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Abstract

Ascomycete fungi in the nests of ants inhabiting plants (= myrmecophytes) are very often

cultivated by the ants in small patches and used as food source. Where these fungi come

from is not known yet. Two scenarios of fungus recruitment are possible: (1) random infec-

tion through spores or hyphal fragments from the environment, or (2) transmission from

mother to daughter colonies by the foundress queen. It is also not known at which stage of

the colony life cycle fungiculture is initiated, and whether the- symbiont fungi serve as food

for the ant queen. To clarify these questions, we investigated four Azteca ant species inhab-

iting three different Cecropia species (C. insignis, C. obtusifolia, and C. peltata). We ana-

lysed an rRNA gene fragment from 52 fungal patches produced by founding queens and

compared them with those from established Azteca colonies (n = 54). The infrabuccal pock-

ets of winged queens were dissected to investigate whether young queens carry fungi from

their mother colony. Additionally, 15N labelling experiments were done to verify whether the

queen feeds on the patches until she is nourished by her first worker offspring. We infer from

the results that the fungi cultivated in hollow plant structures are transferred from the paren-

tal colony of the young queen. First, fungal genotypes/OTU diversity was not significantly

different between foundress queen patches and established colonies, and second, hyphal

parts were discovered in the infrabuccal pockets of female alates. We could show that fungi-

culture already starts before queens lay their eggs, and that the queens do not feed on fun-

gal patch material but feed it to the larvae. Our findings suggest that fungiculture may be

crucial for successful colony founding of arboreal ants in the tropics.

Introduction

Fungus farming in leaf cutter ants is famous; they grow basidiomycetes for food and manure

the fungal gardens with various substrates. In other ant taxa, fungi have occasionally been

reported to be present in the nests, but are generally regarded to be pathogens or merely com-

mensals [1–7], or have simply remained overlooked as they form inconspicuously small dark
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patches inside the hollow stems, petioles, or leaf pouches (so-called “domatium”) of the host

plants (myrmecophytes). Only in recent years has it become evident that these fungi are not

accidental inhabitants of the ant nests and are actively cultivated and used by ants [8, 9], and

represent a third symbiotic partner in many tropical ant-plant mutualisms [10, 11].

Most fungi cultivated inside the domatium belong to the order Chaetothyriales (Ascomy-

cota), a group of”black yeasts” characterized by slow growing and melanized hyphae. Chae-

tothyriales are highly diverse with respect to their lifestyles. They may be endophytes in plant

tissues [12], plant pathogens [13], epiphytes colonizing leaves of tropical trees [14], rock colo-

nizers in extreme habitats [15], or colonizers in human-made habitats like washing machines,

dish washers, or metro tunnels [16, 17]. Some are pathogens and are found to be infecting ani-

mal and human skin and central nervous system [18]. Ants are the only animals known so far

to live in a mutualistic relationship with chaetothyrialean fungi.

During the past couple of years, about 17 ant-plant associations that involve obligate chae-

tothyrialean fungi have been described [10, 11]. In these mutualistic associations, fungi are

used for nest construction, sophisticated prey capture and defence mechanisms [19–22]. They

are grown in small patches in the domatium and fed to the larvae [9, 23–25]. Some fungal

strains isolated from domatia are ubiquitous and not specific to either the ant or the plant spe-

cies, whereas other strains have been found to show some degree of ant-host specificity [23,

26].

Thus far, it is unknown how fungus-ant associations become established during the colony

life cycle of obligate plant-ants. Until now, ant associated Chaetothyriales were described only

from established colonies [5, 9–11, 23, 24]. When and how fungiculture is started, whether the

queen carries the fungi along from her mother colony, transmitting the symbiont vertically; or

whether inoculation occurs haphazardly when the young queen enters the domatium cavity or

even later during patrolling of the worker ants (horizontal transmission), is so far not

described from any ant-plant system with fungiculture.

