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Abstract: Performing a good-quality indoor localization of a mobile target is a challenging task,
which can be affected by many factors such as radio wave behavior, the nature of the experimental
environment, and available infrastructure. (1) Background: An indoor localization experiment using
an Internet of Things (IoT) wireless sensor network (WSN) testbed is performed, in order to study
the influence of transmission power level on the quality of received signals, and consequently, the
estimated target positional coordinates. (2) Methods: A received signal strength indicator (RSSI) range-
based localization system using a geometrical constrained weighted least squares (WLS) estimator
multilateration technique is selected to validate the influence of the transmission power level on the
performance of the localization algorithm. (3) Results: Fair localization quality was obtained at the
highest transmission power level instead of the proposed transmission power level. (4) Conclusion:
Additional factors are discussed to fully represent the required operational transmission power for a
better localization quality, along with suggested improvements of the infrastructure configuration as
a future work.

Keywords: indoor localization; WSN; RF; range-based; RSSI; multilateration; WLS; PDR

1. Introduction

Localization of objects inside an indoor environment is emerging as an important
requirement in many fields and industries. The definition of localization is to estimate
the positional coordinates with a sufficient certainty, with respect to the dimensions and
nature of a defined environment. Example applications of indoor localization could be
localizing a person in a room, a forklift within a warehouse, or a mobile agent within a
laboratory. Localization is the first and principal step of the see–think–act cycle for tasks to
be executed by any mobile agent [1]; for example a forklift driver navigating the warehouse
to reach a destination point while being aware of its current location or a medical staff
localizing a patient in a hospital as a part of a patient surveillance system. Another large
and fast growing domain that will take advantage of indoor localization is human–robot
collaboration [2], whereby the accurate localization of a moving human worker might
provide additional safety and efficiency benefits if integrated correctly.

Although the global navigation satellite system (GNSS) is a well-known absolute
location system for localization in a wide variety of applications, the GNSS does not
provide a reliable signal for indoor environments, because of the abundance of barriers and
obstructions inside such environments [3]. A popular example of GNSS would be the global
positioning system (GPS), which uses a shared frame of reference for all located objects (GPS
receiver uses longitude, latitude, and altitude); on the other hand, a relative location system
would use its own frame of reference [4]. The radio frequency (RF)-based localization
algorithms can be classified into two basic models: range-based and range-free models.
Both models rely on an infrastructure of anchor nodes, transmitting/receiving beacons,
installed at fixed spatial locations within the environment for the sake of localizing a mobile
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target node. Range-free models assume no prior knowledge about RSSI signal strength,
which means no initial calibration of anchor nodes is required, in contrast to range-based
models, which need both signal strength and location calibration of anchor nodes [5].

Indoor localization systems can be categorized according to their measurement pa-
rameter such as received signal strength indicator (RSSI), time of arrival (ToA) and angle of
arrival (AoA). The RSSI technique is a popular option because it is easy to implement and
needs no specific hardware [6].

The relative distance information between transmitter and receiver can be extracted
from the RSSI value by using a mathematical formula mapping the RSSI value to a relative
distance, known as radio channel model or path-loss model [7]. In this particular indoor
localization problem, the location of a target or an object is represented as an absolute
position within the room frame of reference, which is obtained by using several relative
distances between the mobile target and a fixed number of anchor nodes. The algorithm
responsible for translating a set of relative distances between anchor nodes and mobile
nodes to an absolute position of the mobile node could be multilateration (or trilateration
when the number of anchor nodes is 3) [8].

The radio transceiver is an embedded electronic chip inside the transmitter/receiver
device responsible for sending and receiving radio packets from/to the target to be localized
(the direction of packets depends on the system’s topology). In case of a successful reception
of a radio packet, the power of the packet can be represented as a RSSI digital value, stored
in a built-in register of the radio transceiver [9].

1.1. Related Work

Although the RSSI is widely used as a core variable in indoor localization applications
due its simplicity and hardware availability, it is constantly prone to multiple sources of
error and could be easily affected by environmental noises.

