
Washington University School of Medicine Washington University School of Medicine 

Digital Commons@Becker Digital Commons@Becker 

Open Access Publications 

2016 

Transmission of Staphylococcus aureus from humans to green Transmission of Staphylococcus aureus from humans to green 

monkeys in the Gambia as revealed by whole-genome sequencing monkeys in the Gambia as revealed by whole-genome sequencing 

George Weinstock 
Washington University School of Medicine in St. Louis 

et al 

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs 

Recommended Citation Recommended Citation 

Weinstock, George and et al, ,"Transmission of Staphylococcus aureus from humans to green monkeys in 

the Gambia as revealed by whole-genome sequencing." Applied and Environmental Microbiology. 82,19. 

5910-5917. (2016). 

https://digitalcommons.wustl.edu/open_access_pubs/5293 

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been 
accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. 
For more information, please contact vanam@wustl.edu. 

https://digitalcommons.wustl.edu/
https://digitalcommons.wustl.edu/open_access_pubs
https://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F5293&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:vanam@wustl.edu


Transmission of Staphylococcus aureus from Humans to Green
Monkeys in The Gambia as Revealed by Whole-Genome Sequencing

Madikay Senghore,a,b Sion C. Bayliss,c Brenda A. Kwambana-Adams,a Ebenezer Foster-Nyarko,a Jainaba Manneh,a Michel Dione,a*

Henry Badji,a Chinelo Ebruke,a Emma L. Doughty,b Harry A. Thorpe,c Anna J. Jasinska,d Christopher A. Schmitt,d*

Jennifer D. Cramer,e Trudy R. Turner,f,g George Weinstock,h* Nelson B. Freimer,d Mark J. Pallen,b Edward J. Feil,c Martin Antonioa,b,i

Medical Research Council Unit, Fajara, The Gambiaa; University of Warwick, Coventry, United Kingdomb; University of Bath, Bath, United Kingdomc; University of California

Los Angeles, Los Angeles, California, USAd; American Military University and American Public University, Charles Town, West Virginia, USAe; University of

Wisconsin—Milwaukee, Milwaukee, Wisconsin, USAf; University of the Free State, Bloemfontein, South Africag; Washington University, St. Louis, Missouri, USAh; London

School of Hygiene and Tropical Medicine, London, United Kingdomi

ABSTRACT

Staphylococcus aureus is an important pathogen of humans and animals. We genome sequenced 90 S. aureus isolates from The

Gambia: 46 isolates from invasive disease in humans, 13 human carriage isolates, and 31 monkey carriage isolates. We inferred

multiple anthroponotic transmissions of S. aureus from humans to green monkeys (Chlorocebus sabaeus) in The Gambia over

different time scales. We report a novel monkey-associated clade of S. aureus that emerged from a human-to-monkey switch

estimated to have occurred 2,700 years ago. Adaptation of this lineage to the monkey host is accompanied by the loss of phage-

carrying genes that are known to play an important role in human colonization. We also report recent anthroponotic transmis-

sion of the well-characterized human lineages sequence type 6 (ST6) and ST15 to monkeys, probably because of steadily increas-

ing encroachment of humans into the monkeys’ habitat. Although we have found no evidence of transmission of S. aureus from

monkeys to humans, as the two species come into ever-closer contact, there might be an increased risk of additional interspecies

exchanges of potential pathogens.

IMPORTANCE

The population structures of Staphylococcus aureus in humans and monkeys in sub-Saharan Africa have been previously de-

scribed using multilocus sequence typing (MLST). However, these data lack the power to accurately infer details regarding the

origin and maintenance of new adaptive lineages. Here, we describe the use of whole-genome sequencing to detect transmission

of S. aureus between humans and nonhuman primates and to document the genetic changes accompanying host adaptation. We

note that human-to-monkey switches tend to be more common than the reverse and that a novel monkey-associated clade is

likely to have emerged from such a switch approximately 2,700 years ago. Moreover, analysis of the accessory genome provides

important clues as to the genetic changes underpinning host adaptation and, in particular, shows that human-to-monkey

switches tend to be associated with the loss of genes known to confer adaptation to the human host.