To address these questions, we investigated fungiculture by Azteca queens founding new

colonies in young Cecropia trees (Urticaceae). In the genus Cecropia, a group of neotropical

pioneer trees, 46 of the 61 species are associated with ants [27]. A recent multigene phylogeny

inferred a single origin of the symbiotic relationship between Azteca ants and Cecropia plants,

starting around 8 Mya ago [28]. The Cecropia hosts provide hollow stem internodes for hous-

ing (domatia) and phyto-glycogen containing food bodies (Müllerian bodies) [29] for nutri-

tion. The ants in return deter herbivores, prune their host trees from encroaching vegetation,

and deposit extra nutrients within the hollow stem where they may be absorbed into the host

tree’s tissue [30–32]. In hollow stem internodes of Cecropia inhabited by Azteca colonies, we

regularly found chaetothyrialean fungi in small, clearly delimited patches. Some of the fungus

strains found were shared among different Azteca species, while others were ant-species spe-

cific [23]. This pattern indicates two possible scenarios of fungus recruitment: (1) random

infection through spores or hyphal fragments from the environment, or (2) transmission from

mother to daughter colony by the foundress queen. If foundress queens carry along fungi from

their mother colonies, the distribution and frequency of fungal strains in foundress queen col-

onized domatia should show the same pattern as observed in established colonies. If no such

pattern is observable, the inoculation is suggested to originate from random infection.

In the present study, we observed the queens’ behaviour during colony foundation in the

field, determined the fungal strains in patches of Azteca foundress queens with molecular

methods, and compared the pattern of fungal strains with that of established Azteca colonies

from the same sampling sites. We morphologically examined the infrabuccal pockets of alates

before and after their nuptial flight for presence of fungi. Finally, we investigated the role of

fungi as possible food source for the queen during the claustral colony founding (a stage in
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which queens do not forage but seal their nest during colony founding) using stable isotope

analysis.

Material andmethods

Study sites and species identification

Observations and sample collections were made in SW Costa Rica near the Tropical Research

Station La Gamba (www.lagamba.at; N08˚42’03”, W083˚12’06”, 70 m asl) and near the Monte-

verde cloud forest between Guacimál (N10˚12’57”, W084˚50’46”) and Santa Elena (N10˚

19’12”, W084˚49’30”) (345–1448 m asl). Patches of foundress queens and established colonies

were sampled at the same sites. The Cecropia trees with colony founding Azteca queens were

C. insignis Liebm., C. obtusifolia Bertol., and C. peltata L., between 0.5–2 m tall with a diameter

of 1–3 cm, and grew along roadsides or in forest gaps. Ants (Azteca alfari Emery, A. coerulei-

pennis Emery, A. constructor Emery, A. xanthochroa Roger) were identified with the key pro-

vided by Longino [33].

Foundress queens’ behaviour

A foundress queen was defined as a non-physogastric dealate mated female observed in a

recently colonised domatium, without any open entrance holes. Foundress queens either had

no associated brood, eggs only, or brood at all stages; some were accompanied by a few dwarf

workers.

We opened the stems of 64 young Cecropia plants (17 fromMonteverde, 47 from La

Gamba; in total 180 domatia with 212 living queens; see S2 Table), and documented the fol-

lowing parameters: the number of foundress queens and Azteca species per domatium (some-

times more than one species), the condition of the parenchyma on the inner domatia wall, the

presence or absence of fungal patches, the presence or absence of eggs, larvae, pupae, and, in a

few cases, newly hatched dwarf workers. Twice we were able to film a recently dealate gyne

while biting open, entering through, and subsequently sealing the entrance hole to the doma-

tium cavity with parenchyma scraped from the domatium wall (S1A–S1E Fig).

Fungal patch collection, DNA sequencing and analysis

Only fungal patches from domatia with a sealed entrance hole (see S1E Fig), which were big

enough (diameter>3 mm) for sufficient yield of fungal DNA, were considered for molecular

analysis (S1A and S1B Table). Whole patches were collected with sterile forceps, placed in plas-

tic vials, closed with air-permeable cotton wool, and dried in a box with silica gel. In all but

one case, we found only one patch per domatium, even though colony founding by multiple

foundresses in one domatium (pleometrosis) was quite common (S2A Fig).