RSSI-based localization algorithms have evolved over time in order to mitigate the
effects of various sources of noise on the localization quality. The classical localization
range-based systems, relying mainly on the path-loss radio channel model and multilat-
eration localization algorithm could be used as a baseline to survey the evolution of the
available RSSI localization approaches. The path-loss model is used to estimate the relative
distances between transmitters and receivers [10], which can be further translated into
an absolute distance of the target node by using any localization algorithm such as the
multilateration algorithm or the min-max algorithm [11]. Range-based models usually pro-
vide a poor description of the environment in terms of flexibility and precision due to the
negative effects of multi-path and non-line-of-sight propagation, which in turn degrades
the localization accuracy [6].

Another category of advanced localization models includes range-free models and
time-based techniques, which are considerably researched compared to the range-based
models [12]. The range-free models or fingerprinting relies on a fingerprint database or a ra-
dio map, consisting of radio wave signatures gathered from several anchor nodes or access
points at reference positions throughout the area of interest [13]. Although fingerprinting
models try to ensure a higher accuracy in various environmental conditions, it requires a
special environmental survey for each deployment environment, and it still suffers from
RSSI fluctuations, signal interference, and multi-path fading. The time-based techniques
can be used to overcome some of the fingerprinting model drawbacks by utilizing the
signal’s propagation time and velocity, but additional stages of filtering or map matching
are required in order to improve the localization performance [12].

Beside the well-known deterministic approaches discussed above, probabilistic or
machine-learning solutions proposed in [14] could be applied to this localization problem.
Ref. [15] proposes a statistical (recursive) algorithm that outperforms the conventional
algorithms of Kalman and particle filters for both static and dynamic environment use cases.
Although the main purpose behind the aforementioned nondeterministic solutions is to
mitigate the effect of some noise sources, it will make the existent localization problem more
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complex. The classical localization range-based systems can be adjusted or augmented
in order to increase the localization accuracy by performing various sets of calibration
routines or an extensive analysis of radio signal propagation [6]. Another option is to
increase the number of anchor nodes so that a greater amount of information is gathered.
The interference level between signals would potentially increase as a result, which imposes
signal filtering as a must to improve system’s accuracy [16]. The reasonable approach of
exclusively tuning the transmission power while preserving the same structure, hardware
setup, and calibration routine is proposed by [17] and would be validated and extended in
our work due to its uniqueness and simplicity.

The rest of this subsection presents a summary of procedures and work done in [17],
which is used as a starting point for our work based on specific experiment conditions,
infrastructure, and environment. The purpose of the work done in [17] is to find the optimal
transmission power level of the mobile node which increases the accuracy of the overall
localization system, by improving the quality of individual relative distances measured
by anchor nodes. These relative distances are used as an input to the multilateration al-
gorithm. The RSSI parameter is used as a core variable for distances estimation; that is
why a path-loss model from [18] is chosen, to extract distance information out of the RSSI
value. The main approach for improving the accuracy is to maximize the system’s overall
sensibility according to [17], which in turn allows the detection of smaller variation of
distances. A heuristic approach is followed to describe the sensibility of the entire system
as a single parameter N. A classical multilateration algorithm is used to perform the mobile
node localization as a part of a range-based localization system by utilizing a setup of 5 Z1
Zolertia anchor nodes attached to the walls and a single mobile Z1 Zolertia node fixed on a
tripod. Six test points in total are recorded, five of which are contributing to the calibration
process and path-loss model derivation, while the sixth point is left out for result validation.
The calibration step defines the path-loss model of each anchor’s antenna and plays a vital
role in figuring out the optimal transmission power of the system by estimating the intrinsic
and extrinsic parameters of each anchor’s antenna. The multilateration algorithm is used
to estimate absolute position of the mobile target node in six predetermined test positions;
then the output results of the algorithm are visualized and evaluated by using mean error
and root mean square error (RMSE) metrics. The RMSE value of the validation point (sixth
point) is found out to be the lowest, at a certain power level. This power level is directly
linked to maximizing the system’s sensibility.