S
taphylococcus aureus is an important pathogen of humans,
causing a range of conditions from serious invasive diseases

such as meningitis, pneumonia, and bacteremia to less severe skin
and soft tissue infections (1). S. aureus is among the top five most
common causes of bacteremia in sub-Saharan Africa and the sec-
ond leading cause of bacteremia in The Gambia (2–4). S. aureus
thus poses a serious public health burden in The Gambia, yet little
is known about the population structure and dynamics of this
pathogen in sub-Saharan Africa. In other parts of the world, in-
terest has focused on the role of nonhuman hosts (mostly live-
stock) as reservoirs of infection and drug resistance relevant to
humans (5–7). In addition, it is clear that S. aureus can switch host
species, sometimes resulting in adaptation to the new host and
onward transmission in the new host species (8).

Interspecies transmission and adaptive host switching are
known to occur between humans and nonhuman primates. Hu-
man-associated S. aureus lineages readily colonize and infect non-
human primates in captivity and in the wild (9–12). In remote
regions of Africa, wild monkeys are mainly colonized by S. aureus
isolates belonging to uncharacterized clonal complexes that rarely
colonize or infect humans, with one highly divergent clade iso-
lated from monkeys in sub-Saharan Africa now classified as a new
species, Staphylococcus schweitzeri (13, 14).
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The gain or loss of genes associated with mobile genetic ele-
ments is thought to be the primary driver of host adaptation fol-
lowing interhost transmission (15). Nonhuman hosts provide an
environment for the acquisition of novel virulence and resistance
determinants (16). For example, clones of methicillin-resistant
Staphylococcus aureus (MRSA) from human-associated lineages
such as clonal complex 5 (CC5), CC9 and sequence type 88 (ST88)
have been reported in livestock (17) and livestock-associated
MRSA lineages, most notably CC97 and CC398, have overcome
the species barrier to infect humans (15, 18).

In The Gambia, increasing urbanization and tourism have
meant that wild green monkeys have become habituated to hu-
mans, resulting in increased opportunities for interhost transmis-
sion of potential pathogens. In particular, free-ranging wild mon-
keys inhabit the Bijilo Forest Park which is close to the Senegambia
tourist area and serves as a tourist attraction where locals and
tourists go to visit the monkeys. Although feeding the animals is
prohibited, people take bags of peanuts into the park and feed the
monkeys by hand. Here, we describe the use of whole-genome
sequencing to detect transmission of S. aureus between humans
and nonhuman primates and to document the genetic changes
accompanying host adaptation.

MATERIALS AND METHODS

Study isolates. We pooled isolates from three previous studies that char-
acterized S. aureus from monkeys, human carriage, and invasive disease
by multilocus sequence typing (MLST) and antimicrobial susceptibility
testing (19, 20). The first study was conducted in 2011 by the International
Vervet Research Consortium on simian immunodeficiency virus (SIV)
infection in green monkeys (Chlorocebus sabaeus) in The Gambia (20).
Thus, we were able to collect nasopharyngeal swabs (NPS) and oropha-
ryngeal swabs (OPS) from the monkeys. Eighty-two S. aureus isolates were
cultured from 64 NPS and 63 OPS collected from 64 human-habituated
wild monkeys in The Gambia. In the second study, 100 S. aureus strains
were isolated from human NPS as part of a carriage study conducted
between December 2005 and April 2005 in Sibanor (19). The third study
analyzed a selection of 116 S. aureus strains isolated from archived clinical
specimens of patients who reported to the Medical Research Council
(MRC) clinic in Fajara with invasive bacterial disease between 2002 and
2010 (unpublished data). Table S1 and Fig. S4 in the supplemental mate-
rial show the temporal spread of sampling in the different epidemiological
classes and the spatial distribution of the sites where the samples were
collected.