In total, 52 fungal samples from small piles made by the foundress queens (in the following

named “foundress patches”) were sampled for sequencing. The majority (n = 45) were individ-

ual foundress patches with eighty-seven queens involved (12 Azteca alfari, 7 A. coeruleipennis,

33 A. constructor, 35 A. xanthochroa). In one domatium colonized by an A. coeruleipennis

queen, two fungal patches occurred. These were separately collected and analyzed. Six samples

were pooled from several rather small patches of A. alfari queens (S1A Table). Parenchyma

from the inner wall of five uninhabited domatia was collected as control. In addition, 25 patch

samples from established Azteca ant colonies defined by a distinct worker caste and re-opened

domatia entrances were also analysed.

DNA extraction, PCR, and Sanger dideoxy sequencing was performed according to the

protocols published earlier [10, 23]. For identification, we used the ITS1-5.8S-ITS2 (ITS)
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rRNA gene; details on primers, PCR and sequencing are described in [23]. Mixed sequences

were identified using a sequence comparison approach by comparing ambiguous alignment

positions with the sequences of known genotypes as described earlier [23]. All sequences are

deposited in GenBank (http://www.ncbi.nlm.nih.gov/genbank/). Strains and GenBank acces-

sion numbers from this study are listed in S1A and S1B Table.

A matrix containing new sequences from the current study, representative sequences of

Azteca associated operational taxonomic units (OTUs) [23] and selected sequences from other

fungi representing the “domatia symbiont clade” [10] was aligned using Muscle version 3.8.31

[34] and checked with BioEdit version 7.2.5. [35]. The final data matrix for the analysis con-

tained 468 nucleotide positions from 78 nucleotide sequences.

For phylogenetic reconstruction, a maximum likelihood analysis was done using MEGA7

[36], based on the Kimura 2-parameter (K2) model [37] with a discrete Gamma distribution

(+G; 5 categories, parameter = 0.4209) and a proportion of evolutionarily invariable sites (+I;

41.37% sites). Initial trees for the heuristic search were obtained by applying the Neighbour-

Joining method to a matrix of pairwise distances estimated using the Maximum Composite

Likelihood (MCL) approach; heuristic search was done with extensive subtree-pruning-

regrafting (SPR level 5) branch swapping.

Trees were rooted with Cladophialophora scillae [EU035412] and Cladophialophora hostae

[EU035407] as outgroups.

Infrabuccal pocket content

From four female alates (two A. constructor, one A. alfari and A. coeruleipennis) infrabuccal

pockets were investigated. After dissecting the heads, the infrabuccal pocket content was put

on a glass slide and stained with 10 μL of calcofluor white M2R (1 g/L) (Sigma-Aldrich Co.,

USA) according to the manufacturers guidelines. Calcofluor white is a non-specific fluoro-

chrome that binds to cellulose and chitin in cell walls. The samples were investigated with an

epifluorescence microscope (Zeiss Axio Imager.M1) using UV excitation of 365 nm.

15N labelling of foundress patches

A small “window” was cut into domatia with sealed entrance holes, 4 μl of a 98 at% 15N amino

acid mixture (Isotec Sigma-Aldrich, USA) were pipetted with a Hamilton syringe in four 1 μl

droplets directly into the patch pile. After each droplet we waited for two minutes to be sure

that the liquid was completely imbibed from the patch substrate and not scattered over the

surface. Thereafter, the window was sealed again using duct tape. After 7 days of incubation,

patches (n = 5), queens (n = 5), brood (larvae: n = 4, pupae: n = 5) and workers (n = 3) from

domatia with queens still alive and free of mould were collected and dried. Queen (and–if pres-

ent also the workers) were analysed only after having removed their legs to be sure that possible

contamination on the tarsal did not adulterate the result. The larvae and pupae are not moving

and the measured 15Nmust result from the consumption of fungal patch particles. The dried

samples were weighed into tin capsules for isotope ratio mass spectrometric analysis (IRMS) in

a continuous-flow IRMS system that consisted of an elemental analyser (EA 1110, CE Instru-

ments, Milan, Italy) connected to an IRMS (DeltaPLUS, Finnigan MAT, Bremen, Germany) by

a ConFlo II interface (for details see [38]). Samples of non-incubated patches (n = 13), queens

(n = 5), larvae (n = 7), pupae (n = 7) and workers (n = 5) served as natural abundance controls.