1.2. Purpose of Paper

This work is an extension of the work done in [17] with an objective of testing the
effectiveness of the power tuning approach for reducing the localization error in RSSI-based
localization systems and validating results obtained in the previous research through a
detailed experiment executed on the EDI TestBed [19,20]. The EDI TestBed is a 100+ node
heterogeneous Internet of Things and wireless sensor network testbed distributed around
a 7-floor building, inside and outside for validation and research of Internet of Things
and wireless sensor network protocols. Our work aims to present an initial evaluation
of the EDI TestBed Infrastructure as a Service (IaaS) provided by the DevOps-ready IoT
testbed [21]. We would like to contribute to the current indoor localization research by
deploying a geometrical constrained range-based RSSI indoor localization system and
investigating power consumption levels for energy-harvesting realization

Relative distances between anchor nodes and the mobile target to be localized are
estimated by using a path-loss radio channel model and then fed to the multilateration
algorithm responsible for estimating the absolute location of the mobile target. The de-
ployed localization system is intended to verify the work and results of [17], achieving
the lowest estimation error by finding the optimal transmission RF output power through
tuning the power level of anchor nodes (transmitters). The results of this paper did not
completely match the utilized concept of [17] because of different infrastructure setup and
environmental factors. Eventually this paper added new criteria to the proposed approach



Sensors 2022, 22, 4154 4 of 18

of [17] for obtaining the correct power level and proposed future ideas and improvements.
The main design choices of our deployment in addition to the underlying motivation are
listed below:

• EDI TestBed workstation anchor nodes are not equipped with external antennas in or-
der to evaluate our existing testbed’s infrastructure readiness for similar experiments;

• the target node acts as a gateway and network sniffer to keep the architecture simple
and take into consideration the privacy of location data;

• same-system sensibility criterion as in [17] is selected in order to obtain comparable
results for further validation;

• a geometrically constrained multilateration algorithm is utilized to enhance the quality of
measurements by means of constraining distance estimations using a descriptive algorithm.

2. Materials and Methods

In order to build a complete RSSI range-based indoor localization system, three main
components must exist:

1. RF transceivers (anchor nodes and target node);
2. radio channel model;
3. Multilateration localization algorithm.

RF transceivers of anchor or stationary nodes are responsible for sending network
packets to the target node, which in turn tries to receive packets correctly and extract the RSSI
information out of it. Configuration and internal components of anchor nodes are described
in Section 2.1, and hardware/software configuration of the target node (gateway) is described
in Section 2.2. The RSSI data is recorded at a number of test points, described in Section 2.3
in order to build radio models of anchor nodes (Section 2.4), describe system sensibility
(Section 2.5), and evaluate the overall system’s performance as a result. The final part of the
localization system is the multilateration algorithm, which is described in Section 2.6, and
then modified/enhanced to include the geometry constraints of Section 2.7.

2.1. Anchor Nodes

Being used as anchor nodes, 4 EDI TestBed workstations connected to XM1000 sensor
nodes (called Devices Under Test or DUTs in EDI TestBed) [19] are attached to the ceiling of
a 5.8 m × 5.6 m × 2.7 m office room. A complete testbed workstation consists of: (1) DUT,
(2) testbed adaptor, and (3) Ethernet router as shown in Figure 1 below.

Figure 1. EDI TestBed workstation [19].

Locations of workstations are chosen to be at the corners, which is the case for 3 nodes,
whereas the fourth node is near the midpoint of the ceiling, being away from any wall is
aimed to give more uniform wave propagation toward the target node, while providing
an easy access and space for calibration as described in Section 2.4.1. Figure 2 illustrates
positional coordinates of anchor nodes with respect to the room environment at a height of
2.7 m (z = 2.7 at the ceiling level).
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Figure 2. Locations of anchor nodes inside the room.

The anchor nodes send network packets periodically over the air with their infor-
mation through the CC2420 radio transceiver [9], programmed by using a C program of
the MansOS embedded operating system [22] which is flashed on XM1000 sensor nodes.
The main content of messages/packets is anchor number (or NodeID, as described in
Section 2.2). When the message is successfully received by the target node, the content
is parsed. Then the RSSI value is utilized to estimate the relative distance between the
sending anchor node and the mobile target to be localized.

2.2. Gateway

The gateway consists of the mobile target node (packet sniffer) connected to a lap-
top [18]. The main role of the packet sniffer is listening to packets being sent from anchor
nodes, transferring them to the computer where the received packets are parsed and pro-
cessed. The Texas Instrument (TI) LaunchPad CC1352R1 [23] is used as the mobile target
node hardware. The Launchpad is equipped with an external antenna (2.4 GHz dipole
antenna with 2.8 dBi peak gain) which is mounted to a Subminiature version A (SMA)
connector on the circuit board as shown in Figure 3.

