planning period t1 is a status quo period with
neither investments nor a fixed fee. Thus, additional constraints are introduced to
set the investment decision ymt and Φt to zero at the initial investment planning
period t1. We assume linear investment costs. The investment decision is taken
through binary variable ymt which is equal to 1 if an investment at period t is
made and 0 otherwise. Constraint (7d) ensures that the decision to invest in line
m is taken only once and it is irreversible. At the same time an additional variable
zmt is introduced to capture whether or not a candidate line m exists in any given
planning period t. The variable zmt is introduced to simplify the formulation of the
bilevel problem and avoids the need to use

∑
t∈T ymt in the lower-level program

which may potentially complicate the solution process. The investment decision
problem of the Transco as well as the regulatory constraint are subject to the so-
lution of the lower-level programs which are modeled based on formulation (6). It
represents the spot market clearance by the ISO in the considered power system.
The lower-level program is a set of ISO economic dispatch models (6) which are
solved simultaneously for each investment planning period t, operation sub-period
k and scenario s.

The proposed transmission investment model is a stochastic bilevel disjunctive
program. In the following section we present steps which will lead to an equivalent
single-level stochastic MILP formulation with disjunctive constraints.
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2.4 The linearization of disjunctive constraints (6d)

Disjunctive constraints can be linearized using a set of disjunctive parameters.
This type of reformulation (also known as big-M technique) was well studied in
(Lee and Grossmann 2000) and (Trespalacios and Grossmann 2015). The choice
of disjunctive parameters is critical for linear reformulation of disjunctive con-
straints. The parameters should be chosen big enough that the original feasibility
set does not change and not too big that the reformulated constraints are as tight
as possible. If the disjunctive parameter is chosen carefully then the reformulated
problem will be equivalent to the original one. Using this technique, the disjunc-
tive constraints (6d) in the lower-level program of the Transco’s problem (7) can
be reformulated as linear constraints in (8).

f̂mtks −
100

Xm
(
∑
n∈N

S
(n)
nmθntks −

∑
n∈N

R
(n)
nmθntks) ≤

Ξ(m)(1− zmt) : (σmtks) ∀m∈M,t∈T ,k∈K,s∈S (8a)

f̂mtks −
100

Xm
(
∑
n∈N

S
(n)
nmθntks −

∑
n∈N

R
(n)
nmθntks) ≥

− Ξ(m)(1− zmt) : (σmtks) ∀m∈M,t∈T ,k∈K,s∈S (8b)

− zmtΞ(m) ≤ f̂mtks ≤ zmtΞ(m) : (ζ
mtks

, ζmtks) ∀m∈M,t∈T ,k∈K,s∈S (8c)

2.5 Reformulation using LP duality theorem

The optimization problem (7) after performing the reformulation described in
subsection 2.4 becomes a bilevel mixed integer program. The lower-level problem
is a linear program, for which LP duality theorem can be applied (Bertsekas 1999).
Thus, the lower-level program can be equivalently described by its primal and dual
lower level variables which satisfy primal and dual feasibility constraints and strong
duality condition. The dual lower level feasibility constraints and strong duality
conditions are derived in (9) and (10), respectively.

2.6 Nomenclature

Lagrange multiplier variables of (7)
λntks Price at bus n, investment period t,

sub-period k and scenario s, ($/MWh);
sub-period k and scenario s, ($/p.u);

µltks, µltks Lagrange multipliers for line l upper and lower limit

constraints (6f) at investment period t,
sub-period k and scenario s, ($/MWh);

σltks Lagrange multipliers for power flow constraints of line l
constraints (6c) at investment period t,
sub-period k and scenario s, ($/MWh);
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γmtks, γmtks Lagrange multipliers for line m upper and lower limit

constraints (6e) at investment period t,
sub-period k and scenario s, ($/MWh)

σmtks, σmtks Lagrange multipliers for line m disjunctive relaxation
constraints (8a)-(8b) at investment period t,
sub-period k and scenario s, ($/MWh)

ζmtks, ζmtks Lagrange multipliers for line m disjunctive relaxation

constraints (8c) at investment period t,
sub-period k and scenario s, ($/MWh);

2.6.1 Dual constraints

Dual constraints of the linear program (6) are derived as in (9).

αi −
∑
n∈N

I
(n)
ni λntks + ωitks − ωitks = 0 ∀i∈D,t∈T ,k∈K,s∈S (9a)

− cj +
∑
n∈N

J
(n)
nj λntks + νjtks − νjtks = 0 ∀j∈G,t∈T ,k∈K,s∈S (9b)

∑
n∈N

W (n)
nw λntks + η

wtks
− ηwtks = 0 ∀w∈W,t∈T ,k∈K,s∈S (9c)

−
∑
n∈N

S
(n)
nl λntks +

∑
n∈N

R
(n)
nl λntks + σltks + µ

ltks
− µltks = 0 ∀l∈L,t∈T ,k∈K,s∈S

(9d)

−
∑
n∈N

S
(n)
nmλntks +

∑
n∈N

R
(n)
nmλntks + σmtks − σmtks + γ

mtks
− γmtks+

ζ
mtks

− ζmtks = 0 ∀m∈M,t∈T ,k∈K,s∈S (9e)

− 100

Xl

∑
l∈L

S
(n)
nl σltks +

100

Xl

∑
l

R
(n)
nl σltks + ξtksif(n = n1)−

100

Xm

∑
m∈M

S
(n)
nmσmtks +

100

Xm

∑
m∈M

R
(n)
nmσmtks +

100

Xm

∑
m∈M

S
(n)
nmσmtks−

100

Xm

∑
m∈M

R
(n)
nmσmtks = 0 ∀n∈N ,t∈T ,k∈K,s∈S (9f)