To isolate S. aureus, specimens were plated on mannitol salt agar
(MSA) (Oxoid, Basingstoke, United Kingdom) and 5% sheep blood agar
(BA) (Oxoid, Basingstoke, United Kingdom) plates. The specimens were
incubated at 37°C for 24 h on BA plates and 48 h on MSA plates under
aerobic conditions. Suspected S. aureus colonies were subcultured on BA
plates for 24 h and confirmed by a coagulase test using the Slidex Staph kit
(bioMérieux, Basingstoke, Hampshire, United Kingdom). Antimicrobial
susceptibility testing was performed by the disk diffusion method on BA
plates for the following antibiotics: penicillin, co-trimoxazole, tetracy-
cline, chloramphenicol, gentamicin, cloxacillin, erythromycin, and ce-
foxitin (Oxoid, Basingstoke, United Kingdom). Results were interpreted
according to the guidelines of the Clinical and Laboratory Standards In-
stitute (CLSI) (21).

DNA extraction and MLST analysis. Genomic DNA was extracted
from fresh overnight pure cultures of S. aureus strains using the Qiagen
genomic DNA extraction kit (Qiagen, United Kingdom) according to the
manufacturer’s protocol. MLST was performed on S. aureus isolates target-
ing seven housekeeping genes (aroE, ptA, glp, arcC, gmK, tpi, and yqiL) as
described previously (22). An eBURST (23) analysis was performed on all STs
of Staphylococcus aureus in the MLST database (http://saureus.mlst.net).

STs were assigned to clonal complexes where they had 6 identical alleles
with at least one other ST within the clonal complex. eBURST groups
sequence types based on shared alleles, but it does not take into consider-
ation the existing knowledge of the clonal population structure of S. au-

reus. As a result, in some instances, eBURST merged two or more clonal
complexes that are well described in the literature into one eBURST
group. In these cases, the clonal complex designations from the literature
were used instead of the eBURST grouping in order to maintain consis-
tency with the literature.

Whole-genome sequencing, assembly, and annotation. Ninety iso-
lates were analyzed for whole-genome sequencing: 46 isolates from inva-
sive disease in humans, 13 human carriage isolates, and 31 monkey car-
riage isolates. These isolates included at least one representative of all the
major clonal complexes inferred from MLST. Whole-genome sequencing
was carried out on the Illumina MiSeq system with the Nextera X prepa-
ration kit. De novo contigs were generated for each genome using SPAdes
(kmers 21, 33, 55, 77, 99, and 127) (24). Contigs shorter than 300 bp and
with kmer coverage of �2 were removed from the assemblies. Coding
sequences (CDSs) were predicted and annotated by Prokka (version 1.11)
(25).

MLST from the whole genome. To determine whether any isolates
might have been misassigned in the MLST or whole-genome sequencing
workflows, we used the draft genomes to predict multilocus sequence
types. Two methods were employed: an assembly-based approach and a
mapping-based approach. Assemblies were subjected to BLAST searches
against all of the alleles in the MLST database (http://saureus.mlst.net).
Alleles were called whenever there was 100% sequence coverage and 100%
nucleotide identity. The mapping approach used SRST2 to map the reads
to the seven housekeeping loci and identify the ST (26). The two sets of
results were combined and manually curated. STs presented in Table S1 in
the supplemental material are STs inferred from the whole genome that
share at least 5 identical loci with the MLST results from the laboratory
and belong to the same clonal complex. Eleven isolates were excluded
from further analysis because the ST derived from the conventional MLST
analysis differed from the ST inferred from the whole genome by more
than two loci, leading us to believe that isolates had been misassigned in
one analysis or the other.