Figure 3. Target node hardware.

The omnidirectional antenna of the target node is used to boost the gain of RF power
and to add some uniformity to the wave’s radiation pattern, which should eventually
increase the probability of receiving packets successfully. Anchor nodes use their embed-
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ded antennas (no external antenna is attached), which cuts down setup cost and avoids
additional manual work, while evaluating the EDI TestBed performance in its normal
state without any modifications as compared to the work done in [17] where all send-
ing/receiving devices are equipped with external antennas.

The SmartRF Packet Sniffer [24] software is installed on the gateway’s laptop. The soft-
ware is developed by TI and it provides a graphical user interface (GUI) along with a com-
patible plugin with the open-source packet analyzer software Wireshark [25]. The SmartRF
software is piping packets received from the CC1352R1 mobile target to the Wireshark
software. By using Wireshark, the RSSI values are extracted by the radio packet informa-
tion (RPI) plugin and general packets’ information are logged to the screen. The GUIs of
SmartRF Packet Sniffer software and Wireshark software during the receiving process are
shown in Figures 4 and 5 respectively.

Figure 4. SmartRF Packet Sniffer GUI.

Figure 5. Wireshark GUI.

The “Length” column in the Wireshark interface (Figure 5) represents the size (in
bytes) of received packets, with a signal strength of RSSI value indicated in the adjacent
column. Received packets are distinguished based on their lengths and afterward assigned
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a unique NodeID value subject to the length. For example, a packet with a length of
51 bytes received from an anchor node means that the first anchor node is the sender
and accordingly is assigned a NodeID of 1. Each log of packets represents the recorded
data for one test/validation point at a certain power level; afterwards it is exported as a
comma-separated values (CSV) file to be processed as a DataFrame using a Python script.

It is obvious that packets arriving from different anchor nodes are usually received in a
random order by the target node (Figure 5), subsequently making the processing task more
challenging. The ideal structure of processed packets would be chunks of sorted packets
(due to their NodeIDs), each of length equal to M packets (M is total number of anchor
nodes). In case a packets chunk is incomplete (contains less packets than M), the chunk is
assumed to be corrupted and will not be further advanced by the multilateration algorithm.

A sorting routine is made to facilitate the multilateration step by arranging packets and
discarding incomplete chucks in advance. A numerical example for the sorting/ordering
routine, assuming a configuration of 4 anchor nodes (M = 4) can be described as: when
the target node receives a packet from the ith anchor node (NodeID = i), then anchor i rank
counter anch_ranks[i] is incremented by 1, in case the anch_ranks[i] value equals to 2. This
means that a new chunk is created (increment the chunk counter and reset rank counter
anch_ranks). An example of raw packets data is illustrated in Figure 6a, ordered packets
structure with the first chunk being corrupted (the missed packet has an RSSI of None) is
shown in Figure 6b and a flowchart of the sorting routine is illustrated in Figure 7.

(a) (b)

Figure 6. Packets processing. (a) Raw packets (before processing); (b) Processed chunks of packets.

2.3. Test and Validation Points

In order to derive the radio channel model (which tries to describe the radio wave
behavior which maps RSSI values to a relative distance between the transmitter and
receiver) of each anchor node antenna and to evaluate the overall performance of the
localization system, a number of test points data are recorded at different RF output power
levels [17]. The CC2420 radio transceiver provides 8 distinct transmission power levels,
with power level 31 being the highest level and power level 3 being the lowest level in dBm.
Full information about power levels can be found in the datasheet [9].

Test points can be featured by positional coordinates (x, y, z) and the received RSSI
value from each anchor node. Nine test points in total are recorded, and three of them are
left out as validation points (not included in fitting the radio channel model) to evaluate
the localization algorithm through root mean square error (RMSE) metric. Test points
are distributed around the room at the same height of 1.26 m above the ground level
(z = 1.44 below ceiling level) as shown in Figure 8.
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Figure 7. Packet sorting routine.

Figure 8. Locations of test and validation points.

