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Neuronal populations receive signals through temporally inhomogeneous spike trains which can be
approximated by an input consisting of a time dependent mean value (additive signal) and noise with a
time dependent intensity (noise coded signal). We compare the linear response of an ensemble of model
neurons to these signals. Our analytical solution for the mean activity demonstrates the high efficiency of
the transmission of a noise coded signal in a broad frequency band. For both kinds of signal we show that
the transmission by the ensemble reveals stochastic resonance as well as a nonmonotonous dependence
on the driving frequency.
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The processing of periodic stimuli by single stochas-
tic neurons [1–5] or neuronal populations [6,7] has been
intensely studied in the past. Most investigations have fo-
cused on models driven by an additive periodic signal and
noise of a constant intensity. For higher ordered sensory or
cortical neurons which receive trains of excitatory (positive
amplitude) and inhibitory (negative amplitude) spikes such
an additive forcing may arise due to temporal changes of
the mean value (base current) of these components [8,9].

However, there is no reason to believe that the modu-
lation of such an input spike train to a neuronal system
is restricted to the mean value. Consider, for instance,
the summed spike trains generated by �an 1 bn2� excita-
tory and bn2 inhibitory neurons with equal time dependent
spike rate s�t� containing, e.g., a periodic signal. These
neurons are part of a larger ensemble (input ensemble).
The intensities of the spike trains are given by lexc �
�an 1 bn2�s�t� and linh � bn2s�t�. For postsynaptical
potential amplitudes of the receiving neuron ae � 2ai �
1�n as in [8] and a large number of input neurons (n ! `)
the diffusion approximation [10] allows one to replace the
spike train by as�t� 1

p
2b s�t� j�t�. Here, the signal s�t�

is in part effectively noise coded since it modulates the in-
tensity of the fluctuations [white Gaussian noise j�t�] as
well as the base current a. Similar inputs to a bistable sys-
tem [11] and, recently, to neuronal models [12–14] were
used by only a few authors. Pawelzik et al. [14] considered
the response of an ensemble of model neurons to a steplike
increase of the noise intensity and found an instantaneous
response of the system’s spike rate. This indicates a po-
tential high frequency transmission of noise coded signals.
Another component of the input may originate in the neu-
ronal background. This part may be assumed to contribute
temporally homogeneously to base current and noise in-
tensity. Thus, the total input is given by

I�t� � as�t� 1 mbg 1

q
2bs�t� j�t� 1

q
2Dbg h�t� ,

(1)

where h�t� is white Gaussian noise. The functional role
of the background noise could be understood in the con-
0031-9007�01�86(14)�2934(4)$15.00
text of stochastic resonance (SR): the detection of a weak
signal can be enhanced by an appropriate amount of fluc-
tuations [15]. There is much evidence for SR in the case
of additive signals [1–6]. For noise coded signals in turn,
its significance will be clarified here.

In this Letter, we study an ensemble of neurons which
are driven by the input (1), i.e., by the input ensemble and
by background noise. Arrangements of such unidirection-
ally coupled pools are the basis for synfire chains [16] and
believed to represent processing pathways in the cortex. It
will emerge that for both additive and noise coded parts
of a periodic signal the ensemble exhibits SR. Moreover,
only the noise coded part leads to an efficient high fre-
quency transmission that might account for the high speed
processing found, e.g., in the visual system [17]. The ana-
lytical results leading to these conclusions are valid for
weak signal amplitudes and are not limited to low frequen-
cies or small noise levels. They apply also to cases that
have been treated numerically in the literature [2,3,6] and
can readily be generalized to aperiodic signals.

Model.—We consider an ensemble of N leaky integrate-
and-fire (LIF) neurons which are driven by (1). We re-
strict ourselves to the simple case that the input rate is
harmonically modulated s�t� � 1 1 ´ cosVt (´ , 1) and
no correlations occur between inputs to different neurons,
i.e., the number of common input connections for two neu-
rons within the ensemble is negligible. The input parame-
ters a, b, and mbg are assumed to be constant implying
a constant base current m � mbg 1 a and fixed effective
amplitudes ´a � a´, ´b � b´ of the additive and noise
coded signal, respectively. The time independent part of
the effective noise intensity reads D � Dbg 1 b and may
be varied changing Dbg.