2.6.2 Strong duality condition

The strong duality condition of linear program (7) is formulated as in (10).∑
i∈D

αiditks −
∑
j∈G

cj gjtks =
∑
t∈T
〈
∑
i∈D

Ditωitks +
∑
j∈G

Gjνjtks+∑
l∈L

Fl(µltks + µltks) +
∑
m∈M

F̂m(γ
mtks

+ γmtks)+∑
m∈M

zmtΞ
(m)(ζ

mtks
+ ζmtks)︸ ︷︷ ︸

T1

+



16 D. Khastieva et al.∑
m∈M

Ξ(m)(1− zmt)(σmtks + σmtks)︸ ︷︷ ︸
T2

〉 ∀t∈T ,k∈K,s∈S (10)

Lemma 1 shows that terms T1 and T2 are zero at optimal solution.

Lemma 1 If the disjunctive parameter Ξ(m) is tuned properly and optimization
problem (6) is solved to optimality, then terms T1 and T2 in (10) are always equal
to zero. Thus, we can reformulate the strong duality constraint as a combination of
the strong duality constraint without terms T1 and T2 and the enforcing constraints
T1=0 and T2=0, separately.

Proof For term T1, if zmt = 0 then T1 = 0. For the case where zmt = 1, since
the disjunctive parameter Ξ(m) is tuned properly and we solve the problem to
optimality, then the complimentary conditions are satisfied and constraints (8c)
are not active. This, means (ζmtks + ζ

mtks
) = 0 or T1 = 0. By analogy we can

show that T2 is also always equal to zero when the KarushKuhnTucker (KKT)
conditions are satisfied: i.e an optimal solution is reached.
By ensuring constraints T1=0 and T2=0, we can drop T1 and T2 from (10) and
rewrite the strong duality condition as:∑

i∈D
αiditks −

∑
j∈G

cj gjtks =

∑
t∈T
〈
∑
i∈D

Ditωitks +
∑
j∈G

Gjνjtks +
∑
l∈L

Fl(µltks + µltks)+∑
m∈M

F̂m(γ
mtks

+ γmtks) ∀t∈T ,k∈K,s∈S (11a)

∑
m∈M

zmtΞ
(m)(ζ

mtks
+ ζmtks) ∀m∈M,t∈T ,k∈K,s∈S (11b)

∑
m∈M

Ξ(m)(1− zmt)(σmtks + σmtks) ∀m∈M,t∈T ,k∈K,s∈S (11c)

The terms T1 and T2 in (11) are complicated terms due to their non-linear struc-
ture. Those terms can be linearized as in (12).

− Ξ(T )(1− zmt) ≤ σmtks + σmtks ≤ Ξ
(T )(1− zmt) ∀m∈M,t∈T ,k∈K,s∈S (12a)

− Ξ(T )zmt ≤ ζmtks + ζ
mtks

≤ Ξ(T )zmt ∀m∈M,t∈T ,k∈K,s∈S (12b)

2.6.3 The problem of tuning the disjunctive parameter

The disjunctive parameters Ξ(m) and Ξ(T ) used in constraints (8) and (12) typi-
cally create some problems in the solution process (Hooker 2011) and (Trespalacios
and Grossmann 2015).

First of all, a too large or a too small disjunctive parameter creates numerical
errors and rounding errors for the optimizer. Thus, referring to constraints, the
parameter Ξ(m) should be chosen small enough not to create numerical complica-
tions but big enough to guarantee that the constraints (8) are not binding when
zmt = 0 and the original feasibility set does not change. Such disjunctive parameter
can be found by analyzing the power flow limits of the candidate lines and voltage
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angle limits. However, when it comes to the second disjunctive parameter, Ξ(T ),
used in (12) the same methodology cannot be applied. Constraints in (12) contain
Lagrange multipliers which do not have natural upper bounds (in case of non-
negative Lagrange multipliers). Thus, it will be hard to guarantee the optimality
of the tuned disjunctive parameter. Most of the existing methodologies designed
to tune the disjunctive parameter focus on models with constraints similar to (8),
which have a natural upper bound and thus can be tuned effectively. However,
no methodology can guarantee the optimal choice of the disjunctive parameter for
constraints without natural bounds as in (12).

Fig. 3 The impact of disjunctive parameter tuning on the relaxed feasible region. The region
corresponds to the area inside the dashed or solid lines.
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(a) Original disjunctive region

(b) Relaxed feasible region using tuned dis-
junctive parameter.

(c) Relaxed feasible region using not tuned
disjunctive parameter.

The impact of disjunctive parameter tuning on the relaxed feasible region is
conceptually illustrated in Figure 3. The S1 and S2 are original feasible regions
with disjunctive property (either S1 or S2 is the feasible region). Relaxed feasible
regions using optimally tuned disjunctive parameters and the case when disjunctive
parameters are not optimally tuned are demonstrated as region (b) and region (c),
respectively. As we can see region (b) is a tighter relaxation.