2.4. Radio Channel Model

The propagation of radio (electromagnetic) waves obeys the mechanisms of reflection,
diffraction and scattering [10]. Therefore, a general characterization model for waves
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behavior is selected. Then this model is tweaked to match the particular conditions of the
environment of interest. A simple logarithmic radio channel model, called Path loss model,
is chosen to describe the RSSI at the receiver side (target node):

Pr = −10η log10 d + A (1)

where:

Pr: strength of the received signal;
η: signal propagation exponent;
d: relative distance between sender and receiver; and
A: nominal transmission power at a reference distance of 1 m [17,18].

The signal propagation exponent η represents the nature of the test environment while
A represents the radio behavior between transmitters and receiver. Both A and η values
are obtained empirically [7]. The relative distance between transmitter and receiver can be
calculated from the received power Pr using the inverse formula of Equation (1) as:

d = 10

Pr − A
−10η . (2)

2.4.1. Nominal Transmission Power

The nominal transmission power coefficient A represents the received power at a
reference distance, one meter in distance from where the transmitting device is chosen. A
number of packets are measured at certain positions within a circumference of the reference
distance, then averaged to get an estimation of A [18]. The location of the workstation or
anchor node affects its accessibility during the calibration step; hence four calibration sets as
shown in Figure 9a can be performed to the node in the middle of the room (NodeID = 3),
and the rest of anchor nodes in the corners allow only two sets of packets due to their
limited accessibility as shown in Figure 9b.

(a) (b)

Figure 9. Proposed positions for estimating A coefficient. (a) Four calibration sets for the middle node;
(b) Two calibration sets for corner nodes.

2.4.2. Signal Propagation Exponent

For each anchor node i, the signal propagation exponent ηi is chosen to fit the best
curve matching the real Euclidean distances di between the target node and the corre-
sponding anchor node i, to the received signal strength Pr measured by the target node of
Equation (1) (given the nominal transmission power Ai). The logarithmic curve represent-
ing Equation (1) that best fits the test points will include the estimated value of η [17].

2.5. Improving System Accuracy

The accuracy of the localization system depends on the overall behavior of anchor
nodes. By increasing antennas’ sensibility, any small variation of relative distance di could
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be detected; thus a better performance of the system is obtained. A heuristic Formula (3) is
used to describe the entire system sensibility in terms of signal propagation exponent η
and its variability [17].

N =
µ[ηi(Ai − RSSImin)]

σ2[ηi(Ai − RSSImin)]
(3)

where

µ: mean operation between anchor nodes;
σ2: variance operation between anchor nodes; and
RSSImin: minimum detected RSSI by the corresponding anchor node.

2.6. Multilateration Algorithm

An estimation (x̂, ŷ) of the target node’s real absolute position (x, y) could be ob-
tained by using the multilateration algorithm, by translating estimated relative distances
between anchor nodes and target node, given absolute positions of anchor nodes (xi, yi) [4].
The multilateration algorithm tries to find the estimation (x̂, ŷ) within room boundaries,
which minimizes the sum of the squared errors in the measured relative distances d̃i. The
minimization equation is given by [8,26]:

ε = min
M

∑
i=1
|
√
(xi − x̂)2 + (yi − ŷ)2 − d̃i|2. (4)

The minimization problem of Equation (4) can be solved by using least squares
estimator by first converting the problem into a linear system of equations. The square of
relative distance di between anchor node i and the target node is:

d2
i = (xi − x)2 + (yi − y)2 (5)

where

(xi, yi): ith anchor node positional coordinates; and
(x, y): target node positional coordinates [26].

By taking the first node (i = 1) as a reference node, subtracting Equation (5) of other
nodes (i = 2, 3, 4, ..., M) from the reference node (i = 1) equation, a system of linear
equations is built as

A.x̄ = b̃ (6)

where

A =

 2(x1 − x2) 2(y1 − y2)
...

...
2(x1 − xN) 2(x1 − xN)

, x̄ =

[
x̂
ŷ

]
(7)

and

b̃ =


(d̃2

1 − d̃2
2)− (x2

1 − x2
2)− (y2

1 − y2
2)

...
(d̃2

1 −
˜d2
N)− (x2

1 − x2
N)− (y2

1 − y2
N)

. (8)

The estimated positional coordinates of the target node x̄ can be obtained by using
the LSE method as x̄ = (AT A)−1 AT b̃ [8].