Statistics

With contingency tables, we tested (a) whether the distribution pattern of fungal OTUs is the

same between foundress queen and established colony patches, and (b) whether significantly

Fungiculture and ant colony founding in tropical ants
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more OTUs occur if more than one queen is present in the same domatium. Due to the small

sample numbers, Fisher’s exact test was used. In one exception, where all samples were pooled,

a Monte Carlo Chi2 was applied [39].

Results

Behaviour of foundress queens

Based on the observation of 180 domatia inhabited by 212 queens from 64 young Cecropia

plants, we found internodes 2–6 (counted from the apex) preferably colonised. Queen number

per plant ranged between 1 and 16 (data not shown) and was much higher in Monteverde with

on average 6.7 (ranging from 1–16) foundress queens per plant compared to 1.9 (range 1–4) in

La Gamba (S2 Table).

During initial colonization, queens not only started to immediately scrape the spongy

white parenchyma from the inner domatia walls to seal the entrance hole (S1C–S1E Fig),

but also amassed parenchyma into a small pile (the “foundress patch”) of 2–10 mm in

diameter (Fig 1A and 1B). Even in very young plants with little developed parenchyma,

pile-making was a priority task of the queens (S2B Fig). Eggs and larvae were only

observed in domatia with such a pile of parenchyma tissue and they were usually depos-

ited next to it (Fig 1B).

Fig 1. Colonization of a Cecropia sp. domatium. (a) Parenchyma (white tissue) of the inner domatium wall. The part from where it has been scraped off is marked with a
circle; (b)An Azteca xanthochroa queen with a parenchyma pile inoculated with chaetothyrialean fungi (foundress patch). Eggs and larvae are deposited next to the fungal
patch (circle); (c)Detail of an Azteca constructor foundress patch with hyphae and (d) conidiophores (arrowheads). Scale bars: (a) 2cm, (b) 2mm.

https://doi.org/10.1371/journal.pone.0192207.g001
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Fungal OTUs in foundress patches compared to established colonies

From parenchyma samples of uninhabited internodes we could not amplify any chaetothyria-

lean DNA. However, chaetothyrialean DNA was invariably found in foundress patches (Fig

1C and 1D). From 52 samples we got 64 different fungal sequences that could be assigned to

14 different genotypes and five OTUs (Fig 2; S1 Table). Nine samples contained more than

one genotype. OTU1 was the most common one in foundress patches, followed by OTU3 and

OTU2. OTU1 was not found in any of the A. alfari patches; instead OTU2 occurred in at least

one foundress patch of each ant species (Table 1). With the extended sequence data, OTU6

from an earlier study [23] appeared within the OTU2 cluster and is no longer supported as a

separate clade.

OTU distribution was not significantly different between foundress queens and established

colonies for patches from domatia with single queens (Fisher’s p = 0.666). However, if in addi-

tion to single queen domatia also those containing multiple queens were considered, a signifi-

cant difference was found (Monte Carlo Chi2 p = 0.0153).

At the level of individual ant species, the OTU distribution was not significantly different

between foundress queens and established colonies. In both cases A. alfari and A. coeruleipen-

nis cultivated more often OTU2, A. xanthochroa OTU1, and A. constructor OTU1 and 3

(Table 1). OTU5 occurred only in A. coeruleipennis (14% of all patches).

Number and diversity of foundress queens and the range of fungal OTUs

At the founding stage, single-OTU patches (43) dominated clearly over multi-OTU ones (9),

also in established colonies (43 single-OTU, 12 multi-OTU) (Table 2; Fig 3). Interestingly, five

multi-OTU patches were from domatia with only one queen, and four from domatia with

more than one queen. Twelve patches had only one fungal OTU although they were colonised

with more than one queen—six of them even with queens from different Azteca species (Fig 3;

Table 2). In the majority of cases, only one foundress queen was observed, and multiple queens

occurred in 21.7% of the domatia in Monteverde and in 3% in La Gamba. They were either

from the same species (up to 10 A. xanthochroa females in one domatium), or from different

Azteca species (e.g., A. xanthochroa and A. constructor, A. coeruleipennis and A. constructor)

(S2 Table).