2.7 Linearization

The bilinear terms λntksditks, λntksgjtks and λntksĝwtks in the Transco profit
function and in the H-R-G-V regulatory constraint can be linearized as in (13)
and (14).∑
n∈N ,i∈D

I
(n)
ni λntksditks −

∑
n∈N ,j∈G

J
(n)
nj λntksgjtks −

∑
n∈N ,w∈W

W (n)
nw λntksĝwtks =
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∑
n∈N

λntks(
∑
i∈D

I
(n)
ni ditks −

∑
j∈G

J
(n)
nj gjtks −

∑
w

W (n)
nw ĝwtks)

(6b)
=

∑
l∈L

fltks(−
∑
n∈N

S
(n)
nl λntks +

∑
n∈N

R
(n)
nl λntks) +

∑
m∈M

f̂mtks(−
∑
n∈N

S
(n)
nmλntks+

∑
n

R
(n)
nmλntks)

(9d),(9e)
=

∑
l∈L

fltks(−σltks − µltks + µltks)+

∑
m∈M

f̂mtks(−σmtks −+σmtks − γmtks + γmtks − ζmtks + ζmtks)
(∗)
=

∑
l∈L

Fl(µltks + µ
ltks

) +
∑
m∈M

F̂m(γmtks + γ
mtks

) + T1 + T2
Lemma(1)

=

∑
l∈L

Fl(µltks + µ
ltks

) +
∑
m∈M

F̂m(γmtks + γ
mtks

) ∀t∈T ,k∈K,s∈S (13)

Where (∗) comes from complementary slackness conditions for equations (6f),

(6e) and (8a),(8b),(8c).

For bilinear terms in H-R-G-V regulatory constraint we have:

〈
∑
i∈D

αiditks −
∑

n∈N ,i∈D
I
(n)
ni λntksditks〉+ 〈

∑
n∈N ,j∈G

J
(n)
nj λntksgjtks −

∑
j∈G

cjgjtks〉+

∑
w

W (n)
nw λntksĝwtks

(9a)−(9c)
=

∑
i∈D

ditks(ωitks − ωitks)+∑
j∈G

gjtks(νjtks − νjtks) +
∑
w

ĝwtks(ηwtks − ηwtks)
(∗∗)
=

∑
i∈D

Dit ωitks +
∑
j∈G

Gjνjtks +
∑
w

Ĝwksηwtks ∀t∈T ,k∈K,s∈S (14)

Where (∗∗) results from complementary slackness conditions for (6g),(6h) and (6i).

2.8 The reformulated stochastic MILP with linearized disjunctive constraints

The resulting model after performed linearizations and reformulations is presented
in (15).

Maximize :
zmt,ymt,Ωp

∑
t∈T

(1 + β)t

(1 + γ)t
〈
∑
s

πsψ(
∑
l,k

Fl(µltks + µ
ltks

) +
∑
m,k

F̂m(µltks + µ
ltks

)+

Φt −
∑
m∈M

Cm,tymt〉 (15a)

Subject to :

(7b)− (7e) (15b)

Φt − Ψ
∑
s

πs(
∑
i,k

Ditωitks +
∑
j,k

Gjνjtks +
∑
w,k

Ĝwksηwtks) =
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Φt−1 − Ψ
∑
s

πs(
∑
i,k

Dit−1 ωit−1ks +
∑
j,k

Gjνjt−1ks +
∑
w,k

Ĝwksηwt−1ks) ∀t∈{T \t1}

(15c)

(6b)− (6f), (8a)− (8c), (6e)− (6k), (9a)− (9f), (12a)− (12b) (15d)∑
i∈D

Ditωitks +
∑
j∈G

Gjνjtks +
∑
l∈L

Fl(µltks + µ
ltks

)+

∑
m

f̂mtks(γmtks + γ
mtks

) +
∑
w

Ĝwksηwtks =∑
i∈D

αiditks −
∑
j∈G

cjgjtks ∀t∈T ,k∈K,s∈S (15e)

ωitks, ωitks, νjtks, νjtks, ηwtks, ηwtks, µltks, µltks, σltks, Φt, γmtks, γmtks, σmtks,

σmtks, ζmtks, ζmtks ≥ 0 (15f)

zmt, ymt ∈ {0, 1} (15g)

Here Ωp = Ωs∪ {Φt, fltks, f̂mtks, θntks , ditks, gjtks, ĝwtks, ωitks, ωitks, νjtks,
νjtks, ηwtks, ηwtks, µltks, µltks, σltks, γmtks, γmtks, σmtks, σmtks, ζmtks, ζmtks}
is the set of decision variables of optimization problem (15).

3 The proposed decomposition algorithm

The stochastic MILP model (15) has a special decomposing structure. Such struc-
ture allows us to decompose the problem into a number of independent optimiza-
tion problems by separating the variables into two vectors. The first vector consists
of continuous variables and the second one consist of integer variables. One of the
decomposition algorithms for such types of problems is the Benders decomposition
algorithm (Lumbreras and Ramos 2013). However, the Benders decomposition al-
gorithm might be ineffective for disjunctive programs, especially when variables
in the disjunctive constraint do not have natural upper bounds and the disjunc-
tive parameter cannot be tuned optimally. When the disjunctive parameter is not
optimal, the Benders cuts are proved to be weak and the convergence of the Ben-
ders decomposition algorithm cannot be guaranteed (Hooker 2011). This is the
case for our proposed stochastic MILP model (15). Thus, we propose a specialized
decomposition algorithm based on the Bean decomposition algorithm proposed in
(Bean et al 1992). In (Bean et al 1992), the authors propose the cuts which are
identical to Benders cuts, however, they allow one to eliminate the disjunctive pa-
rameter by exploiting the properties of the extreme points. Moreover Bean’s cuts
are especially applicable for the problems with similar decomposable properties as
the proposed problem (15): i.e. for problems that can be decomposed over inte-
ger variables which appear in bilinear terms and were linearized using the big-M
reformulation. Also, the master problem formulated using Bean’s cuts has similar
properties as sets partitioning problems and it further improves the tractability of
the solution.