To improve the quality of the measurements, weights are assigned to each estimated
distance due to its value, which turns the least squares estimation into a weighted least
squares (WLS) estimation. The set of 1

2 , 1
4 , 1

8 and 1
16 weights are used by [17] to form the

weights matrix W. The highest weight is assigned to the strongest signal (shortest measured
relative distance d̃min), as it tends to be more trustworthy. The weights matrix W is a bit
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similar to the the S matrix proposed in [26], with a modification of variances to be constants
and off-diagonal elements to be zeros. The weights matrix W is described as:

W =


w1 + w2 0 . . . 0

0 w1 + w3 . . . 0
...

...
. . .

...
0 0 . . . w1 + wN

 (9)

and accordingly the estimated coordinates of target node x̄ can be obtained as
x̄ = (ATWA)−1 ATWb̃.

2.7. Geometry Constraints

Due to the random Doppler shift inducement of radio waves and unpredictable
environmental conditions, the RSSI measurement could be faulty (extremely high/low),
which does not reflect a logical distance measurement [27].

Practically, measured distances between anchor nodes and target node should be
within a certain range, which is defined by room dimensions and anchor node locations.
This condition could help building a system of constraints to bound the distances and/or
dismiss the corrupted measurements. The anchor nodes 1, 2, and 4 are assumed to be
exactly at the room corners whereas node 3 is at the center of the room, this assumption is
used to make the constrained system applicable and simplifies the calculations. A room
layout after applying the proposed approximations, illustrating the target node as a blue
star in a general position, is shown in Figure 10.

Figure 10. Relative distances to the target node.

As discussed in multilateration Section 2.6, the strongest signal (or minimum mea-
sured distance) tends to be more trustworthy, accordingly it will be used as an initial
distance to refine the rest of measurements by applying geometry constraints in a se-
quence. Distances (d1, d2, d3, d4 and G) to be used in the following geometric constraints
Algorithms 1 and 2 are illustrated in Figure 10.

After applying geometry constraints Algorithms 1 and 2, a final refinement stage is
done to assure that distances d1, d2, d4 are less than 2G distance while d3 is less than G
distance. Comparison between our methodology and [17] work is described in Table 1.
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Algorithm 1 Case 1: dmin 6= d3

Require: −L2 < α < L2,
Require: −W2 < β < W2

1: α← d2
2 − d2

1
2: β← d2

2 − d2
4

3: if dmin = d1 then

d2
2 =

{
d2

1 + L2, if α > L2

|L2 − d2
1|, if α < −L2

d2
4 =

{
|W2 − d2

2|, if β > W2

d2
2 + W2, if β < −W2

4: else if dmin = d2 then

d2
1 =

{
|L2 − d2

2|, if α > L2

d2
2 + L2, if α < −L2

d2
4 =

{
|W2 − d2

2|, if β > W2

d2
2 + W2, if β < −W2

5: else if dmin = d4 then

d2
2 =

{
d2

4 + W2, if β > W2

|W2 − d2
4|, if β < −W2

d2
1 =

{
|L2 − d2

2|, if α > L2

d2
2 + L2, if α < −L2

6: end if

Algorithm 2 Case 2: dmin = d3

. dmin2: second minimum distance

. dmin3: third minimum distance

Require: −G2 < γ < G2

1: if dmin2 = d1 then
2: γ← d2

1 − d2
3

d2
1 =

{
d2

3 + G2, if γ > G2

|G2 − d2
3|, if γ < −G2

3: dmin ← d1
. execute Algorithm 1

4: else if dmin2 = d2 then
5: dmin ← dmin3

. execute Algorithm 1

6: else if dmin2 = d4 then
7: γ← d2

4 − d2
3

d2
4 =

{
d2

3 + G2, if γ > G2

|G2 − d2
3|, if γ < −G2

8: dmin ← d4
. execute Algorithm 1

9: end if
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Table 1. Comparison between our work and work done in [17].