Phylogenetic analysis. Sequencing reads were mapped to the EMRSA15
HO 5096 0412 reference genome (accession number HE681097) using
SMALT (http://www.sanger.ac.uk/resources/software/smalt/). Single nu-
cleotide polymorphisms (SNPs) were called using SAMtools 0.1.18, the
Genome Analysis Toolkit (GATK), and in-house scripts (27, 28). SNPs
were called from the core genome after exclusion of known repeat regions,
insertion sequences, and known horizontally acquired elements. An ap-
proximate maximum likelihood phylogenetic tree was reconstructed us-
ing FastTree (29). Where appropriate, we included a reference genome
belonging to each CC in the phylogenetic analysis. Isolates of Staphylococ-

cus argenteus and Staphylococcus schweitzeri were included to ensure cor-
rect species identification (14).

Accessory genome analysis. Representative core and accessory ge-
nomes for the data set were identified using Roary on default settings (30).
A pairwise matrix was generated, showing the proportion of shared acces-
sory CDSs (see Fig. 2). Finding the set differences between clade 2 and the
remaining isolates identified the accessory genome content specific to
clade 2. CDSs found in more than 20 of the 22 clade 2 isolates were
considered to potentially contribute to monkey-specific host adaptation.

The presence or absence of a number of genes associated with viru-
lence in S. aureus was inferred by a BLAST search of the assembled ge-
nomes. Nucleotide sequences for virulence-associated genes alpha-hemo-
lysin (hlA), beta-hemolysin (hlB), delta-hemolysin (hlD), staphylococcal
enterotoxins A (seA), B (seB), C (seC), G (seG), H (seH), and I (seI), toxic
shock syndrome toxin gene 1 (tst1), and Panton-Valentine leukocidin
(PVL) genes (lukF-PV and lukS-PV) were identified from the Virulence
Factors of Pathogenic Bacteria database (http://www.mgc.ac.cn/VFs/).
The presence of the virulence genes in isolates used in this study was
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identified by using BLAST against the whole-genome assemblies with a
cutoff of �90% base identity and length similarity to the reference gene.

Genomic divergence. To visualize genetic divergence across the ge-
nomes in clade 2, monkey isolates H7, F2, G2, G11, F7, and H10 were
compared the finished closed genome USA300 FPR3757 using BLAST
Ring Image Generator (BRIG) (31). Query genomes represented subclus-
ters within the monkey-associated clade 2. USA300 FPR3757 was selected
for comparison because of the presence of �Sa� and �Sa� and the high
quality of its annotation. The lower bounds of nucleotide similarity were
set to 85%. Well-characterized mobile genetic elements were annotated
for comparison.

Ethical approval. The Gambia Government/MRC Joint Ethics Com-
mittee approved the carriage study and the sampling of biological samples
from the green monkeys. The Gambia Government/MRC Joint Ethics
Committee gave subsequent approval to send genomic DNA of 96 S.
aureus isolates to the University of Warwick, United Kingdom, for whole-
genome sequencing.

Accession number(s). The genome sequence data from this study
have been uploaded to the European Nucleotide Archive under the study
accession number PRJEB12419.

RESULTS

Genomic analysis. We analyzed 90 genomes of Staphylococcus au-
reus, representing 46 isolates from human invasive disease, 13 hu-
man carriage isolates, and 31 monkey pharyngeal isolates (see Ta-
ble S1 in the supplemental material). Draft assemblies ranged in
size from 2.7 to 3.4 Mb with a range of 2,462 to 2,921 coding
sequences. When mapped to the EMRSA-15 reference genome,
the mean average coverage was 61.5-fold (range, 12.5- to 126.2-
fold).