The Bean decomposition algorithm is an iterative solution algorithm and has
two separate steps at each iteration. First, duality theory is used to determine up-
per bounds through fixing complicating integer variables (assuming a minimization
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program). The second step is to find a lower bound by solving the relaxed prob-
lem. The iteration between upper- and lower-bound programs is performed until
the upper and lower bounds are close enough and the optimal solution is found.
The special structure of the Bean decomposition algorithm allows one to create a
tighter lower bound and a computationally more tractable master problem.

3.1 Nomenclature

To present the Bean decomposition algorithm the followings are defined.

Indices and Sets
a, a′ ∈ A Bean decomposition iterations;

Ω
(1)
sa , Ω

(2)
sa Sets of extreme points;

Binary variables
ua, u0 Auxiliary variables;
Parameters
Ka Optimal objective value of subproblem;
La Upper-bound constant for a step size;
Υa A penalty factor;
H Suitably large constants;
ẑamt, ŷ

a
mt Fixed investment decisions of line m at period t;

Variables of the subproblem

λ̂
(9a)
itks Lagrange multipliers for dual constraints(9a),(MWh);

λ̂
(9b)
jtks Lagrange multipliers for dual constraints(9b),(MWh);

λ̂
(9c)
wtks Lagrange multipliers for dual constraints (9c), (MWh);

λ̂
(9d)
ltks Lagrange multipliers for dual constraints (9d), (MWh);

λ̂
(9e)
mtks Lagrange multipliers for dual constraints (9e), (MWh);

λ̂
(9f)
ntks Lagrange multipliers for dual constraints (9f), (p.u);

λ̂
(15e)
tks Lagrange multipliers for strong duality conditions (15e);

λ̂
(15c)
t Lagrange multipliers for regulatory constraint (15c);

λ̂ntks Lagrange multipliers for energy balance constraints (6b)
at bus n in period t,k for scenario s, ($/MWh);

µ
(6f)
ltks , µ

(6f)

ltks
Lagrange multipliers for line l upper and lower limit

constraints (6f), ($/MWh);

σ
(6c)
ltks Lagrange multipliers for power flow constraints of line l

constraints (6c), ($/MWh);

γ
(6e)
mtks, γ

(6e)

mtks
Lagrange multipliers for line m upper and lower limit

constraints (6e), ($/MWh)

σ
(8a)
mtks, σ

(8b)
mtks Lagrange multipliers for line m disjunctive relaxation

constraints (8a)-(8b), ($/MWh)
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ζ
(8c)
mtks, ζ

(8c)

mtks
Lagrange multipliers for line m disjunctive relaxation

constraints (8c), ($/MWh);

ϑ
(12a)
mtks, ϑ

(12a)
mtks Lagrange multipliers for T1 and T2 linearization

constraints (12a), (MWh);

κ
(12b)
mtks, κ

(12b)
mtks Lagrange multipliers for T1 and T2 linearization

constraints (12b), (MWh);

3.2 The Bean decomposition algorithm

The Bean decomposition algorithm includes a master problem and a sub-problem
and can be applied to two-stage stochastic programs with disjunctive constraints.
The stochastic master problem is formulated as in (16) while a stochastic sub-

problem is formulated as in (17). The sets Ω
(1)
sa and Ω

(2)
sa represent index sets of

extreme points and correspond to Lagrange multipliers of disjunctive constraints

(8) and (12). The set Ω
(1)
sa corresponds to extreme points of constraints (8a),(8b)

and (12a) while the set Ω
(2)
sa corresponds to extreme points of constraints (8c)

and (12b). The Bean decomposition algorithm iteratevely solves master problem
and sub-problem. At each iteration the master problem is updated with additional
feasibility cut. Iterations are indexed using a ∈ A. The set A becomes larger after
each iteration if the algorithm does not satisfy the stopping criterion.

The master problem of the standard Bean decomposition algorithm is formu-
lated as in (16).

Maximize
ua,zmt,ymt

∑
a∈A

Kaua +Hu0 (16a)

Subject to :∑
mts∈Ω(1)

sa

zmt +
∑

mts∈Ω(2)
sa

(1− zmt) ≤ |Ω(1)
sa |+ |Ω(2)

sa | − 1 +
∑

a′if(Ka′≥Ka)

ua′ ∀a∈A

(16b)∑
a

ua = 1 (16c)

zmt =
∑

t̂∈{t1,..t}

ymt̂ ∀m∈M,t∈T (16d)

∑
t∈T

ymt ≤ 1 ∀m∈M (16e)

zmt, ymt ∈ {0, 1} (16f)