Theory.—The depolarization voltage yi of the cell
membrane of a single neuron is described by a periodically
driven Ornstein-Uhlenbeck process with absorbing bound-
ary at the firing threshold ythr � 1. The membrane time
constant is set to one, thus, the resting level is given by
yrest � m. If the voltage reaches the threshold the neuron
fires a d spike and will be absolutely refractory for the
© 2001 The American Physical Society



VOLUME 86, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S 2 APRIL 2001
time t. Afterwards the voltage will be reset to yreset � 0.
The N neurons with voltage yi�t� share the same periodic
stimuli, however, the fluctuative parts of their input are
entirely independent. Therefore the probability density of
the population factorizes and it will be sufficient to look
at P�y, t� � �

PN
1 d�y 2 yi�t���. This density obeys the

Fokker-Planck equation (FPE) of a single neuron

≠tP � ≠y�y 2 m 2 ´a cosVt

1 �D 1 ´b cosVt�≠y�P . (2)

A part of the population denoted by Pt�t� will be in the
absolute refractory state. The total density is normalized
as

R1
2` dy P�y, t� 1 Pt�t� � N . Furthermore, the reset

mechanism leads to the following conditions: (i) the den-
sity must be zero at the absorbing boundary; (ii) the den-
sity outflux at the threshold equals the influx at the reset
point delayed by the absolute refractory period; (iii) the
density P�y, t� needs to be continuous for the entire range
y [ �2`, ythr�.

For large N , the output spike train of the population
forms an inhomogeneous Poissonian spike train [6] the rate
of which is given by

R�t� � Nr�t� ,

r�t� � 2
1
N

�D 1 ´b cos Vt�
≠P
≠y

Ç
y�1

, (3)

with r�t� being the mean activity of the population, an
ensemble averaged rate that is independent of N . Note,
that r�t� coincides with the time dependent mean output
(instantaneous firing rate) of a single neuron.

For weak signals (´b ø D, ´a�
p

1 1 V2 ø 1 2 m),
the asymptotic solution of the FPE (2) obeying the above
conditions can be calculated by linear response theory [15].
Inserting into (3) yields the asymptotic activity

r�t� � r0 1 ´ajaj cos�Vt 2 fa�
1 ´bjbj cos�Vt 2 fb� . (4)

Here r0 � 1��t 1
p

p
Rm�

p
2D

�m21��
p

2D dz ez2
erfc�z�� denotes

the stationary spike rate of a single neuron in the absence
of a signal [18]. The complex functions a and b in (4)
are given by

a �
r0iV�

p
D

iV 2 1

DiV21� m21
p

D
� 2 e�2m21���4D�DiV21� m

p
D

�

DiV� m21
p

D
� 2 e�2m21���4D�eiVtDiV� m

p
D

�
,

(5)

b �
r0iV�iV 2 1�

D�2 2 iV�

3
DiV22� m21

p
D

� 2 e�2m21���4D�DiV22� m
p

D
�

DiV� m21
p

D
� 2 e�2m21���4D�eiVtDiV� m

p
D

�
, (6)

where Da�z� denotes the parabolic cylinder function [19].
The phase shifts fa and fb are the complex phases of a

and b, respectively.
From (4) it becomes apparent that in linear response the-
ory the two different signals yield additive contributions to
the mean activity. In the following, we discuss and com-
pare the relative amplitudes and phases of both compo-
nents. In all data shown, the absolute refractory period is
set to t � 0.1 and for the base current we choose m � 0.8.