Phylogenetic analysis. Single nucleotide polymorphisms
(SNPs) were called from 232,276 sites in the core genome after
exclusion of all known repeat regions and transposable mobile
elements. We created a maximum-likelihood phylogenetic tree
linking our isolates with reference strains. This tree resolved five
major S. aureus clades that are consistent with previous species-
wide phylogenetic analyses (Fig. 1; see also Fig. S2 in the supple-
mental material). Clade 1 encompasses the well-described CCs 8,
1, 5, 15, and 25. Clade 2 is a novel monkey-associated clade en-
compassing six subclusters. Clade 3 encompasses CC30 and
CC45. Clade 4 corresponds to CC121 (22) and various animal-
associated reference genomes. Finally, clade 5 corresponds to
ST152 and related genotypes.

Current estimates of intraclonal mutation rates are consistent
in S. aureus (see the supplemental material in reference 32). Based
on the intraclonal mutation rate for S. aureus of �2 � 10	6 per
site per year (32) and a core genome size of �2.5 Mb, we were able
to estimate an upper bound date for the transmission events. The
short-term mutation rate equates to about 5 SNPs per year. Thus,
simply dividing the total number of SNPs between any pair of
contemporary S. aureus isolates by 10 gives the approximate num-
ber of years since they shared a common ancestor.

The single monkey-derived ST15 isolate differs by only 71 core
genome SNPs from the most closely related human-derived ST15.
Assuming equal rates of mutation in both lineages, this represents
approximately 7 years divergence. However, in this case, the esti-
mated time of interhost transmission is likely to represent a mis-
leadingly high upper bound, as we are very unlikely to have sam-
pled the human-associated relative closest to the transmitted
strain. Furthermore, the fact that ST15 was only found once in
monkeys and that there is no evidence of onward transmission is
consistent with a very recent transmission event.

We identified a cluster of seven ST6 isolates derived from mon-
keys. An interrogation of the MLST database (www.mlst.net) re-
vealed that this genotype is occasionally recovered from cases of
bovine mastitis but is predominantly human associated. There-
fore, the cluster of seven ST6 isolates recovered from monkeys is
also likely to represent recent anthroponotic transmission. The
closest pairwise SNP distance between a monkey ST6 isolate and
the ST6 reference strain was 311 SNPs, suggesting that the host
switch happened no more than 3 decades ago. The most divergent
pair of monkey-derived ST6 isolates differed by 270 SNPs, which
also equates to around 3 decades of divergence. However, if this
cluster represents multiple transmission events from humans to
monkeys, then the resulting host switches might have occurred
more recently.

The third host switching event evident from our analysis is the
much more ancient event that gave rise to the diverse monkey-
associated clade 2, which was characterized by isolates with novel
STs not found in humans. As this clade is nested within predom-
inantly human-associated lineages (Fig. 1), it is likely to have re-
sulted from an ancient human-to-monkey transmission event.
The smallest SNP difference between a clade 2 isolate and a non-
clade 2 isolate (in this case the reference MSSA476) is 26,968 SNPs,
which equates to �2,700 years of divergence. This may be an
underestimate, since our rate estimate is based on divergence over
much shorter time scales (which is likely to be more rapid due to
the lag time of purifying selection).

Accessory genome variation and host adaptation. Genomes
corresponding to the same clonal complex also share similar ac-
cessory gene content (Fig. 2). Moving out to a broader phyloge-
netic scale, related CCs share more similar accessory gene content
than unrelated CCs (e.g., the large square corresponding to the
CC15/1/8/97/6/25/5 clade). This confirms previous observations
using microarray data, which led to the concept of the “core vari-
able” genome, meaning those genes that are stably present or ab-
sent within a given clonal complex but vary in their distribution
between clonal complexes (33).

Variations in accessory gene contents were observed within the
different clade 2 subgroups (Fig. 3). Regions of difference mostly
represented horizontally acquired elements such as the genomic
islands �Sa� and �Sa�, SCCmec, and phage and pathogenicity
islands. Genes present in �Sa� but absent or in low frequency
within clade 2 include a variant of tst1 (toxic shock syndrome
precursor) and genes encoding two superantigen-like proteins,
two putative leukocidins, and a 65-kDa membrane protein. The
ltrA gene was present in all strains except those in clade 2 and the
CC152 strains of clade 5 (see the supplemental material). This
gene encodes a “low temperature requirement” protein (Pfam:
PF06772.5, COG4292) found to be essential for growth at low
temperatures (4°C) in Listeria monocytogenes (34), but its function
in S. aureus is unknown.