Criterion Our Work Work of [17]

Radio channel model Path loss model
Power level selection Equation (3) Equation (3) and PDR
System architecture Star topology (target node

as a network sniffer)
not stated

Multilateration algorithm GC-WLSE probably WLSE
(not clear)

Number of test, validation
points 6, 3 5, 1

Anchor nodes setup 4 EDI TestBed workstations
(with embedded antennas)

5 Zolertia Z1 nodes
(with external antennas)

Evaluation metrics MSE, RMSE mean error, RMSE

3. Results

In order to set up the localization system according to the procedures mentioned in
the Materials and Methods Section, the first step is to calibrate anchor nodes in order to
derive the radio model of each node’s antenna for the range-based localization system.
The estimated values of nominal transmission power A [dBm] and signal propagation
exponent η are listed in Tables 2 and 3 respectively. A short description about power levels
can be found in Section 2.3.

Table 2. Nominal transmission power A of anchor nodes in dBm.

Anchor Node
Power Level

31 27 23 19 15 11 7 3

1 −51.02 −55.73 −54.89 −55.06 −59.95 −60.15 −64.54 −76.16
2 −46.49 −46.17 −57.08 −52.27 −53.77 −60.45 −59.22 −74.16
3 −43.99 −44.82 −46.61 −53.60 −50.27 −55.12 −58.82 −71.10
4 −40.74 −43.80 −43.25 −49.94 −49.67 −55.20 −56.74 −64.30

Table 3. Signal propagation exponent η of anchor nodes.

Anchor Node
Power Level

31 27 23 19 15 11 7 3

1 0.911 0.353 0.439 1.043 0.383 1.675 1.258 1.244
2 2.415 2.475 0.975 1.965 2.585 1.521 2.917 2.113
3 2.839 3.051 3.058 1.582 2.828 2.659 2.968 2.486
4 2.652 2.198 3.137 2.543 2.443 3.146 2.571 2.587

3.1. System Sensibility

Given A, η (Tables 2 and 3) and RSSImin values, the Formula (3) is used to figure out
the optimum power level which maximizes the system sensibility according to [17], which
therefore increases accuracy of the localization system as a result. The calculated values of
N for each RF power level is illustrated in the upper side of Figure 11, while the packet
delivery ratio (PDR) is illustrated in the lower side of the Figure 11.

The PDR is defined to be the ratio of number of packets received at the target node
to the number of packets sent from anchor nodes. For every single test/validation point,
there were approximately 100 packets sent from each anchor node, which sums up to
around 400 packets in total to be received at the target node. Although the N variable is
maximized for power level 3, the PDR plot shows that power level 3 (the lowest available
RF transmission power level in the CC2420 chip) has around a 15% loss of packets, which
makes the usage of the N value solely (without considering the corresponding PDR) at
this power level unreliable because of the different (low) number of packets involved in
N calculation for power level 3. For this reason, the power level 3 will be discarded from
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evaluation for the rest of the results section. The second highest N value is obtained for
power level 11 with less than a 1% packet loss, which matches the finding of [17].

Figure 11. N vs. PDR for different power levels.

3.2. Performance Evaluation

The localization system is evaluated by using MSE (for test points) and RMSE (for
validation points) metrics. The MSE is calculated by using Equation (10) by comparing the
estimated (x̂, ŷ) to the real mobile target location (x, y), then averaged by the number of
samples or measurements K (K = 100 network packets for each test/validation point) [28];
the RMSE is the square root of the MSE.

MSE =
1
K

K

∑
j=1

(x− x̂)2 + (y− ŷ)2 (10)

The MSE and RMSE values of test and validation point measurements are illustrated
in Figures 12 and 13 respectively. The legend on the top-right side of each figure indicates
the (x,y) positional coordinates of the point.
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Figure 12. Test points MSEs.

Figure 13. Validation points RMSEs.

Vertical blue bins in Figure 13 indicates the RMSE summation for each validation
point. Numerical values of the RMSEs are listed in Table 4.

Table 4. Validation points total RMSE.

Power Level Total RMSE [m] Power Level Total RMSE [m]
31 4.45 15 8.22
27 9.99 11 6.82
23 9.19 7 6.09
19 8.61 3 discarded

4. Discussion

The illustrated analysis of test points data in Figure 12 shows that the majority of test
points data across different power levels has an MSE range of less than 10 m, which is
acceptable for such a metric taking into account operational conditions, with the exception
of 4 outliers with extreme values of MSE of 20–50 m2 range. These outliers are caused by
the continuous faulty behavior of one or more anchor node(s), which would accumulate
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error over samples if not instantaneously detected, then discarded (or compensated), even
if the constraints of Section 2.7 are applied.