The master problem (16) is a stochastic mixed-integer linear program with sets
partitioning characteristics. All the constraints of the master problem contain only
binary variables. Variables ua are introduced for each iteration of the decompo-
sition algorithm and are used to activate the decomposition cuts corresponding
to the solution of the sub-problem. Variables zmt and ymt are the transmission
investment variables. Variable u0 is an auxiliary variable used to prevent the formu-
lation to be unbounded from above. The objective function of the master problem
consists of the objective function values of the sub-problems Ka at each iteration
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multiplied by the corresponding auxiliary variables ua. The objective function also
includes auxiliary variable u0 multiplied by a large enough parameter H which sets
the upper boundary for the master problem and this prevents the master problem
from being unbounded. Feasibility cuts based on Bean’s cuts are introduced in
(16b) and they are based on extreme point sets of the subproblems. The extreme
point sets are used to determine whether to include integer variables zmt or not.
The cut is activated using auxiliary variables ua. The cuts in (16b) are equivalent
to Benders cuts with optimal disjunctive parameter but the cuts in (16b) do not
contain any disjunctive parameter in the formulation (Bean 1992). An additional
constraint is introduced in (16c) to ensure that only one cut is activated at each
iteration. The rest of constraints (16d)-(16f) are introduced to ensure that the so-
lution of the master problem satisfies line investment constraints (7b)-(7d). Once
the master problem is solved, the solution of the investment decision variables zmt
and ymt are used to formulate the sub-problem

In order to formulate the sub-problem of the standard Bean decomposition
algorithm, we first fix line investment decision variables zmt and ymt in problem
(15) and treat them as constants. The investment decision parameters used in
the sub-problem are modeled through ẑamt and ŷamt. Once the integer variables
are fixed and treated as parameters the problem (15) becomes a linear program.
The sub-problem is the dual of the optimization problem (15a),(15c)-(15g) where
investment decisions are fixed to the values obtained from master problem. The
sub-problem of the standard Bean decomposition algorithm is formulated as in
(17).
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the set of decision variables of the problem (17).

4 Modification and acceleration

The sub-problem (17) contains the disjunctive parameters. These disjunctive pa-
rameters are the terms T5 to T8 of the sub-problem. However, using Lemma 2
one can show that these terms will be equal to zero at the optimal solution.

Lemma 2 If problem (17) is solved to optimality and disjunctive parameters are
chosen optimally, then terms T5 to T8 in (17a) are always equal to zero. Thus, we
can reformulate the objective function as a combination of the objective function
without terms T5 to T8 as in (18a) and with additional constraints (18c)-(18f)
which ensure that T5 to T8 are equal to zero

Proof The proof is by analogy to Lemma 1. Terms T5 to T8 in dual problem (17)
correspond to complementary slackness conditions of the primal problem (15a),(15c)-
(15g). If the optimal solution is reached then the complementary slackness condi-
tions are satisfied and T5=0, T6=0, T7=0 and T8=0

Therefore, the sub-problem (17) can be reformulated as (18) without any disjunc-
tive parameter.
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ẑamt(σ
(8a)
mtks + σ

(8b)
mtks) = 0 ∀m∈M,t∈T ,k∈K,s∈S (18c)
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The Bean master problem (16) is formulated such that each feasibility cut takes
into account all scenarios. In order to create tighter cuts we can reformulate the
master problem (16) and replace the feasibility cut (16b) with feasibility cuts for
each scenario separately as it is shown in (19). The convergence improvement is
shown in (Santoso et al 2005).∑
mt∈Ω(1)

sa

zmt +
∑

mt∈Ω(2)
sa

(1− zmt) ≤ |Ω(1)
sa |+ |Ω(2)

sa | − 1 +
∑

a′if(Ka′≥Ka)

ua′ ∀a∈A,s∈S

(19)

Furthermore, authors in (Santoso et al 2005) propose a technique to strengthen
Benders cuts. We apply a similar procedure to the Bean decomposition algorithm
which results in the additional constraint (20) in the master problem formulation
(16) ∑

mt if(ẑamt=1)

(1− zmt) +
∑

mt if(ẑamt=0)

zmt ≤ La ∀a∈A (20)

The intuition behind (20) is based on the need to prevent wide steps between
different iterations of the master problem. At the initial iterations of the decom-
position algorithm, the solution space of the master problem is vast which means
at each iteration the master problem may provide a solution that is very differ-
ent from the previous iteration solution. By introducing constraint (20), we can
prevent the solution from changing too much between different itarations and
thereby reduce the necessary number of iterations. The constraint (20) improves
the convergence of the Bean decomposition algorithm. However, the parameter
La depends on the starting point and on the iteration number, and it is hard to
identify. The parameter La should be manually tuned for each case study. We pro-
pose to penalize large steps at each iteration in objective function using a penalty
factor Υa. The resulting modified Bean master problem is shown in (21).
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t̂∈{t1,..,t}
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∑
t∈T

ymt ≤ 1 ∀m∈M (21e)

zmt, ymt ∈ {0, 1} (21f)

Our proposed solution algorithm solves the modified sub-problem (18) and the
modified master problem (21) while increasing the number of iterations until the
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Candidate line: M1 
Capacity: 100 MW
Cost: 40 M$

Capacity: 100 MW

Candidate line: M2 
Capacity: 100 MW
Cost: 55 M$

N1 N2
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G2

D2
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500 MW

Capacity: 

550 MW

Existing line: L1

Fig. 4 The single-line diagram of the two-bus system.

optimality gap is satisfied. The proposed decomposition algorithm is presented in
Algorithm 1. By using this algorithm the numerical instability problem caused by
the disjunctive parameters is removed and whole solution procedure is accelerated.