A higher number of OTUs in the fungal patches was not related to the presence of more

than one queen per domatium (Fisher’s p = 0.618); this result remained robust in conspecific

as well as mixed species groups for all four Azteca species. At the ant species level multi-OTU

patches were significantly more often found in multi-queen domatia with A. xanthochroa

involved (Fisher’s p = 0.0458). For A. constructor (Fisher’s p = 0.237) and A. coeruleipennis

(Fisher’s p = 0.4286) the relationship was not significant. A. alfari had single OTUs with only

one exception. In contrast, most A. coeruleipennis patches with one queen had more than two

fungal OTUs (Table 2).

Infrabuccal pocket content

In their infrabuccal pockets, alates carried hyphal fragments that had the same morphology

and size as the fungi in the foundress patches. Additionally, spores, nematodes, nematode

eggs, and many other unidentified particles were found (Fig 4).

15N labelling of foundress patches

The incubation of foundress patches with 15N amino acids led to a significant accumulation of
15N in larvae (Mann-Whitney-U-Test: U< 0.001, p = 0.004). Ant pupae and workers only
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showed a trend towards elevated 15N ratios, whereas queens did not accumulate any 15N (Fig

5, Table 3).

Discussion

Chaetothyrialean fungi as third party in numerous ant-plant mutualisms received increasing

attention in the last years [5, 10, 11, 23, 24]. It was found that they are important for the ants’

nutrition and the system’s nutrient recycling [8, 25]. The present study is the first to focus on

the establishment of the fungiculture at the beginning of a new colony cycle in an obligate ant-

plant mutualism.

The role of the domatium parenchyma

After entering the host-plant provided nesting space, Azteca foundress queens scrape paren-

chyma from the inner nest wall, seal the entrance and produce small piles. We could show that

the parenchyma itself is free of chaetothyrialean fungi, only after contact with the ant queens,

the parenchyma piles contain fungal hyphae. Parenchyma scraping and sealing of entrance

holes with masticated plant tissue is known in other claustrally founding plant-ant queens [3,

Fig 2. Molecular phylogenetic analysis of fungal genotypes associated with patches from Azteca foundress queens. Amaximum
likelihood analysis of the ITS matrix was performed with MEGA7 [36], showing the best tree (-lnL = 1906.92) based on the Kimura
2-parameter (K2) model [37], applying a discrete Gamma distribution (+G; 5 categories, parameter = 0.4209) and a proportion of
evolutionarily invariable sites (+I; 41.37% sites). The tree is drawn to scale, with branch lengths measured in the number of substitutions per
site. Bold branches indicate ML bootstrap support above 50%.

https://doi.org/10.1371/journal.pone.0192207.g002

Table 1. Comparison of genotype and OTU (operational taxonomic unit) occurrence in foundress queen patches (FP n = 52) and patches of established colonies
(EP n = 54). The number represents how often the genotype was found in the respective ant species (in %) relative to all samples of the respective ant species. In nine
patches, more than one genotype was detected (n = 9 for queen and established patches). In eleven domatia, more than one founding queen occurred (up to 10). Genotype
frequency is shown for each Azteca species separately. In some cases, the percentage exceeds 100% due to patches with more than one fungal OTU.