The spl operon resides in the �Sa� pathogenicity island and
encodes extracellular serine proteases. The distribution of genes
within this operon is consistent with a role in host adaptation. The
variants of the splA to splE genes present in the USA300_FPR3757
reference are missing in all clade 2 isolates. However, clade 2 iso-
lates contain novel variants of spl genes that are missing in all other
isolates.

The immune evasion cluster (IEC1) proteins sak, scn, and chp,
which are harbored on the phage 
SA3 (Fig. 3), are absent from
clade 2. All three genes are absent in the ST6 cluster, with the
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FIG 1 A maximum likelihood phylogenetic tree showing 5 major clades; branches are colored based on clade assignment. Tips are annotated by ST and colored
by host. Reference genomes are annotated by name and CC and colored black. *, single locus variant of given ST.
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exception of sak and scn present in isolates E3 and E8. Further-
more, sak and scn are absent in SA29 (the ST15 monkey-derived
isolate), and all three genes are absent in the monkey-derived
CC152 isolate F5. This last example is particularly notable as the
human-associated CC152 isolates in our collection contain these
genes (see Data Set S1 and Fig. S1 in the supplemental material).
The IEC1 genes are known to be associated only with human
isolates and thus are thought to be involved in host-specific func-
tions (35–37). Our analysis also confirms the absence of these
genes in the animal-derived reference genomes ED98 (chicken),
LG251 (cow), ED133 (sheep), and RF122 (cow) (35).

The lytN gene encodes a murein hydrolase thought to contrib-
ute to the release of protein A (a major immunoglobulin binding
protein) from the cell surface by the removal of sugars (38). We
note two variants of this gene in our data. Variant lytN is present in
18/22 clade 2 isolates but in only 10/88 non-clade 2 isolates (4 of
which are from the monkey-associated ST6 cluster). Variant
lytN_2 is absent from all 22 clade 2 isolates but present in 68/88 of
all other isolates.

The Panton-Valentine leukocidin (PVL) genes (lukF-PV and
lukS-PV) were absent from all monkey isolates in the data set. This
observation supports the adaptation to the new host since it works
in humans but not monkeys (36). The staphylococcal enterotox-
ins A (seA), B (seB), C (seC), G (seG), H (seH), and I (seI), were
absent from all monkey isolates. The exception was the presence of
enterotoxin A (seA) in two ST6 monkey isolates. Beta-hemolysin
(hlB) was absent from all human isolates except the ST152 human
isolates.

Antibiotic resistance profiles. We found no evidence of me-

thicillin-resistant S. aureus (MRSA) among our staphylococcal
isolates from monkeys in The Gambia. One monkey isolate (G9)
was reported as methicillin resistant by the cefoxitin disc diffusion
test, but the Etest confirmed that it was susceptible to methicillin.
In addition, no genomic evidence of methicillin resistance was
found when the genome was analyzed using Mykrobe (39) Two
invasive disease isolates were confirmed to be MRSA through phe-
notypic testing; the mecA gene was present in both isolates. To our
knowledge this is the first report of MRSA causing human invasive
disease in The Gambia.

DISCUSSION

Using whole-genome sequencing, we infer multiple human-to-
monkey transmission events, but no evidence of monkey-to-hu-
man transmission. This observation is consistent with the report
by Schaumburg et al., who used MLST and spa typing to compare
human and monkey staphylococcal isolates from three African
countries, Côte d’Ivoire, Gabon, and Democratic Republic of
Congo. Their findings revealed numerous examples of human-to-
monkey transmission but no evidence of the reverse (13).