Algorithm 1 Modified and accelerated Bean decomposition algorithm
1: procedure Bean decomposition
2: zmt =initial feasible solution; UB=∞; LB=−∞
3: while UP>LB do
4: Solve subproblem (18)

5: Update Ω
(1)
sa and Ω

(2)
sa

6: Append constraints (21b) and solve master problem (21)
7: end while
8: return Optimal solution zmt and ymt
9: end procedure

5 Illustrative examples

As an illustrative example, the two-bus system presented in Figure 4 is studied
in detail. The system contains wind generation which is solely located in bus N1.
The initial transmission system is congested. We assume five planning periods
for transmission investment (|T |=5). Each investment planning period represents
one year and includes 8760 hours of operation assuming one representative hour
for each investment planning period (ψ=8760, |K|=1). The Transco can build
additional transmission lines M1 and M2. The maximum demand for the first
period is set as 550 MW with a 10% rate of increase for each next planning year.
Wind is also considered as a dispatchable source of energy with zero marginal cost.
The present worth factor is calculated using an annual price escalation rate (β)
equal to 2% and expected rate of return (γ) of 10%. When the H-R-G-V incentive
mechanism is used, the Transco invests in M1 and M2 and sets a fixed fee of
4.76 M$ at t2 which then further decreases in each of the next periods. At the
same time demand reaches 550 MW at bus N2 and 150 MW at bus N1 which
corresponds to their maximum values. When the H-R-G-V incentive mechanism
is not used, the Transco will invest only in one line, M1, and the merchandising
surplus will rise by 33% in comparison with H-R-G-V case. Moreover, demand will
not reach the maximum value for t4 and t5 and the system is still congested. The
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Table 3 Investment results in the 2-bus system. Tran. Inv: Transmission Investment. IR:

H-R-G-V regulation applied. NR: No regulation applied. (∗)Wind spillage= Ĝwks−ĝwtks

Ĝwks

Approach Line label [from,to] t1 t2 t3 t4 t5
IR M1 [1,2] 0 1 1 1 1

M2 [1,2] 0 1 1 1 1
NR M1 [1,2] 0 1 1 1 1

M2 [1,2] 0 0 0 0 0
IR Fixed Fee (M$) 0 4.76 4.38 4.015 3.67
NR Fixed Fee (M$) - - - - -
IR Merchandising surplus (M$) 4.69 6.19 5.90 5.62 5.35
NR Merchandising surplus (M$) 4.69 8.19 7.60 7.05 6.54

Difference 0 -2 -1.50 -1.43 -1.19
IR Generator and Load 3.25 8.01 7.63 7.27 6.92

Surplus (M$)
NR Generator and Load 3.25 3.41 3.54 3.65 3.75

Surplus (M$)
Difference 0 4.6 4.09 3.62 3.17

IR Average price N1($) 27.22 98.01 98.01 98.01 98.01
Average price N2($) 179.68 179.68 179.68 179.68 179.68

NR Average price N1($) 27.22 54.45 54.45 54.45 54.45
Average price N2($) 179.68 179.68 179.68 179.68 179.68

IR Wind spillage (%)(∗) 10 0 0 0 0

NR Wind spillage (%)(∗) 10 2 2 2 2
Difference 0 -2 -2 -2 -2

IR Tran. Inv. Cost (M$) 0 1.571 0 0 0
NR Tran. Inv. Cost (M$) 0 0.762 0 0 0

Difference 0 0.809 0 0 0

introduction of the H-R-G-V incentive mechanism results in optimal investments
in transmission lines. This in turn leads to much lower merchandising surplus
and lower overall transmission congestion. The results for the two-bus system are
presented in Table 3. They were also compared to welfare-maximizing transmission
investment which has served as a benchmark. The results support the conclusions
obtained in (Hesamzadeh et al 2018). The H-R-G-V mechanism provides sufficient
incentives to the profit maximizing Transco to expand the transmission network
such that social welfare is maximized and the congestion in the transmission lines
and the wind power spillage are reduced.

As another illustrative example a five-bus system studied. The initial input
data for the 5-bus system can be found in Table 4, Table 5 and Table 6. The intro-
duction of the incentive mechanism results in optimal investments in transmission
lines which leads to less wind spillage and less transmission congestion. The results
for both, two-bus and five-bus case systems are presented in Table 3 and in Table
7, respectively.

6 Numerical results for large test systems

We apply the proposed stochastic MILP formulation presented in (15) to the
IEEE 30-bus, 118-bus and 300-bus test systems. Data for the IEEE test systems
are taken from data files of Matpower software, (Zimmerman et al 2011). The ad-
ditional data used for simulations can be found in Table 8. We solve optimization
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Table 4 Data of loads in the 5-bus system

Load Short-run Capacity (MW)
Marginal Utility ($/MWh) at t1

d1 300 191
d2 300 196
d3 400 156

Table 5 Data of generators in the 5-bus system

Generator Bus Short-run Capacity (MW)
Marginal Utility ($/MWh)

g1 n1 14 40
g2 n1 15 170
g3 n3 30 520
g4 n4 40 200
g5 n5 10 600

Table 6 Data of transmission lines in the 5-bus system

Line [from,to] Reactance Capacity Investment
label (p.u.) (MW) Cost ($/Cct.)

l1 [1,2] 0.4 100 -
l2 [1,4] 0.6 100 -
l3 [1,5] 0.2 100 -
l4 [2,3] 0.2 100 -
l5 [3,4] 0.4 100 -
l6 [4,5] 0.2 100 -

m1 [1,2] 0.2 100 200,000
m2 [3,5] 0.48 100 400,000
m3 [1,4] 0.63 100 310,000
m4 [5,2] 0.3 100 300,000
m5 [3,1] 0.3 100 380,000

problem (15) using the Benders decomposition algorithm, a commercially avail-
able state-of-the-art CPLEX solver2 and our proposed decomposition algorithm.
Both decomposition algorithm were implemented in GAMS software.The CPLEX
solver is used to solve the MILP master problem and the sub-problem of each
decomposition algorithm with the relative gap parameter set to zero. 3 The sim-
ulations are run on a computer with two processors and 128 GB of RAM. Wind
power scenarios were simulated using the moment-matching technique explained
in the Appendix A.2 of this paper (Rubasheuski et al 2014).