genotype genotype frequency [%] A. alfari A. coerul A. const A. xanth

FP all
n = 52

EP all
n = 54

FP
n = 13

EP
n = 22

FP
n = 7

EP
n = 3

FP
n = 22

EP
n = 24

FP
n = 18

EP
n = 5

OTU1 39.0 18.5 - 4.6 42.9 33.3 47.6 16.7 55.6 100.0

chaeD-CR-1 27.1 14.8 - 4.6 14.3 33.3 35.0 16.7 44.0 40.0

chaeD-CR-13 1.7 - - - - - 4.8 - - -

chaeD-CR-2 8.5 1.9 - - 28.6 - 9.5 - 11.1 20.0

chaeD-CR-3 - 1.9 - - - - - - - 40.0

OTU2 30.5 53.7 61.5 95.5 71.4 100.0 14.3 16.7 11.1 40.0

chaeD-CR-5 20.3 37.0 61.5 68.2 14.3 33.3 4.8 16.7 11.1 -

chaeD-CR-4 6.8 13.0 - 13.6 42.9 66.7 15.0 - - 40.0

chaeD-CR-14 5.1 - - - - 4.8 - - -

chaeD-FG-6 - 1.9 - 13.6 - - - - - -

chaeD-CR-12 - 1.9 - - - - - - -

OTU3 39.0 46.3 38.5 13.6 42.9 33.3 38.1 75.0 38.8 60.0

chaeD-CR-8 5.1 3.7 - - 28.6 - 4.8 8.3 - -

chaeD-CR-7 33.9 42.6 38.5 13.6 14.3 33.3 33.3 66.7 38.8 60.0

OTU4 15.3 9.3 7.7 - 14.3 - 23.8 16.7 11.1

chaeD-CR-9 15.3 1.9 7.7 - 14.3 - 23.8 4.2 11.1 -

chaeD-CR-10 - 7.4 - - - - - 12.5 - -

OTU5 1.7 1.9 - - 14.3 33.3 - - - -

chaeD-CR-11 1.7 1.9 - - 14.3 33.3 - - - -

https://doi.org/10.1371/journal.pone.0192207.t001
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40–42]. Whether parenchyma is also accumulated into a pile has, however, not been described

in these earlier accounts. But the presence of chaetothyrialean fungi in these other systems was

discovered recently [9–11] and the onset of fungiculture is likely similar among these different

tropical fungus-cultivating plant-ants.

Table 2. Number of OTUs in patches of individual established colonies compared with patches of foundress queens. For foundress queen samples, it is indicated
whether we found (i) a single queen (1 Q), (ii) more than one of the same Azteca species (>1 Q same sp.) or (ii) more queens of different Azteca species (>1 Q diff spp.) in
one domatium.

Established
n = 54

Foundress
n = 52

Foundress queens/domatium

1 Q >1Q same sp. >1Q diff. spp.

all samples

1 OTU 42 43 31 6 6

>1 OTUs 12 9 5 2 2

alfari

1 OTU 19 14 13 0 1

>1 OTUs 3 1 0 1 0

coeruleipennis

1 OTU 0 4 3 0 1

>1 OTUs 3 3 3 0 0

constructor

1 OTU 21 18 11 2 5

>1 OTUs 3 4 1 1 2

xanthochroa

1 OTU 2 14 8 0 6

>1 OTUs 3 3 0 1 2

https://doi.org/10.1371/journal.pone.0192207.t002

Fig 3. Frequency of patches with one or multiple fungal OTUs in foundress queen patches compared to
established colonies. In domatia with a single queen patches with only one OTU is common, whereas in multiqueen
domatia with several queens of the same species as well as of different species multi-OTU patches are equal to those
with only one OTU.

https://doi.org/10.1371/journal.pone.0192207.g003
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Fungus transmission

As we did not find any hyphae in plant tissue of uninhabited domatia, we exclude an endo-

phytic origin of the fungi in the parenchyma pile. Instead, vertical fungus transmission by the

foundress queens seems plausible for the following reasons:

First, the broad overlap among genotypes and OTUs from established Azteca colonies

(100% on OTU level, 82% on genotype level). Only two genotypes had not been found earlier

in established colonies and three genotypes from established colonies [23] were not found in

foundress patches (S1A Table). This is probably because we did not sample the respective

mother colony or the respective reproductive ants.