Amplitude and phase for the additive signal.—The re-
sponse amplitude jaj exhibits a maximum with respect to
the noise intensity for all frequencies (Fig. 1) [6]. More-
over, jaj displays also an overall maximum with respect
to both driving frequency and noise intensity. The non-
monotonous dependence on the frequency occurring at
large but subthreshold base current (0.5 , m , 1), was
studied in the case of a single LIF neuron in terms of
the spectral signal-to-noise ratio [2] and also found in
the FitzHugh-Nagumo neuronal model [4,5]. At large
base current and moderate noise intensity, the relative re-
fractory period, i.e., the time for relaxation from reset
level (yreset � 0) to resting level (yrest � m) will be com-
parable with the escape time from resting level to threshold
(ythr � 1). The long refractory period gives rise to a more
regular firing even in the absence of a signal, i.e., the neu-
ron possesses in this case a noise induced eigenfrequency
[5]. Hence, the nonmonotonous dependence on the driving
frequency is nothing other than a classical resonance with
respect to this eigenfrequency.

In addition, for a finite t and large noise intensity, the
spike rate becomes large and the absolute refractory period
causes a more regular timing of the neuron’s firing. The
associated eigenfrequency and its higher harmonics lead to
resonances revealed by the small maxima in Fig. 1. The
influence of the signal on the neuronal dynamics, however,
is diminished for further increasing noise intensity, there-
fore, the maxima vanish in the limit D ! `. We note that
high frequent signals are suppressed by the ensemble, jaj

decreases in proportion to 1�
p

V when V ! `.
The phase shift fa depicted in Fig. 2 vanishes in the

adiabatic case (V ! 0) and shows otherwise a delayed
response to the additive signal. It attains a maximum and
saturates at p�4 in the high frequency limit. At large
noise strength several minima and maxima are obtained
(thick line in Fig. 2) and even a negative phase shift may
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FIG. 1. Amplitude of response to the additive signal.
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FIG. 2. Phase shift to the additive signal. D � 2 3 1023

(dash-dotted line), 2 3 1022 (dashed line), 0.1 (thin solid) and
2 (thick solid). Inset: the response of the activity to a steplike
signal (thick) in the base current m ! m 1 ´ at D � 0.1 and
´ � 0.05.

occur — an effect which is again due to the absolute re-
fractory period.

Amplitude and phase for the noise coded signal.—The
amplitude jbj shown in Fig. 3 reveals stochastic resonance
for the noise coded signal with respect to D. At an ap-
propriate noise intensity the ensemble will transmit all
frequencies. There are two simple limits belonging to dif-
ferent mechanisms for SR. On the one hand, the quasistati-
cally driven system (V � 0) responds as jbj °! dr0�dD.
This can be regarded as an effective modulation of the po-
tential barrier at the threshold similar to that caused by
varying the base current. In this limit, the SR phenome-
non is based on the fact that the sensitivity of the station-
ary spike rate to a change in the noise strength is maximal
at a moderate noise level. On the other hand, for infinite
driving frequency, the ensemble cannot follow the signal
and persists in its stationary state. The time dependent re-
sponse is thus determined by the direct modulation of the
diffusion current in Eq. (3). It becomes proportional to
the stationary rate with an effective amplitude ´b�D, i.e.,
b ! r0�D as V ! `. Since r0 decreases exponentially
for decreasing noise intensity D and saturates for large D
at 1�t, the response amplitude must vanish in either limits
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FIG. 3. Amplitude of response to the noise coded signal.
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D ! 0 and D ! `. For moderate D this high frequency
limit (thick line in Fig. 3) is finite and possesses a maxi-
mum. Hence, the transmission of noise coded signals with
high frequencies is possible and also for these signals sto-
chastic resonance can be found.

Furthermore, the overall maximum of jbj is attained at
finite frequency. Primarily, the refractory period and thus
the noise induced eigenfrequency of the neuron is again re-
sponsible for the nonmonotonous dependence on the driv-
ing frequency, since the overall maximum is considerably
diminished for the case of vanishing total refractory period
(yreset � yrest, t � 0) (not shown).

The response amplitude for the noise coded signal ex-
ceeds the amplitude in the additive case by 1 order of mag-
nitude for low up to moderate noise intensities (note the
different scales in Figs. 1 and 3)— a striking difference
to the findings for an asymmetric bistable system [11] in
which always the response to the additive signal is stronger
than the response to the noise coded signal.