The performance of our proposed decomposition algorithm as compared to the
Benders decomposition algorithm and the CPLEX solver is presented in Table

2 The disjunctive parameters included in the formulation which is solved by the CPLEX
solver are tuned using an iterative method where disjunctive parameters were increased till the
point where the further change in the disjunctive parameters did not affect the solution of the
problem. It should be noted that we cannot guarantee that disjunctive parameters were tuned
to optimality. We are not aware of any methodology which allows one to tune the disjunctive
parameters without known upper bound to optimality.

3 This setting can be relaxed to allow for a small relative gap for both Bean and Benders
decomposition algorithms. However, one should keep in mind that the strength of the cuts
might be compromised. This is especially the case for Benders decomposition algorithm.
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Table 7 Investment results in the 5-bus system.Tran. Inv: Transmission Investment. IR: H-

R-G-V regulation applied. NR: No regulation applied. (∗)Wind spillage= Ĝwks−ĝwtks

Ĝwks

Approach Line label [from,to] t1 t2 t3 t4 t5
m1 [1,2] 0 1 1 1 1
m2 [3,5] 0 1 1 1 1

IR m3 [1,4] 0 1 1 1 1
m4 [5,2] 0 1 1 1 1
m5 [3,1] 0 0 0 0 0
m1 [1,2] 0 1 1 1 1
m2 [3,5] 0 0 0 0 0

NR m3 [1,4] 0 1 1 1 1
m4 [5,2] 0 1 1 1 1
m5 [3,1] 0 0 0 0 0

IR Fixed Fee (M$) 0 13.53 15.10 17.13 10.70
NR Fixed Fee (M$) - - - - -
IR Merchandising surplus (M$) 46.52 38.71 38.14 36.44 42.01
NR Merchandising surplus (M$) 46.52 51.74 52.69 53.37 53.06

Difference 0 -13.03 -14.55 -16.93 -11.05
IR Generator and Load 85.64 99.17 100.74 102.77 96.36

Surplus (M$)
NR Generator and Load 85.64 86.03 86.09 85.75 85.22

Surplus (M$)
Difference 0 13.14 14.65 17.02 11.13

IR Wind spillage (%)(∗) 7 0 0 0 0

NR Wind spillage (%)(∗) 7 1.43 1.43 1.43 1.43
Difference 0 -1.43 -1.43 -1.43 -1.43

IReg Tran. Inv. Cost (k$) 0 11523.8 0 0 0
NReg Tran. Inv. Cost (k$) 0 7714.3 0 0 0

Difference 0 3809 0 0 0

Table 8 Input data for case studies.

IEEE 30-bus IEEE 118-bus IEEE 300-bus
Number of candidate lines 20 30 60
Number of existing lines 30 175 411
Conventional Generation,(MWh) 335 4300 20678
Wind Generation, (MWh) 450 2500 12000
Scenarios, (N) 20 20 20
Operation subperiods, (N) 24 105 72
Maximum Load, (MWh) 600 4242 23526
Number of periods 10 10 15

Table 9 Results for IEEE 30-bus case study.

Number of Objective Computation Iterations
New Lines Function, ($) Time, (h)

CPLEX solver 4 145.15 0.485 -
Benders decomposition 4 145.15 1.48 584
algorithm
Proposed decomposition 4 145.15 0.456 152
algorithm
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Table 10 Results for IEEE 118-bus case study. ”∗”: no solution after 21 hours of simulation.

Number of Objective Computation iterations
New Lines Function, ($) Time, (h)

CPLEX solver ∗ ∗ ∗ ∗
Benders decomposition ∗ ∗ ∗ ∗
algorithm
Proposed decomposition 23 3859 10.14 2510
algorithm

Table 11 Results for IEEE 300-bus case study. ”∗”: no solution after 21 hours of simulation

Number of Objective Computation iterations
New Lines Function, ($) Time, (h)

CPLEX solver ∗ ∗ ∗ ∗
Benders decomposition ∗ ∗ ∗ ∗
algorithm
Proposed decomposition 15 10159 14.75 3192
algorithm

9, Table 10 and Table 11. It should be noted that both the standard Benders
decomposition algorithm and the CPLEX solver could not find an optimal solution
after 21 hours of simulation.

7 Conclusion

This paper presents a stochastic bilevel disjunctive program for transmission in-
vestment planning. The Transco is subject to a proposed H-R-G-V regulatory
constraint set by the regulator. The model takes into account uncertain wind gen-
eration using a moment matching technique. First, the stochastic bilevel disjunc-
tive program is transformed to a stochastic MILP with linearized disjunctive con-
straints. A series of linearizations and reformulation techniques are introduced to
arrive at the final stochastic MILP with linearized disjunctive constraints. To solve
the reformulated MILP model, a specialized decomposition algorithm is developed
employing the disjunctive nature of optimization problem. The proposed decom-
position algorithm is based on the Bean decomposition algorithm. The scenario-
separated feasability cuts and a penalization technique are used. Besides, we show
that the proposed decomposition algorithm does not require any tuning of dis-
junctive parameters.