Second, the overall diversity of chaetothyrialean genotypes/OTUs in the environment of

the host plants may be at least ten times higher as shown by a study about chaetothyrialean

fungi in carton galleries of Azteca brevis on the branches of various host trees [43]. This earlier

study took place in one of the collection sites of the present study and resulted in 128 geno-

types and 62 OTUs of black yeasts compared to only 14 genotypes from five OTUs in foun-

dress queen patches. Due to this low OTU number in domatia, de novo recruitment of the

fungi is highly unlikely.

Third, the chaetothyrialean lineage containing the domatia symbionts has so far been exclu-

sively detected in domatia and is yet unknown from any other substrate, indicating a close

association with their ant symbionts. Notably, there is no overlap with the carton galleries of

Aztecamentioned above, which contains a high species biodiversity of various chaetothyria-

lean lineages but not from the domatia symbiont clade.

Fig 4. Infrabuccal pocket content of founding queens. Founding queens (a) carry in their infrabuccal pockets (b) hyphae, (c) a number of unclassified particles, and (d)
nematode dauerlarvae. Infrabuccal pocket content was stained with calcofluor white and investigated with an excitation of 365 nm (b, c) and brightfield (d). Scale bars: (b,
c) 10μm, (d) 20μm.

https://doi.org/10.1371/journal.pone.0192207.g004
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Fourth, the presence of hyphal parts and fungal spores in infrabuccal pockets of alate

queens points to an inoculation of the parenchyma pile with fungal pellet material brought

from the fungiculture of their mother colonies. Unfortunately, we were not able to generate

Fig 5. 15N incubation of foundress patch. δ15N values of founding queens, larvae and pupae after incubating the patches of the respective founding queen for 7 days
with a 15N labelled amino acid mix. 15N accumulation could be shown for pupae and larvae, but only larvae were significantly enriched. The δ15N values of foundress
queens from labelled patches did not differ from natural abundance. Hyphae were thus not eaten by the queens themselves but fed to the larvae.

https://doi.org/10.1371/journal.pone.0192207.g005

Table 3. Mean δ15N and C/N ratio of foundress queen patches from domatia with 15N amino acid mix labelled patches and unlabelled ones. SE gives the standard
error of means, n the sample number size.

Sample 15N labelled natural abundance

nlab δ15Nlabel SE C/Nlab SE ncont δ15Ncont SE C/Ncont SE

patch 5 2115.029 679.51 37 5.6 13 137.311 38.083 48 13.3

queen 5 0000.449 0.50 10 2.3 05 000.463 00.790 16 04.0

larvae 4 0008.358 4.25 07 1.1 07 000.513 00.409 07 00.5

pupae 5 0002.998 1.52 07 0.8 07 000.121 00.353 07 00.6

worker 3 0003.590 0.78 05 0.6 05 001.372 00.903 05 00.3

https://doi.org/10.1371/journal.pone.0192207.t003
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DNA sequences from the infrabuccal pocket content making it uncertain whether the hyphal

parts and spores found are truly those of the later domatia fungal community. A vertical trans-

mission mode is also known from Lasius fuliginosus cultivating fungi on their nest walls [44],

or from leaf cutter ants [45, 46] and ensures the occurrence of the right partners in the next

generation of the mutualism. For chaetothyrialean fungi with their low competitive ability [11]

ant nests may be an important ecological niche.

In addition to fungal parts and spores, dauer stages of nematodes were also carried by the

foundress queens (Fig 4D). Sclerorhabditis neotropicalis (Rhabditida) is frequently found in

Cecropia colonizing Azteca nests [47] but it was not known until now that Sclerorhabditis neo-

tropicalis is vertically transmitted and already present during colony founding.