The periodic modulation of the noise intensity leads to
surprising features of the phase shift fb (Fig. 4). First,
it tends to zero for both vanishing and infinite driving
frequency since in these limits the activity r�t� becomes
proportional to the signal. The latter limit implies a trans-
mission of high frequent signals without delay. Second,
the phase shift attains negative values for moderate to large
noise intensity and not too large frequencies. This can be
qualitatively understood by considering a steplike excita-
tion D ! D 1 ´, a problem which was studied in [14].
This signal and the change of the activity in response to
it is depicted in the inset of Fig. 4; for comparison we
show the equivalent excitation m ! m 1 ´ in the inset of
Fig. 2. While the latter additive signal results in a slow
growth towards the new stationary activity, the switch of
the noise intensity causes an instantaneous jump of the ac-
tivity to r0 1 r0´�D. At a moderate noise intensity this
value exceeds the asymptotic stationary activity, hence, the
subsequent relaxation is mainly decreasing. In the case of

FIG. 4. Phase shift to the noise coded signal. D � 2 3 1023

(dash-dotted line), 2 3 1022 (dashed line), 0.1 (thin solid line),
and 2 (thick solid line). Inset: The response of the activity to
a steplike signal (thick line) in the noise intensity D ! D 1 ´
at D � 0.1 and ´ � 0.05.
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a continuous signal this kind of response implies a de-
layed component in antiphase to the signal. Combined
with the instantaneous response (no phase shift) a negative
total phase shift results. For large noise intensity we find
again a multipeaked function due to the absolute refractory
period.

In order to give an impression of the distinct responses
we show in Fig. 5 simulations of the time dependent mean
activity of an ensemble of LIF neurons which are either
subject to a noise coded or to an additive signal. Clearly,
the noise coded signal results in an activity with pro-
nounced negative phase shift and larger amplitude than
the additive signal. Similar simulations were carried out
for high frequencies (not shown), confirming the finite re-
sponse to a noise coded signal.

There are, however, two restrictions for the high fre-
quency transmission by an ensemble of real neurons. First,
increasingly high frequencies necessitate an increasingly
large ensemble size. Otherwise, the relative error of the
spatial average of the activity (�1�

p
r0NT ) in a time

window T (ø1�V) will be too large and a neuron re-
ceiving the input from the ensemble will not be able to
extract the signal from the spike train within this time
window. Second, the threshold condition of the leaky
integrate-and-fire model which is responsible for the fi-
nite response at high frequencies is only an approximation.
It replaces the dynamics of certain fast variables in more
realistic neuronal systems like the FitzHugh-Nagumo or
Hodgkin-Huxley model. Hence, the transmission should
be observable at least up to frequencies which are com-
parable to those corresponding to the neglected small time
scales. These time scales, however, can be several orders of
magnitude smaller than the membrane time constant [10].
Noise coded signals of a large frequency range are there-
fore expected to be efficiently transmitted also by large
ensembles of real neurons.

The stochastic resonance considered in this Letter re-
lies on the presence of an effective potential barrier at the
threshold as well as on a possible variation of the noise
strength by Dbg. Consequently, SR can be observed with
respect to the background noise level Dbg only for suf-

FIG. 5. Mean activity of 40 000 LIF neurons (D � 0.1,
V � 2) either driven by an additive (´a � 0.04, ´b � 0,
circles) or by a noise coded signal (´a � 0, ´b � 0.04,
squares). Theoretical curves (dashed and dot-dashed lines) and
signal plus constant rate (solid line) are plotted for comparison.
ficiently small a and b. On the one hand, the parameter a
determines the signal amplitude ´a as well as the base cur-
rent m. If these effective parameters are too large (m . 1
or ´a ¿ 1 2 m) the ensemble neurons operate either in
an oscillatory mode or receive additive suprathreshold sig-
nals and no SR effect is expected. On the other hand, b
gives a lower bound for a possible variation of the over-
all noise intensity D. Therefore, if the response attains its
maximum at values larger than b a better transmission is
obtained adding background noise. In the opposite case
of large b an increasing background noise deteriorates the
performance and Dbg � 0 is optimal. Generally speaking,
SR may assist the signal processing, unless the periodic in-
put generated by the ensemble is strong. This is consistent
with the conventional notion that in the majority of cases
SR is relevant for the detection of weak signals, only.
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