The stochastic MILP reformulation and proposed decomposition algorithm
were applied to case studies of different size. In each case, the proposed H-R-G-V
mechanism effectively dealt with congested power systems with integrated stochas-
tic wind generation. The H-R-G-V mechanism incentivizes the Transco to produce
welfare-maximum outcomes resulting in much lower congestion cost in comparison
to the case where no regulation is present. Welfare-maximum transmission invest-
ments not only reduce the congestion cost but also support renewable generation
and result in reduced wind power spillage. The computational performance of the
proposed decomposition algorithm was tested further on IEEE 30-bus, 118-bus
and 300-bus test systems with stochastic wind generation. The numerical results
show that the proposed decomposition algorithm helps us to avoid the effect of the
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disjunctive parameter on finding the optimal solution and to improve the compu-
tational tractability of the problem. Therefore, the proposed H-R-G-V incentive
mechanism, which is reformulated as MILP model, and proposed decomposition
algorithm may be used as an efficient tool for transmission investment in electric
power systems with wind generation.

This work could be extended by including reliability criteria and other sources
of uncertainties in the transmission investment model under the H-R-G-V mech-
anism.
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A Appendix

A.1 Discussion of reliability issues and of economic risks for transmission
investment planning

Transmission investment planning is subject to various uncertainties. Renewable generation
and load uncertainties can congest the transmission system, especially, when the penetration
is high. Furthermore, outages and other malfunctions of the equipment are hard to predict and
therefore can affect the reliable operation of a power system. Therefore, these uncertainties
have to be taken into account while the decisions on the transmission lines investments are
made. In this section we provide a brief discussion of reliability criteria and risks related to
the economic uncertainties.

Reliability standards vary for each system and are customarily adapted based on changing
characteristics of the system such as, for example, the generation mix. The reliability standards
can be incorporated in any transmission planning by enforcing additional technical constraints
on transmission operation and planning. Under centralized planning, the reliability standards
can be seen as the main criteria for the investments. However, under market based transmission
planning the objective of a transmission investor is aimed at profit maximization. Yet, the
reliability criteria can be still enforced by a regulator or a system operator (ISO). This applies
to transmission investment planning under the H-R-G-V mechanism as well. The H-R-G-V
incentive mechanism promotes socially optimal investments and it is aimed at reducing the
congestion cost of the system. Reduced congestion, itself, will result in more reliable operation
of a power system. Moreover, based on the mathematical models presented in (6) and (7) the
system operator can still enforce additional technical reliability constraints which have to be
met for the secure operation of the system. For example, the N-1 criterion can be modeled
as an extra constraint in the lower-level program. This approach will lead to socially optimal
investments while reliability criteria are satisfied. Under a different approach the regulator
could promote reliability criteria by assigning monetary value to each criterion. Thus, the
reliability of the power system will become a part of the reward structure of the Transco
(Vogelsang 2018).

Apart from having to fulfill reliability criteria, the Transco can be subject to additional
economic risks. In this paper, we assume that the Transco is a risk neutral entity. However,
this assumption can be easily dropped and additional constraints on the risk tolerance of
the Transco can be added to the model. However, the complexity of the problem should be
reconsidered and therefore additional research is required to properly address the risk attitude
of the Transco.

Other uncertainties such as changes in demand, solar power generation and any other re-
newable generation uncertainties can be incorporated to the proposed model using the same,
moment-matching technique, presented in this paper. The description of the moment-matching
scenario generation technique can be found in Appendix A.2.
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A.2 The moment-matching method for generating wind scenarios

The moment-matching scenario generation technique is based on historical data. The method
does not require any knowledge of the distribution of uncertain parameters, instead, it exploits
statistical properties of the sampled historical data such as the mean (Mn), standard deviation
(SDn), skewness (SKn), kurtosis (KRTn) and correlation (Corrn,m). These measurements
are also known as moments. In (22) we present the equations used to calculate each of the
aforementioned statistical property. Once the moments of the historical sampled data are
known, we can generate a number of scenarios with the matching properties. The generation
of the scenarios is performed using the mathematical model presented in (23) by minimizing
the mismatch for each moment.

Mn =
1

K

∑
k

nk (22a)

SDn =

√
1

K

∑
k

(Mn − nk)2 (22b)

SKn =
1

K

∑
k(Mn − nk)3

SD3
n

(22c)

KRTn =
1

K

∑
k(Mn − nk)4

SD4
n

(22d)

Corrn,m =

∑
k(Mn − nk)(Mm −mk)√∑

k(Mn − nk)2
∑
k(Mm −mk)2

(22e)

Where n and m are the sets of uncertain parameters and k is the considered historical data
set with total of K elements.

Minimize :
ps

∑
n

((fM (n, p)−Mn)2 + (fSD(n, p)− SDn)2 + (fSK(n, p)− SKn)2

+ (fKRT (n, p)−KRTn)2) +
∑
n,m

(fCorr(n,m, p)− Corrn,m)2 (23a)

Subject to :

fM (n, p) =
∑
s

nsps (23b)

fSD(n, p) =
∑
s

(fM (n, p)− ns)2ps (23c)

fSK(n, p) =
∑
s

(fM (n, p)− ns)3ps
(fSD(n, p))3n

(23d)

fKRT (n, p) =
∑
s

(fM (n, p)− ns)4ps
(fSD(n, p))4

(23e)

fCorr(n,m, p) =∑
s

(fM (n, p)− ns)(fM (m, p)−ms)ps√
(fM (n, p)− ns)2(fM (m, p)−mk)2

(23f)

∑
s

ps = 1 (23g)

Where in (23), s is the index for scenarios and ps is the probability corresponding to each
scenario.