The point (2.9, 1.0) at power level 11 had a misbehaving first anchor node (NodeID = 1)
with a mean absolute error (MAE) of 40.4 m, whereas the rest of anchor nodes had MAE of
less than 3 m. Although the power level 11 meets the condition of maximizing the system’s
sensibility according to Equation (3), a single faulty node would undoubtedly ruin the
localization performance. Both first and second anchor nodes (NodeID = 1, 2) of the peak
MSE point (1.1, 1.6) at power level 15 are faulty, with MAEs of 63 and 6.8 m respectively.
For the rest of the outliers, either the first node or both the first and second nodes have
faulty measurements, which magnify the MSE as a result.

In order to evaluate the performance of the localization system in a stochastic environ-
ment, three accuracy classes are presumed:

1. Fair accuracy if the RMSE is less than 2 m;
2. Marginal accuracy if the RMSE is more than 2 m and less than 3 m; and
3. Low accuracy if the RMSE is more than 3 m.

The second accuracy class might turn into either first or third class in case a higher
number of measurements K is used; hence it is called the marginal accuracy class. The
power level with the least total RMSE is 31 with all validation points data belonging to
the fair accuracy class, followed by two (out of three) validation points at power levels of
7 and 11. By aggregating factors of N variable, PDR (Figure 11), total RMSE (Figure 13)
and accuracy classes, it could be clear that power levels 31, 7, and 11 are superior to other
power levels, whereas power levels 7 and 11 could be more favourable due to their lower
transmission power (lower current consumption). Although the power level 7 has lower
total RMSE than level 11, the RMSE of its measurements are more disparate, which might
generate a higher total RMSE value over a larger set of validation points.

According to the system sensibility Equation (3), it was expected to have the best
localization performance (lowest error) at the power level meeting the maximum N value
condition, which was validated in [17] by using a single validation point with the lowest
RMSE occurring at power level 11. Three validation points were used in our experiment
and it turned out that it is not the case to guarantee the best accuracy for validation points at
the proposed power level (power level 11 due to Figure 11). Another factor to be considered
is the PDR, for the reason that it might be misleading to rely on a power level with low
PDR for evaluation; hence it is a must to assure a minimum level of PDR. According to
our experiment, the minimum requirement of PDR is empirically estimated to be higher
than 98% (with 2% packets loss) to obtain a balanced data set for further analysis. Regarding
the utilized infrastructure of the EDI TestBed, the XM1000 devices of anchor nodes were not
equipped with external antennas (embedded antennas were used), in contrast to the work
of [17]. This choice was made to evaluate our testbed’s original infrastructure readiness for
such an experiment. Another design choice is selecting 4 anchor nodes, sending network
packets to the target node, which was made for simplicity. As a future improvement, the
system could make use of more anchor nodes to mitigate the harmful effect of faulty anchor
nodes; hence a better localization accuracy could be obtained. We also intend to invert the
communication scheme, meaning that the target node would send one network packet at a
time to anchor nodes (not the other way around), which must cancel the risk of packets
collision and will bypass any routines for packets sorting (e.g., the routine described in
Section 2.2). Fine tuning the transmission power levels is a beneficial feature to be added,
because exploring the continuous power level range between 11–7 levels and 31–27 levels,
based on our results, may reveal a better localization accuracy. The fine tuning feature is
available in other IoT devices than XM1000, which demands at least a section of the EDI
TestBed infrastructure to be replaced for the sake of supporting such a feature. Eventually,
increasing the number of validation points may give new information about the potential
reliable power level with maximum precision over a large set of measurements.

This work managed to overcome the lack of crucial information in [17] to reproduce the
experiment such as: environment description (e.g., room dimensions, test points and anchor
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nodes positional coordinates), RSSI data analysis and processing, complete specifications
of the multilateration algorithm and numerical values of calibration parameters A, η.

5. Conclusions

This work set out to validate the findings of [17] for investigating the influence of
transmission power level on the performance of an RSSI-based indoor localization sys-
tem. Reproducible implementation steps of the experiment are outlined, a geometrical
constrained multilateration algorithm is developed, new factors were added to refine
the system sensibility approach representation of [17], and in-depth validation results
are discussed.
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