A consistent picture of a clonal population structure, in which
closely related strains cluster into several widespread clonal com-
plexes (CCs) that are clearly delineated from each other, has
emerged from our data. The majority of S. aureus colonizing in
monkeys was due to novel lineages that formed clade 2 in the
phylogenetic tree (Fig. 1). The phylogenetic placement of clade 2
suggests that it arose from an ancient human-to-monkey trans-
mission event. This clade is believed to have diverged from human
S. aureus �2,700 years ago, long before modern human popula-

Shared CDSs (%)

FIG 2 A heat map nested into the phylogeny showing the proportion of accessory genes that are shared between isolates, determined by a pairwise comparison.
Branches on the phylogeny are colored based on the clonal complex. Darker squares in the heat map indicate higher shared accessory genome content. To the
right of the heat map is a bar chart showing the number of accessory genes for each genome.
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tion expansion and its ecological consequences. Over time, this
clade appears to have adapted to the monkey host and has under-
gone clonal expansion.

The more recent transmission of human-associated lineages
ST15 and ST6 to monkeys is believed to be a product of human
encroachment into the natural habitat of monkeys and probably a
result of transfer of bacteria from human hands to food, which is
then fed to the monkeys. These two STs have been previously
detected in African monkeys from remote regions of sub-Saharan
Africa (13).

Analysis of the distribution of accessory genes between the
monkey- and human-associated isolates confirmed the previous
suggestion that genes carried on mobile genetic elements play a
key role in host adaptation (40). Of particular note is the roles of
the two genomic islands �Sa� and �Sa� that encode superanti-
gens, lipoproteins, and proteases. Gene contents within these is-
lands differ markedly between strains as these islands recombine
at high rates and are transferable by transducing phage particles
(40), so that they have been referred to as “enterotoxin nurseries”
(41, 42).

Gene loss may be as important as gene acquisition in the con-
text of host adaptation. For example, isolates recovered from non-
human hosts often harbor truncated variants of surface proteins
present within closely related human isolates (43, 44). The phage-
borne genes chp, sak, and scn that constitute the immune evasion

cluster IEC1 have been previously noted to be exclusively associ-
ated with human-associated isolates, and our data are consistent
with this view. Assuming that gene loss is an evolutionarily more
parsimonious event than gene gain, this striking association may
help to explain why S. aureus anthroponoses are more common
than zoonosis, although we note not all human isolates harbor
these genes (for example, they are absent within CC15). The
association between host and variants of the spl operon is in-
triguing since it encodes serine proteases, as well as genes
(lytN) involved in the processing of the major surface antigen
staphylococcal protein A.

Reassuringly, we find no evidence of transmission of S. aureus
from monkeys to humans. An analysis of MLST data has shown
that for S. aureus there are generally higher rates of anthroponoses
(human-to-animal transmission, n � 13) than zoonosis (animal-
to-human transmission, n � 2) (8).

Limitations of this study. In this study, we did not perform de
novo sample collection over a standard harmonized time frame
but instead made use of existing sets of isolates collected at various
times and in various places within The Gambia. Therefore, it
seems unlikely that the humans in closest contact with the mon-
keys will have been sampled as part of this study. This has led us to
temper our conclusions on the frequency of and direction of
transmission, which could only be established in detail by a lon-
gitudinal study.

FIG 3 BRIG. Whole-genome sequence analysis and comparison of USA300_FPR3757 to isolate a representative from each of the six subclusters in the
monkey-associated clade 2. Circular diagram of the USA300 chromosome showing (from inner to outer), percent G�C, GC skew, and the homology based on
BLASTN analysis of USA300_FPR3757 to H7, F2, G2, G11, F7, and H10. The sequence similarity ranges from 85% to 100%, as regions of homology of �85%
were excluded. The outermost circle shows the location of large horizontally acquired pathogenicity islands and well-characterized phages present in USA300. *,
single locus variant of given ST.
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