Number and diversity of foundress queens and the range of fungal OTUs

Most of the foundress queen domatia showed haplometrotic colony founding with only one

gyne present (76.6%). 86% of those single foundresses had parenchyma piles with one fungal

OTU, 14% with more than one. In contrast, pleiometrotic colony founding was comparably

rare, with multiple gynes of the same species in 12.8% and gynes from different ant species in

10.6% of the cases. Usually, in one Cecropia stem several independent founding events occur

in the spatially segregated domatia. Multi-queen colonization of saplings and the survival of

only one queen seems to be a common feature in ant-plant mutualisms and was described

from several other ant-plant systems (e.g., Crematogaster-Macaranga [40]; Tetraponera-Bar-

teria [42]; Ocotea-Myrmelachista [48]; Triplaris-Pseudomyrmex [49]. Also in Cecropia only one

of the incipient colonies becomes dominant occupying all other domatia [50]and with a single

queen only [51]. This may lead to the acquisition of the fungal patches from the less successful

queens by the ant colony that wins the race and may explain why multi-OTU fungal patches

occurred in 22% of the established Cecropia inhabiting Azteca colonies (Fig 3; Table 2). How-

ever, this leads to another question: why do 78% of the established colonies have only single-

OTU fungal patches although multi-queen colonization of saplings is common with different

OTUs in each foundress queen patch?

Two scenarios may be possible. (1) The gyne with the most vigorously growing fungal strain

may be the first with enough workers to take over the stem and outcompete other colony

foundings. The most vital fungus may overgrow their strains and become dominant, replacing

the original fungi. (2) Directed symbiont selection could have happened with selection of the

most vigorously growing strain. In A. alfari, for example, OTU2 and 3 were found in foundress

queen patches, but in 96% of the established colonies only OTU2 was cultivated. The other

OTU became under-represented and patches with multiple OTUs were rare with this ant spe-

cies. Azteca ants probably groom their fungus patches as described for fungus-cultivating Peta-

lomyrmex phylax living in domatia of Leonardoxa africana [9], or like leaf cutter ants do in

their fungus gardens to control growth and microbial infections [52, 53]. Ants may not only be

able to distinguish between pathogenic fungi and fungal symbionts but may also recognize the

most beneficial fungal strain. A good example for such screening is the rejection of leaves

harmful for fungal growth in leaf-cutter ant colonies. The ants perceive the state of the fungus

through olfactory cues released from the fungus itself [54, 55].

Chaetothyrialean fungi as food for the claustral queen?

Colony founding is a critical phase with high mortality rates: most ant queens with claustral

colony founding deplete their flight muscles and fat deposits to maintain the metabolic needs

and nurture their larvae, and most of them die from starvation [56–58] before the first workers

emerge [49, 59, 60]. Therefore, various authors suggested that in Cecropia the foundress queen
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feeds on a nutrient rich callus tissue growing from the entrance hole or on the parenchyma of

the inner domatia walls [61–63]. We did, however, not find a nutrient rich callus tissue in any

of the domatia with young queens. Nor seemed the latex of the tissue plug used to seal the

entrance hole to be suitable for queen nourishment and the fungal patch material was exclu-

sively fed to the larvae. The availability of a fungal patch as food source may be a crucial factor

for the development of the first workers–and indirectly for the survival of the queen as after

depletion of her body’s own resources the queen is nurtured by the workers. The frequent

occurrence of dead or moribund queens in very young Cecropia trees [64] may be due to the

lack of a well-developed parenchyma layer, and abortive fungiculture. As a consequence, the

larvae do not develop, no workers emerge, and the queen will die.

Conclusion

We infer from our data, that in Azteca/Cecropia system the transmission of the fungal symbi-

ont for fungiculture is vertical. Compared to the chaetothyriales found in the environment, the

genetic variability of the fungi from fungal patches is limited indicating a selection of strains

beneficial to the ant partner. That egg laying only occurs after establishing a fungal inoculum

and the fact that larvae are nourished with patch material points to a fundamental importance

of fungus cultivation for successful ant colony founding in this ant-plant system.

Agriculture has for a long time been regarded a cultural achievement of humans. In truth

this uniqueness does not exist. Fungus farming is found in ants, beetles, termites and snails,

[65, 66] many of them arose long before humans started farming. Fish and sloth have algal

farms [67, 68], crabs and mussels bacteria gardens [69, 70].

Future work investigating mechanisms of fungus selection by the ants and the functional

role of the ubiquitous fungal patches in ant-plant interactions in the tropics will help to

increase our understanding of the richness both in species diversity and number of individuals

of canopy ants in an in fact nutrient poor environment.
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